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ABSTRACT 

The intent of this paper is to introduce the concept of Gb-cone metric and we describe some basic properties of such 

metric. Further, we establish some fixed point theorems for self-mappings satisfying the contractive type conditions 
and a common fixed theorem for two weakly compatible self-mappings satisfying the contractive condition in Gb-

cone metric spaces without the assumption of normality. Moreover, some examples are provided to illustrate the 

usability of the obtained results. 
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1. INTRODUCTION 

Metric spaces play significant in mathematics and applied 

sciences. So, some authors havetried to give generali-

zations of metric spaces in several ways. The main 

revolution in the existence theory of many linear and 

non-linear operators happened after the Banach 

contraction principle. After this principle many 

researchers put their efforts into studying the existence 

and solutions for nonlinear equations (algebraic, 

differential and integral), a system of linear (nonlinear) 

equations and convergence of many computational 

methods [23]. Banach contraction gave us many 

important theories like variational inequalities, 

optimization theory and many computational theories 

[23-24]. Due to wide spreading importance of Banach 

contraction, many authors generalized it inseveral 

directions [25, 27-28].  

The notion of D-metric space is a generalization of usual 

metric spaces and it is introduced by Dhage [1-4]. 

Mustafa and Sims [5-6] have shown that most of the 

results concerning Dhage’s D-metric spaces are invalid. 

In [5-6], they introduced an improved version of the 

generalized metric space structure which they called G-

metric spaces. For more results on G-metric spaces, one 

can refer to the papers [11-17]. Beg, Abbas and Nazir 

[22] introduced G-cone metric space and established 

some fixed point theorems. Recently, Asadollah 

Aghajani, Mujahid Abbas and Jamal Rezaei Roshan [21] 

introduced 𝐺𝑏-metric space and established common 



660     GU J Sci, 28(4):659-673 (2015) /Manoj UGHADE, R. D. DAHERIYA
 

fixed point of generalized weak contractive mappings in 

partially ordered 𝐺𝑏-metric spaces. 

In this paper, we introduce the concept of 𝐺𝑏-cone metric 

and we describe some basic properties of such metric. 

Further, we establish some fixed point theorems for self-

mappings satisfying the contractive type conditions and a 

common fixed theorem for two weakly compatible self-

mappings satisfying the contractive condition in 𝐺𝑏-cone 

metric spaces without the assumption of normality. 

Moreover, some examples are provided to illustrate the 

usability of the obtained results. 

2. PRELIMINARIES 

Throughout this paper  ℝ  and  ℝ+ will represents the set 

of real numbers and nonnegative real numbers, 

respectively. 

The following definition is required in the sequel which 

can be found in [21]. 

Definition 2.1 Let X be a non-empty set and s ≥ 1 be a 

given real number. Suppose that a mapping G ∶ X × X ×
X → ℝ+satisfies: 

(GB1). 𝐺(𝑥, 𝑦, 𝑧) =  0 if 𝑥 =  𝑦 =  𝑧, 
(GB2). 0 < 𝐺(𝑥, 𝑥, 𝑦), ∀ 𝑥, 𝑦 ∈ 𝑋, with  𝑥 ≠  𝑦, 

(GB3). 𝐺(𝑥, 𝑥, 𝑦) ≤ 𝐺(𝑥, 𝑦, 𝑧), ∀ 𝑥, 𝑦, 𝑧 ∈ 𝑋 with 

        𝑦 ≠ 𝑧, 

(GB4). G(x, y, z) = G{p(x, z, y)} (Symmetry), 

(GB5). G(x, y, z) ≤ s(G(x, a, a) + G(a, y, z)), 

        ∀ x, y, z, a ∈ X (Rectangle inequality). 

Then G is called a generalized b-metric, or, more 

specially, 𝐺𝑏-metric on X, and the pair (X, G) is called a 

𝐺𝑏-metric space. If 𝑠 = 1, then G is called a generalized 

metric on X, and the pair (X, G) is called a 𝐺-metric space 

(see [6]). 

Definition 2.2 Let 𝔼 be a real Banach space, a subset of  

P of 𝔼 is called a cone if and only if:  

a) 𝑃is closed, non empty and 𝑃 ≠ {𝜃} . 

b) 𝑎, 𝑏 ∈  ℝ,   𝑎, 𝑏 ≥ 0, 𝑥, 𝑦 ∈ 𝑃 ⇒  𝑎𝑥 + 𝑏𝑦 ∈ 

𝑃, more generally, if 𝑎, 𝑏, 𝑐 ∈ ℝ, 𝑎, 𝑏, 𝑐 ≥ 0, 𝑥, 
 𝑦, 𝑧 ∈ P ⇒ 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 ∈ 𝑃 

c) 𝑥 ∈ 𝑃 and − 𝑥 ∈ 𝑃 ⇒ 𝑥 = 𝜃, 𝑒. 𝑖. 𝑃 ∩ (−𝑃) =
{𝜃} 

Given a cone 𝑃 ⊂ 𝔼, we define a partial ordering ≼ with 

respect to 𝑃 by 𝑥 ≼ 𝑦 if and only if 𝑦 − 𝑥 ∈ 𝑃. A 

cone 𝑃 ⊂ 𝔼 is called normal if there is a number for all 

𝐾 > 0 such that for all 𝑥, 𝑦 ∈ 𝔼, 𝜃 ≼ 𝑥 ≼ 𝑦 implies ‖𝑥‖ 

≤ 𝐾‖𝑦‖. The least positive number satisfying the above 

inequality is called the normal constant of P, while 𝑥 ≪ 𝑦 

stands for  𝑦 − 𝑥 ∈ 𝑖𝑛𝑡𝑃, (𝑖𝑛𝑡𝑃 denotes the interior of 𝑃), 

while 𝑥 ≺ 𝑦 means that 𝑥 ≼ 𝑦 but  𝑥 ≠ 𝑦. 

Now, we introduce the concept of 𝐺𝑏-cone metric space. 

Definition 2.3 Let 𝑋 be a nonempty set and 𝔼 be a real 

Banach space equipped with the partial ordering ≼  with 

respect to the cone 𝑃. A vector-valued function 𝐺 ∶ 𝑋 ×
𝑋 × 𝑋 → 𝔼 is said to be a generalized cone b-metric 

function on 𝑋 with the constant 𝑠 ≥ 1 if the following 

conditions are satisfied: 

(GBC1). 𝐺(𝑥, 𝑦, 𝑧) =  𝜃 if 𝑥 =  𝑦 =  𝑧, 
(GBC2). 𝜃 ≺ 𝐺(𝑥, 𝑥, 𝑦),whenever  𝑥 ≠  𝑦, ∀ 𝑥, 𝑦 ∈ 𝑋, 
(GBC3). 𝐺(𝑥, 𝑥, 𝑦) ≼ 𝐺(𝑥, 𝑦, 𝑧), whenever 𝑦 ≠ 𝑧, ∀ 𝑥, 𝑦, 

        𝑧 ∈ 𝑋,  
(GBC4). 𝐺(𝑥, 𝑦, 𝑧) = 𝐺{𝑝(𝑥, 𝑧, 𝑦)} (Symmetry), 

(GBC5). 𝐺(𝑥, 𝑦, 𝑧) ≼ 𝑠(𝐺(𝑥, 𝑎, 𝑎) + 𝐺(𝑎, 𝑦, 𝑧)),  
        ∀  𝑥, 𝑦, 𝑧, 𝑎 ∈ 𝑋, (Rectangle inequality). 

Then the pair (𝑋, 𝐺) is called a generalized 𝐺𝑏-cone 

metric space or, more specifically, a 𝐺𝑏-cone metric 

space. Obverse that if  𝑠 = 1 the ordinary rectangle 

inequality in a generalized cone metric space is satisfied; 

however, it does not hold true when  𝑠 > 1. Thus the 

class of 𝐺𝑏-cone metric spaces are effectively larger than 

that of ordinary G-cone metric spaces. That is, every G-

cone metric space is a 𝐺𝑏-cone metric space, but the 

converse need not be true. Therefore, it is obvious that 

𝐺𝑏-cone metric spaces generalize 𝐺𝑏-metric spaces and 

G-cone metric spaces. 

We can present a number of examples, as follows, which 

show that introducing a 𝐺𝑏-cone metric space instead of a 

G-cone metric space is meaningful since there exist a 𝐺𝑏-

cone metric spaces which are G-cone metric space. 

Example 2.4 Let 𝑋 = ℝ and 𝔼 = ℝ2, 𝑃 = {(𝑥, 𝑦) ∈
𝔼: 𝑥, 𝑦 ≥ 0 } ⊂ 𝔼. Define 𝐺: 𝑋 × 𝑋 × 𝑋 → 𝔼 by 

 𝐺(𝑥, 𝑦, 𝑧) = 𝑚𝑎𝑥{(|𝑥 − 𝑦|𝑝, 𝛼|𝑥 − 𝑦|𝑝) 

                            , (|𝑦 − 𝑧|𝑝, 𝛼|𝑦 − 𝑧|𝑝) 

                           , (|𝑧 − 𝑥|𝑝, 𝛼|𝑧 − 𝑥|𝑝)} 

∀ x, y, z ∈ X, where 𝛼 ≥ 0 and 𝑝 > 1 are two constants. 

Then (𝑋, 𝐺) is a 𝐺𝑏-cone metric on X, but not a G-cone 

metric. In fact, we only need to prove (GBC5) in 

Definition 2.3 as follows: let x, y, z, w ∈ X. Set  𝑢 = 𝑥 −
𝑤, 𝑣 = 𝑤 − 𝑦, so   𝑢 + 𝑣 = 𝑥 − 𝑦. From the inequality 

           (𝑎 + 𝑏)𝑝 ≤ (2 𝑚𝑎𝑥{𝑎, 𝑏})𝑝 

                           ≤ 2𝑝(𝑎𝑝 + 𝑏𝑝), ∀𝑎, 𝑏 ≥ 0, 

we have 

              |𝑥 − 𝑦|𝑝 = |𝑢 + 𝑣|𝑝 

                             ≤ (|𝑢| + |𝑣|)𝑝 

                             ≤ 2𝑝(|𝑢|𝑝 + |𝑣|𝑝) 

                             = 2𝑝(|𝑥 − 𝑤|𝑝 + |𝑤 − 𝑦|𝑝) 

Similarly,  

|𝑦 − 𝑧|𝑝 ≤ 2𝑝(|𝑤 − 𝑤|𝑝 + |𝑦 − 𝑧|𝑝) 

|𝑥 − 𝑧|𝑝 ≤ 2𝑝(|𝑥 − 𝑤|𝑝 + |𝑤 − 𝑧|𝑝) 

Hence 

           𝑚𝑎𝑥{(|𝑥 − 𝑦|𝑝, 𝛼|𝑥 − 𝑦|𝑝) 

                    , (|𝑦 − 𝑧|𝑝, 𝛼|𝑦 − 𝑧|𝑝) 

                    , (|𝑧 − 𝑥|𝑝, 𝛼|𝑧 − 𝑥|𝑝)} 

≤ 2𝑝 𝑚𝑎𝑥{(|𝑥 − 𝑤|𝑝, 𝛼|𝑥 − 𝑤|𝑝) 

                      , (|𝑤 − 𝑤|𝑝, 𝛼|𝑤 − 𝑤|𝑝), 

                        , |𝑥 − 𝑤|𝑝, 𝛼|𝑥 − 𝑤|𝑝} 



GU J Sci, 28(4):659-673 (2015) /Manoj UGHADE, R. D. DAHERIYA                                           661 

 

+2𝑝 𝑚𝑎𝑥{(|𝑤 − 𝑦|𝑝, 𝛼|𝑤 − 𝑦|𝑝) 

, (|𝑦 − 𝑧|𝑝, 𝛼|𝑦 − 𝑧|𝑝) 

, |w − z|p, α|w − z|p} 

which is implies that 

       G(x, y, z) ≼ s(G(x, , w, w) + G(w, y, z)) 

with 𝑠 = 2𝑝 > 1.Taking account of the inequality 

           (𝑎 + 𝑏)𝑝 > (𝑎𝑝 + 𝑏𝑝), ∀ 𝑎, 𝑏 > 0, 

we arrive at 

        |𝑥 − 𝑦|𝑝 = |𝑥 − 𝑤 + 𝑤 − 𝑦|𝑝 

                       = (𝑥 − 𝑤 + 𝑤 − 𝑦)𝑝 

                       > (𝑥 − 𝑤)𝑝 + (𝑤 − 𝑦)𝑝 

                       = |𝑥 − 𝑤|𝑝 + |𝑤 − 𝑦|𝑝 

for all 𝑥 > 𝑤 > 𝑦. Similarly, 

           |𝑦 − 𝑧|𝑝 ≥ |𝑤 − 𝑤|𝑝 + |𝑦 − 𝑧|𝑝 

           |𝑥 − 𝑧|𝑝 ≥ |𝑥 − 𝑤|𝑝 + |𝑤 − 𝑧|𝑝. 

Thus, rectangle inequality in Definition G- cone metric 

space (see [22]) is not satisfied, i.e., (X, G) is not a G- 

cone metric space. 

Example 2.5 Let X = [0, +∞) and 𝔼 = 𝐶𝑅
1[0,1] with the 

norm ‖𝑥‖ = ‖𝑥‖∞ + ‖𝑥′‖∞  and consider 

𝑃 = {𝑥 ∈ 𝔼: 𝑥(𝑡) ≥ 0 on [0,1]}. 

Define 𝐺: 𝑋 × 𝑋 × 𝑋 → 𝔼 by 

  G(x, y, z) = max{|x − y|p, |y − z|p, |z − x|p} φ, 

∀ x, y, z ∈ X, with 𝑝 ≥ 1, where φ: [0,1] → ℝ  such that 

φ(t) = et .Then (𝑋, 𝐺) is a complete 𝐺𝑏-cone metric 

space with the coefficient 𝑠 = 2𝑝−1. 

If we define 𝐺: 𝑋 × 𝑋 × 𝑋 → 𝔼 by 

G(x, y, z) = (|x − y|2 + |y − z|2 + |z − x|2)φ,   

∀ x, y, z ∈ X.Then (𝑋, 𝐺) is not a 𝐺𝑏-cone metric space. 

However, 

G(x, y, z) = max{|x − y|2, |y − z|2, |z − x|2}φ 

is a 𝐺𝑏-cone metric space on X with 𝑠 = 2. 

Example 2.6 Let  X = [0,1] and 𝔼 = 𝐶𝑅
1[0,1] with the 

norm ‖𝑥‖ = ‖𝑥‖∞ + ‖𝑥′‖∞  and consider 

                𝑃 = {𝑥 ∈ 𝔼: 𝑥(𝑡) ≥ 0 on [0,1]}.  

Define 𝐺: 𝑋 × 𝑋 × 𝑋 → 𝔼  by 

 𝐺(𝑥, 𝑦, 𝑧) = (|𝑥 − 𝑦| + |𝑦 − 𝑧| + |𝑧 − 𝑥|)2𝜑,   

∀ 𝑥, 𝑦, 𝑧 ∈ 𝑋, where 𝜑: [0,1] → ℝ such that 𝜑(𝑡) = 𝑒𝑡. 

Then (𝑋, 𝐺) is a complete 𝐺𝑏-cone metric space with the 

coefficient 𝑠 = 2. 

Definition 2.7 A 𝐺𝑏-cone metric space (X, G) is said to 

symmetric if ∀ 𝑥, 𝑦 ∈ 𝑋, 𝐺(𝑥, 𝑦, 𝑦) =  𝐺(𝑦, 𝑥, 𝑥). 

Let (𝑋, 𝐺) be a 𝐺𝑏-cone metric space, define 𝑑𝐺𝑏
: 𝑋 ×

𝑋 → 𝔼 by 

               𝑑𝐺𝑏
(𝑥, 𝑦)  =  𝐺(𝑥, 𝑦, 𝑦)  +  𝐺(𝑦, 𝑥, 𝑥). 

Then (𝑋, 𝑑𝐺𝑏
)is a cone b-metric space. It can be noted 

that 

                      𝐺(𝑥, 𝑦, 𝑦) ≼
2s

2s+1
𝑑𝐺𝑏

(𝑥, 𝑦).  

Obverse that if 𝑠 = 1, that is, 𝐺 be a G-cone metric on 𝑋, 

then 

                      𝐺(𝑥, 𝑦, 𝑦) ≼
2

3
𝑑𝐺(𝑥, 𝑦) 

If X is a symmetric 𝐺𝑏-cone metric space, then  

                       𝑑𝐺𝑏
(𝑥, 𝑦) = 2𝐺(𝑥, 𝑦, 𝑦). 

Definition 2.8 Let (X, G) be a 𝐺𝑏-cone metric space. A 

sequence (xn) in 𝑋 is said to be: 

1) a 𝐺𝑏-cone Cauchy sequence if, for every 𝑐 ∈ 𝔼 

with 𝜃 ≪ c, there exists  N ∈ ℕ such that for all 

𝑛, 𝑚, 𝑙 > 𝑁, 𝐺(𝑥𝑛, 𝑥𝑚, 𝑥𝑙) ≪ 𝑐. 
2) a 𝐺𝑏-cone convergent sequence if, for every 

𝑐 ∈ 𝔼 with 𝜃 ≪ c , there is N ∈ℕ such that for 

all m, n > N, 𝐺(𝑥𝑛 , 𝑥𝑚, 𝑥) ≪ 𝑐 for some fixed 𝑥 

in 𝑋. Here 𝑥 is called the 𝐺𝑏-limit of (xn) and is 

denoted by 𝐺𝑏 − lim𝑛→+∞ xn = 𝑥 or xn → x as 

𝑛 → +∞. 

Definition 2.9 A 𝐺𝑏-cone metric space X is said to be a 

𝐺𝑏-complete cone metric space, if every 𝐺𝑏-cone Cauchy 

sequence in 𝑋 is 𝐺𝑏-cone convergent in𝑋. 

Using above definitions, we prove the following some 

lemmas and propositions. 

Lemma 2.10 Let (𝑋, 𝐺) be a 𝐺𝑏-cone metric space. Then 

for 𝑐 ∈ 𝔼 with  𝑐 ≫ 𝜃, there is  𝛿 > 0such that ‖𝑥‖ <
𝛿 implies 𝑐 − 𝑥 ∈  𝑖𝑛𝑡𝑃. 

Proof Since 𝑐 ≫ 𝜃, then ∈  𝑖𝑛𝑡𝑃 . Hence find 𝛿 >  0 

such that 𝑁𝛿(𝑐)  = {𝑥 ∈ 𝔼 ∶ ‖𝑥 − 𝑐‖ < 𝛿} ⊂ 𝑖𝑛𝑡𝑃. Since 
‖𝑐 − 𝑐‖ = 𝜃 < 𝛿, then 𝑐 ∈ 𝑁𝛿(𝑐) and so 𝑁𝛿(𝑐) ≠
∅. Now if  ‖𝑥‖ < 𝛿, then 

                 ‖𝑥‖ = ‖𝑥 − 𝑐 + 𝑐‖ 

                        = |−1|‖𝑥 − 𝑐 + 𝑐‖ 

                        = ‖−𝑥 + 𝑐 − 𝑐‖ 

                        = ‖(𝑐 − 𝑥) − 𝑐‖ < 𝛿. 

Then 𝑐 − 𝑥 ∈ 𝑁𝛿(𝑐) and since 𝑁𝛿(𝑐) ⊂ 𝑃. So  𝑐 − 𝑥 ∈
𝑖𝑛𝑡𝑃.                                                                                  

Lemma 2.11 Let (𝑋, 𝐺) be a 𝐺𝑏-cone metric space, 𝑃 be 

a normal cone with normal constant 𝐾. Let (𝑥𝑛) be a 

sequence in 𝑋. Then (𝑥𝑛) is 𝐺𝑏-cone convergent to 𝑥 if 

and only if  𝐺(𝑥𝑚, 𝑥𝑛, 𝑥) → 𝜃 as 𝑚, 𝑛 → +∞. 

Proof: Suppose that (𝑥𝑛) is 𝐺𝑏-cone convergent to x. For 

every real  휀 >  0, choose 𝑐 ∈ 𝔼 with  𝑐 ≫ 𝜃 and 𝐾‖𝑐‖ <
휀. Then there is   𝑁 ∈ ℕ, for all  𝑛, 𝑚 ∈ ℕ, G(xm, xn, x) 

≪ c. Since P is a normal cone with normal constant K, 

when  𝑛, 𝑚 ∈ ℕ, ‖G(xm, xn, x)‖ ≤ 𝐾‖𝑐‖ < 휀. Therefore  

G(xm, xn, x) → θ, as m, n → +∞. Conversely, suppose 

that means G(xm, xn, x) → θ, as 𝑚, 𝑛 → +∞. From 

Lemma 2.10, for every 𝑐 ∈ 𝔼 with 𝑐 ≫ 𝜃, there is 𝛿 >
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0 such that ‖𝑥‖ < 𝛿 implies −𝑥 ∈ 𝑖𝑛𝑡𝑃 . For this  𝛿 

there is 𝑁 ∈ ℕ, such that ‖G(xm, xn, x)‖ < 𝛿 for all 

𝑛, 𝑚, 𝑙 ≥ 𝑁. So 𝑐 − G(xm, xn, x) ∈ 𝑖𝑛𝑡𝑃. This means 

G(xm, xn, x) ≪ c. Therefore (xn) is G-cone convergent to 

x.                     

Proposition 2.12 Let (𝑋, 𝐺) be a 𝐺𝑏-cone metric space, 𝑃 

be a normal cone with normal constant 𝐾, then the 

following are equivalent: 

(1). (xn) is 𝐺𝑏-cone convergent to x, 

(2). G(xn, xn, x) → θ, as n → +∞, 

(3). 𝐺(xn, x, x) → θ, as n → +∞, 

(4). G(xm, xn, x) → θ, as m, n → +∞. 

Proof (1) ⇒ (2): Suppose that the sequence (xn) is 𝐺𝑏-

cone convergent to𝑥. From Lemma 2.11, G(xm, xn, x) →
θ, as m, n → +∞. If we choose 𝑚 = 𝑛, then G(xn, xn, x) 

→ θ,   as   n → +∞.(2)  ⇒  (3): Suppose that G(xn, xn, x) 

→ θ, as n → +∞.  From (𝐺𝐵𝐶5), 

            G(x, xn, x) ≼ s[G(x, xn, xn) + G(xn, xn, x)].  

From (𝐺𝐵𝐶4), we have G(x, xn, xn) = G(xn, xn, x) and 

since G(xn, xn, x) → θ,   as n → +∞, for any 휀 > 0, there 

is 𝑁 ∈ ℕ such that for all 𝑛 > 𝑁, ‖G(xn, xn, x)‖ <
2𝑠𝐾

. 

Since 𝑃 be a normal cone with normal constant 𝐾, 

       ‖G(x, xn, x)‖ ≼ sK‖G(x, xn, xn) + G(xn, xn, x)‖ 

                             ≼ sK‖G(x, xn, xn)‖ + sK‖G(xn, xn, x)‖ 

                             ≺ sK (
2𝑠𝐾

+
2𝑠𝐾

) = ε. 

From (𝐺𝐵𝐶4), G(x, xn, x) = G(xn, x, x), so for any 휀 > 0, 
there is 𝑁 ∈ ℕ such that for all 𝑛 > 𝑁, ‖G(xn, x, x)‖ < 휀. 

This means 𝐺(xn, x, x) → θ, as n → +∞. (3) ⇒ (4): 
Suppose that 𝐺(xn, x, x) → θ, as n → +∞. From (𝐺𝐵𝐶5), 

                G(xm, xn, x) ≼ s[G(xm, x, x) + G(x, xn, x)].  

From (𝐺𝐵𝐶4), G(x, xn, x) = G(xn, x, x) → θ, as n → +∞ 

and 𝐺(xm, x, x) → θ, as m → +∞. So for any 휀 > 0, there 

is 𝑁 ∈ ℕ such that for all 𝑛, 𝑚 > 𝑁, ‖G(xm, x, x)‖ <
2𝑠𝐾

 

and ‖G(x, xn, x)‖ <
2𝑠𝐾

. Since 𝑃 be a normal cone with 

normal constant 𝐾, 

   ‖G(xm, xn, x)‖ ≼ sK‖G(xm, x, x) + G(x, xn, x)‖ 

                            = sK‖G(xm, x, x)‖ + sK‖G(x, xn, x)‖ 

                            ≺ sK (
2𝑠𝐾

+
2𝑠𝐾

) = ε. 

So for any 휀 > 0, there is 𝑁 ∈ ℕ such that for all 𝑛, 𝑚 >
𝑁, ‖G(xm, xn, x)‖ < 휀. This means G(xm, xn, x) → θ,
as n, m → +∞. (4) ⇒ (1): Suppose that G(xm, xn, x) →
θ, as n, m → +∞. From Lemma 2.11, the sequence (xn) 

is 𝐺𝑏-cone convergent to x.             

Lemma 2.13 Let (X, G) be a complete Gb-cone metric 

space with the coefficient s ≥ 1, P be a normal cone with 

normal constant 𝐾. Let (xn)  be a sequence in X. If 
(xn) Gb-cone converges to x and also (xn) Gb-cone 

converges to 𝑦, then  𝑥 =  𝑦. That is the limit of (xn) is 

unique. 

Proof From xn → x and xn → y as 𝑛 → +∞, For every 

real 휀 >  0, choose 𝑐 ∈ 𝔼 with 𝑐 ≫ 𝜃  and  𝐾‖𝑐‖ < 휀. 

Then there is 𝑁 ∈ ℕ such that for all 𝑛, 𝑚 > 𝑁,   

G(xm, xm, x) ≪
𝑐

3𝑠2  , G(xm, xn, y) ≪
𝑐

3𝑠2, 

and G(xn, xn, y) ≪
𝑐

3𝑠
 .  

From (𝐺𝐵𝐶5) and (𝐺𝐵𝐶4), we have 

G(x, xn, y) ≼ s[G(x, xm, xm) + G(xm, xn, y)] 

                             ≪ 𝑠 (
𝑐

3𝑠2
+

𝑐

3𝑠2
) =

2𝑐

3𝑠
.  

Again, from (𝐺𝐵𝐶5)and (𝐺𝐵𝐶4), we have  

             G(x, x, y) ≼ s[G(x, xn, xn) + G(xn, x, y)] 

                             ≪ 𝑠 (
𝑐

3𝑠
+

2𝑐

3𝑠
) = 𝑐. 

Since 𝑃 be a normal cone with normal constant  𝐾, 
‖𝐺(𝑥, 𝑥, 𝑦)‖  ≼  𝐾‖𝑐‖ < 휀. Since 휀 is arbitrary, 

𝐺(𝑥, 𝑥, 𝑦) = 𝜃, therefore 𝑥 = 𝑦.                                  

Proposition 2.14 Let (X, G) is a 𝐺𝑏-cone metric space, 𝑃 

be a normal cone with normal constant 𝐾. Then sequence 
(xn) is 𝐺𝑏-cone Cauchy if and only if G(xn, xm, xl) → θ,
as n, m, l → +∞. 

Proof Suppose that (xn)is 𝐺𝑏-cone Cauchy. For every 

real 휀 >  0, choose 𝑐 ∈ 𝔼 with 𝑐 ≫ 𝜃 and 𝐾‖𝑐‖ < 휀.Then 

there is 𝑁 ∈ ℕ such that for all 𝑛, 𝑚, 𝑙 > 𝑁, G(xn, xm, xl)  

≪ 𝑐. Since 𝑃 be a normal cone with normal constant 𝐾, 
when 𝑛, 𝑚, 𝑙 > 𝑁, ‖G(xn, xm, xl)‖ ≼ 𝐾‖𝑐‖ < 휀.Therefore 

G(xn, xm, xl) → θ, as n, m, l → +∞. Conversely, Suppose 

that G(xn, xm, xl) → θ, as n, m, l → +∞. From Lemma 

2.10, for every 𝑐 ∈ 𝔼 with 𝑐 ≫ 𝜃, there is 𝛿 > 0 such that 
‖𝑥‖ < 𝛿 implies  −𝑥 ∈ 𝑖𝑛𝑡𝑃 . For this  𝛿 there is  𝑁 ∈ ℕ 

such that for all 𝑛, 𝑚, 𝑙 ≥ 𝑁, ‖G(xn, xm, xl)‖ < 𝛿.So  𝑐 −
G(xn, xm, xl) ∈ 𝑖𝑛𝑡𝑃. This means G(xn, xm, xl) ≪ c. 

Therefore (xn) is 𝐺𝑏-cone Cauchy. 

Lemma 2.15 Let (X, G) be a 𝐺𝑏-cone metric space, 
(xn) be a sequence in 𝑋. If (xn) is a 𝐺𝑏-cone convergent 

to x in X, then (xn) is a 𝐺𝑏-cone Cauchy sequence in X. 

Proof Suppose that (xn) is a 𝐺𝑏-cone convergent to x in 

X. For any 𝑐 ∈ 𝔼 with  𝑐 ≫ 𝜃, there is 𝑁 ∈ ℕ such that 

for all 𝑛, 𝑚, 𝑙 > 𝑁, G(x, xn, xm) ≪
𝑐

2𝑠
 and G(x, xm, xl) ≪

𝑐

2𝑠
 . From (𝐺𝐵𝐶5), we have 

         G(xn, xm, xl) ≼ s[G(xn, x, x) + G(x, xm, xl)]. 

 Also from (𝐺𝐵𝐶3) and (𝐺𝐵𝐶4), we have 

                 G(xn, x, x) = G(x, x, xn) 

≼ G(x, xm, xn) 

= G(x, xn, xm). 

 Thus 

                 G(xn, x, x) ≼ G(x, xn, xm) ≪
𝑐

2𝑠
 

and then 

            G(xn, xm, xl) ≪ s (
𝑐

2𝑠
+

𝑐

2𝑠
) = 𝑐. 
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Therefore, (xn) is a 𝐺𝑏-cone Cauchy sequence in X.      

Proposition 2.16 Let (𝑋, 𝐺) be a 𝐺𝑏-cone metric space, 

then the following are equivalent: 

(1). (xn) is 𝐺𝑏-cone Cauchy in X. 

(2). For every 𝑐 ∈ 𝔼 with 𝑐 ≫ 𝜃, there is 𝑁 ∈ ℕ such 

that for all 𝑛, 𝑚 > 𝑁, G(xn, xm, xm) ≪ 𝑐. 

Proof (1) ⇒ (2): Suppose that (xn) is a 𝐺𝑏-cone Cauchy 

in X, for every 𝑐 ∈ 𝔼 with 𝑐 ≫ 𝜃,there is 𝑁 ∈ ℕ such that 

for all 𝑛, 𝑚, 𝑙 > 𝑁, G(xn, xm, xl) ≪ 𝑐. If we choose 

𝑚 = 𝑙 then, for every 𝑐 ∈ 𝔼 with 𝑐 ≫ 𝜃,there is 𝑁 ∈ ℕ 

such that for all 𝑛, 𝑚 > 𝑁, G(xn, xm, xm) ≪ 𝑐. (2) ⇒
(3): Suppose that for every 𝑐 ∈ 𝔼 with 𝑐 ≫ 𝜃, there is 

𝑁 ∈ ℕ such that for all 𝑛, 𝑚 > 𝑁, G(xn, xm, xm) ≪ 𝑐. 
From (GBC5) and (GBC4), we get  

       G(xn, xm, xl) ≼ s[G(xn, xm, xm) + G(xm, xm, xl)].  

For this arbitrary for every 𝑐 ∈ 𝔼 with 𝑐 ≫ 𝜃, there is 

𝑁 ∈ ℕ such that for all 𝑛, 𝑚, 𝑙 > 𝑁, G(xn, xm , xm) ≪
𝑐

2𝑠
 

and G(xm, xm, xl) ≪
𝑐

2𝑠
. Hence using (GBC4), we have  

G(xn, xm, xl) ≪ s (
𝑐

2𝑠
+

𝑐

2𝑠
) = c. 

This means  (xn) is 𝐺𝑏-cone Cauchy in X. 

Proposition 2.17 Let (X, G) is a 𝐺𝑏-cone metric space, 𝑃 

be a normal cone with normal constant 𝐾. Let (xn) and 
(yn) be two sequences in X and suppose that xn →
x, yn → y as n → +∞.Then G(xn, xn, yn) → s2G(x, x, y) 

as n → +∞. 

Proof For every real 휀 >  0, choose 𝑐 ∈ 𝔼 with 𝑐 ≫ 𝜃 

and 𝐾‖𝑐‖ < 휀. Then there is 𝑁 ∈ ℕ such that for 

all 𝑛 > 𝑁,  

G(xn, xn, x) ≪
𝑐

2𝑠
 and G(yn, y, y) ≪

𝑐

2𝑠2. 

From (GBC5) and (GBC4), we have 

  G(xn, xn, yn) ≼ s[G(yn, x, x) + G(xn, xn, x)].  

 ≼ s2[G(x, x, y) + G(yn, y, y)] 

                         +sG(xn, xn, x)                                              

Thus 

     G(xn, xn, yn) − s2G(x, x, y) 

                        ≼ s2G(yn, y, y) + sG(xn, xn, x) 

                        ≪
c

2
+

c

2
= c 

Since 𝑃 be a normal cone with normal constant 𝐾, 
therefore 

     ‖G(xn, xn, yn) − s2G(x, x, y)‖ 

                             ≼ 𝐾‖𝑐‖ < 휀.  

This means G(xn, xn, yn) → s2G(x, x, y) as 𝑛 → +∞. 

Proposition 2.18 Let (X, G) be a 𝐺𝑏-cone metric space, 𝑃 

be a normal cone with normal constant 𝐾. Then the 

function G(x, y, z) is jointly continuous in all three of its 

variables 

Lemma 2.19 [26] For the case of non normal cones, we 

have the following properties. 

(PT1). If 𝑢 ≼ 𝑣 and  𝑣 ≪ 𝑤, then 𝑢 ≪ 𝑤. 
(PT2). If 𝑢 ≪ 𝑣 and  𝑣 ≼ 𝑤, then 𝑢 ≪ 𝑤. 
(PT3). If 𝑢 ≪ 𝑣 and  𝑣 ≪ 𝑤, then 𝑢 ≪ 𝑤. 
(PT4). If 𝜃 ≼ 𝑢 ≪ 𝑐 for each 𝑐 ∈ 𝑖𝑛𝑡𝑃, then 𝑢 = 𝜃. 
(PT5). If 𝑎 ≼ 𝑏 + 𝑐 for each 𝑐 ∈ 𝑖𝑛𝑡𝑃, then 𝑎 ≼ 𝑏. 
(PT6). If 𝔼 be a real Banach space with a cone P, and  

        if  𝑎 ≼ 𝜆𝑎, where 𝑎 ∈ 𝑃 and  0 ≤ 𝜆 < 1,  then  

        𝑎 = 𝜃. 
(PT7). If  𝑐 ∈ 𝑖𝑛𝑡𝑃, 𝑎𝑛 ∈ 𝔼  and  𝑎𝑛 → 𝜃,   then there  

        exists an 𝑛0 such that, for all   𝑛 > 𝑛0, we have 

        𝑎𝑛 ≪ 𝑐. 

Definition 2.20 Let (X, G) be a Gb-cone metric space with 

the coefficient  s ≥ 1. A mapping 𝑇 ∶  𝑋 →  𝑋 is called 

Lipschitzian if there exists 𝑘 ∈ ℝ such that 

G(Tx, Ty, Tz) ⪯ k G(x, y, z) 

for all 𝑥, 𝑦, 𝑧 ∈  𝑋. The smallest constant 𝑘 which satisfies 

the above inequality is called theLipschitz constant of 𝑇, 
denoted 𝐿𝑖𝑝(𝑇). In particular T is a contraction if 𝐿𝑖𝑝(𝑇)  

∈ [0 ,
1

𝑠
). 

3. MAIN RESULT 

In this section, we will present some fixed point and 

common fixed point theorems for contractive mappings 

in the setting of 𝐺𝑏-cone metric spaces. Furthermore, we 

will give examples to support our mainresults. 

Throughout this section, we not impose the normality 

condition for the cones, but the only assumption is that 

the cone P is solid, that is, intP ≠ ∅. 

We begin with a simple but a useful lemma. 

Lemma 3.1 Let (xn) be a sequence in a Gb-cone metric 

space (𝑋, 𝐺) with the coefficient s ≥ 1 relative to a solid 

cone P suchthat 

(3.1)         𝐺(𝑥𝑛 , 𝑥𝑛+1, 𝑥𝑛+1) ⪯ 𝜆𝐺(𝑥𝑛−1, 𝑥𝑛, 𝑥𝑛) 

where 𝜆 ∈  [0 ,
1

𝑠
)and 𝑛 =  1, 2, . . .. Then (xn )  is a 

Cauchy sequence in (𝑋, 𝐺). 

Proof Let  𝑚 > 𝑛 ≥ 1. It follows that 

(3.2)   𝐺(𝑥𝑛, 𝑥𝑚, 𝑥𝑚) 

             ⪯ 𝑠[𝐺(𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1) + 𝐺(𝑥𝑛+1, 𝑥𝑚, 𝑥𝑚)] 

             ⪯ 𝑠𝐺(𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1) + 𝑠2[𝐺(𝑥𝑛+1, 𝑥𝑛+2, 𝑥𝑛+2) 

             +𝐺(𝑥𝑛+2, 𝑥𝑚, 𝑥𝑚)] 

             ⪯ 𝑠𝐺(𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1) + 𝑠2𝐺(𝑥𝑛+1, 𝑥𝑛+2, 𝑥𝑛+2) 

             +𝑠3𝐺(𝑥𝑛+2, 𝑥𝑛+3, 𝑥𝑛+3) + ⋯ … … … … 

             +𝑠𝑚−𝑛𝐺(𝑥𝑚−1, 𝑥𝑚, 𝑥𝑚) 

Now, (3.1) and 𝑠𝜆 < 1 imply that 

(3.3)  𝐺(𝑥𝑛, 𝑥𝑚, 𝑥𝑚) ⪯ 𝑠𝐺(𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1) 

                                   +𝑠2𝐺(𝑥𝑛+1, 𝑥𝑛+2, 𝑥𝑛+2) 

                                   +𝑠3𝐺(𝑥𝑛+2, 𝑥𝑛+3, 𝑥𝑛+3) + ⋯ 
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                                   +𝑠𝑚−𝑛𝐺(𝑥𝑚−1, 𝑥𝑚, 𝑥𝑚) 

                                  ⪯ 𝑠𝜆𝑛𝐺(𝑥0, 𝑥1, 𝑥1) 

                                   +𝑠2𝜆𝑛+1𝐺(𝑥0, 𝑥1, 𝑥1) 

                                   +𝑠3𝜆𝑛+2𝐺(𝑥0, 𝑥1, 𝑥1) + ⋯ 

                                   +𝑠𝑚−𝑛𝜆𝑛−1𝐺(𝑥0, 𝑥1, 𝑥1) 

                                  = 𝑠𝜆𝑛(1 + 𝑠𝜆 + (𝑠𝜆)2 

                                   + ⋯ + (𝑠𝜆)𝑚−𝑛−1)𝐺(𝑥0, 𝑥1, 𝑥1) 

                                  ⪯
𝑠𝜆𝑛

1−𝑠𝜆
𝐺(𝑥0, 𝑥1, 𝑥1) → 𝜃as 𝑛 → ∞. 

According to Lemma 2.19 (PT7), and for any 𝑐 ∈ 𝔼 with 

𝑐 ≫ 𝜃, there exists 𝑁0 ∈ ℕ such that for any 𝑛 >

𝑁0,
sλn

1−sλ
G(x0, x1, x1) ≪ c. Furthermore, from (3.3) and 

for any  𝑚 > 𝑛 > 𝑁0, Lemma 2.19 (PT1) shows that 

(3.4)                          G(xn, xm, xm) ≪ c. 

Hence, by Proposition 2.16, (xn) is a Cauchy sequence in 

𝑋. 

4. FIXED POINT THEOREM 

Now, our first main results as follows. 

Theorem 3.2Let (X, G) be a complete Gb-cone metric 

space with the coefficient s ≥ 1 relative to a solid cone P. 

Supposethe mapping 𝑇: 𝑋 → 𝑋 satisfies the contractive 

condition 

(3.5)            G(Tx, Ty, Tz) ⪯ λG(x, y, z), ∀ 𝑥, 𝑦, 𝑧 ∈  𝑋, 

where 𝜆 ∈  [0 ,
1

𝑠
)is a constant.Then T has a unique fixed 

point in X. Furthermore, theiterative sequence 
(𝑇𝑛𝑥) converges to the fixed point. 

Proof Choose x0 ∈ X. We construct the iterative 

sequence (xn), where xn = Txn−1, n ≥ 1, i.e. xn+1 =
Txn = 𝑇𝑛+1x0. From (3.5), we have 

(3.6)      G(xn, xn+1, xn+1) = G(Txn−1, Txn, Txn) 

                                           ⪯ 𝜆G(xn−1, xn, xn) 

So, by Lemma 3.1,(xn) is Cauchy sequences in (𝐺, 𝑋). 
Since (X, G) is a complete Gb-cone metric space, for any 

𝑐 ∈ 𝔼 with 𝑐 ≫ 𝜃, there exists 𝑥∗ ∈ 𝑋 such that 

𝐺(𝑥𝑛, 𝑥𝑛, 𝑥∗) ≪
𝑐

2𝑠𝜆
 and 𝐺(𝑥𝑛+1, 𝑥∗, 𝑥∗) ≪

𝑐

2𝑠
 for all 

𝑛 > 𝑛0. Hence 

(3.7)     𝐺(𝑥∗, 𝑥∗, 𝑇𝑥∗) 

                  ⪯ 𝑠[𝐺(𝑥∗, 𝑥∗, 𝑇𝑥𝑛) + 𝐺(𝑇𝑥𝑛, 𝑇𝑥𝑛, 𝑇𝑥∗)] 

                  ⪯ 𝑠[𝐺(𝑥∗, 𝑥∗, 𝑥𝑛+1) + 𝜆𝐺(𝑥𝑛, 𝑥𝑛 , 𝑥∗)] 

                  ≪ 𝑠 [(
𝑐

2𝑠
) + 𝜆 (

𝑐

2𝑠𝜆
)] = 𝑐, 

for each 𝑛 > 𝑛0. Then by Lemma 2.19 (PT4), we deduce 

that 𝐺(𝑥∗, 𝑥∗, 𝑇𝑥∗) = 𝜃, i.e. 𝑇𝑥∗ = 𝑥∗ and so 𝑥∗ is fixed 

point of 𝑇. Now we show that the fixed point is unique. If 

there is another fixed point 𝑦∗, by the given condition 

(3.5), we have 

(3.8)    G(𝑥∗,  𝑦∗,  𝑦∗) = G(𝑇𝑥∗,  𝑇𝑦∗, 𝑇 𝑦∗) 

                                   ⪯ λG(𝑥∗,  𝑦∗,  𝑦∗) 

By Lemma 2.19 (PT6), we have 𝑥∗ =  𝑦∗. The proof is 

completed.                                                                        

Next example illustrates Theorem 3.2. 

Example 3.3 Let X = [0, +∞) and 𝔼 = 𝐶𝑅
1[0,1] with the 

norm ‖𝑥‖ = ‖𝑥‖∞ + ‖𝑥′‖∞  and consider 

𝑃 = {𝑥 ∈ 𝔼: 𝑥(𝑡) ≥ 0 on [0,1]}. 

Define 𝐺: 𝑋 × 𝑋 × 𝑋 → 𝔼 by 

  G(x, y, z) = max{|x − y|p, |y − z|p, |z − x|p} φ, 

∀ x, y, z ∈ X, with  𝑝 ≥ 1, where φ: [0,1] → ℝ  such that 

φ(t) = et .Then (𝑋, 𝐺) is a complete 𝐺𝑏-cone metric 

space with the coefficient 𝑠 = 2𝑝−1. Let us define 

𝑇 ∶ 𝑋 → 𝑋 as 𝑇𝑥 =
1

2
𝑥 −

1

4
𝑥2for all  𝑥 ∈ 𝑋. Therefore 

 G(Tx, Ty, Tz) 

        = max{|Tx − Ty|p, |Ty − Tz|p, |Tz − Tx|p} et, 

        = max {|(
1

2
𝑥 −

1

4
𝑥2) − (

1

2
𝑦 −

1

4
𝑦2)|

p
, 

                       |(
1

2
𝑦 −

1

4
𝑦2) − (

1

2
𝑧 −

1

4
𝑧2)|

p
, 

                       |(
1

2
𝑧 −

1

4
𝑧2) − (

1

2
𝑥 −

1

4
𝑥2)|

p
} et 

        = max {|
1

2
(𝑥 − 𝑦) −

1

4
(𝑥 − 𝑦)(𝑥 + 𝑦)|

p
, 

                      |
1

2
(𝑦 − 𝑧) −

1

4
(𝑦 − 𝑧)(𝑦 + 𝑧)|

p
, 

                      |
1

2
(𝑧 − 𝑥) −

1

4
(𝑧 − 𝑥)(𝑧 + 𝑥)|

p
} et 

        = max {|𝑥 − 𝑦|p. |
1

2
−

1

4
(𝑥 + 𝑦)|

p
, 

                      |𝑦 − 𝑧|p. |
1

2
−

1

4
(𝑦 + 𝑧)|

p
, 

                      |𝑧 − 𝑥|p. |
1

2
−

1

4
(𝑧 + 𝑥)|

p
} et 

       ⪯
1

2p max{|𝑥 − 𝑦|p, |𝑦 − 𝑧|p, |𝑧 − 𝑥|p}et 

       ⪯
1

2p G(x, y, z). 

Here 0 ∈ 𝑋 is the unique fixed point of T. 

Theorem 3.4 Let (X, G) be a complete Gb-cone metric 

space with the coefficient s ≥ 1 relative to a solid cone P 

and let 𝑎𝑖 ≥ 0, (𝑖 = 1,2,3,4) be constants with  𝑠(𝑎1 +
𝑎2) + 𝑎3 + 𝑎4 < 1. Suppose the mapping 𝑇 ∶  𝑋 → 𝑋 

satisfies the contractive condition 

(3.9)     G(Tx, Ty, Tz) ⪯ a1G(x, y, z) + a2G(x, Tx, Tx) 

                                    +a3G(y, Ty, Ty) + a4G(z, Tz, Tz) 

∀ 𝑥, 𝑦, 𝑧 ∈  𝑋. Then T has a unique fixed point in X. 

Furthermore, theiterative sequence (𝑇𝑛𝑥) converges to 

the fixed point. 

Proof Choose  x0 ∈ X. We construct the iterative 

sequence (xn), where xn = Txn−1, n ≥ 1, i.e. xn+1 =
Txn = 𝑇𝑛+1x0. From (3.9), we have 
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(3.10)  G(xn, xn+1, xn+1) = G(Txn−1, Txn, Txn) 

                                         ⪯ a1G(xn−1, xn, xn) 

                                          +a2G(xn−1, Txn−1, Txn−1) 

                                          +a3G(xn, Txn, Txn) 

                                          +a4G(xn, Txn, Txn) 

                                          ⪯ a1G(xn−1, xn, xn) 

                                          +a2G(xn−1, xn, xn) 

                                          +a3G(xn, xn+1, xn+1) 

                                          +a4G(xn, xn+1, xn+1) 

Thus, we have  

(3.11)  G(xn, xn+1, xn+1) ⪯ (
a1+a2

1−𝑎3−𝑎4
) G(xn−1, xn, xn) 

                                         = λG(xn−1, xn, xn) 

where 𝜆 =
a1+a2

1−𝑎3−𝑎4
<

1

s
. So, by Lemma 3.1, (xn) is 𝐺𝑏-

Cauchy sequences in (𝐺, 𝑋). Since (X, G) is a complete 

Gb-cone metric space, for any 𝑐 ∈ 𝔼 with 𝑐 ≫ 𝜃, there 

exists 𝑥∗ ∈ 𝑋 such that  

(3.12)        𝐺(𝑥𝑛, 𝑥𝑛 , 𝑥∗) ≪
(1−𝑠𝑎4)𝑐

3𝑠a1
,  

               𝐺(𝑥𝑛+1, 𝑥∗, 𝑥∗) ≪
(1−𝑠𝑎4)𝑐

3𝑠
, 

          G(𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1) ≪
(1−𝑠𝑎4)𝑐

3𝑠(a2+a3)
 

for all 𝑛 > 𝑛0. Hence 

(3.13)  𝐺(𝑥∗, 𝑥∗, 𝑇𝑥∗) 

                  ⪯ 𝑠[𝐺(𝑥∗, 𝑥∗, 𝑇𝑥𝑛) + 𝐺(𝑇𝑥𝑛, 𝑇𝑥𝑛, 𝑇𝑥∗)] 

                  ⪯ 𝑠𝐺(𝑥∗, 𝑥∗, 𝑥𝑛+1) 

                   +𝑠a1𝐺(𝑥𝑛, 𝑥𝑛 , 𝑥∗) 

                   +𝑠a2G(𝑥𝑛, 𝑇𝑥𝑛, 𝑇𝑥𝑛) 

                   +sa3G(𝑥𝑛, 𝑇𝑥𝑛, 𝑇𝑥𝑛) 

                   +sa4𝐺(𝑥∗, 𝑇𝑥∗, 𝑇𝑥∗) 

                   ⪯ 𝑠𝐺(𝑥∗, 𝑥∗, 𝑥𝑛+1) 

                   +𝑠a1𝐺(𝑥𝑛, 𝑥𝑛 , 𝑥∗) 

                   +𝑠a2G(𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1) 

                   +sa3G(𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1) 

                   +sa4𝐺(𝑥∗, 𝑥∗, 𝑇𝑥∗) 

Thus, we obtain 

(3.14) 𝐺(𝑥∗, 𝑥∗, 𝑇𝑥∗) ⪯
𝑠

(1−𝑠𝑎4)
𝐺(𝑥∗, 𝑥∗, 𝑥𝑛+1) 

                                   +
𝑠a1

(1−𝑠𝑎4)
𝐺(𝑥𝑛, 𝑥𝑛 , 𝑥∗) 

                                   +
𝑠(a2+a3)

(1−𝑠𝑎4)
G(𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+1) 

                                  ≪
𝑠

(1−𝑠𝑎4)

(1−𝑠𝑎4)𝑐

3𝑠
 

                                   +
𝑠a1

(1−𝑠𝑎4)

(1−𝑠𝑎4)𝑐

3𝑠a1
 

                                   +
𝑠(a2+a3)

(1−𝑠𝑎4)

(1−𝑠𝑎4)𝑐

3𝑠(a2+a3)
 

                                 = c 

for each 𝑛 > 𝑛0. Then by Lemma 2.19 (PT4), we deduce 

that 𝐺(𝑥∗, 𝑥∗, 𝑇𝑥∗) = 𝜃, i.e. 𝑇𝑥∗ = 𝑥∗ and so 𝑥∗ is fixed 

point of 𝑇. Now we show that the fixed point is unique. If 

there is another fixed point 𝑦∗, by the given condition 

(3.9), we have 

(3.15)     G(𝑥∗,  𝑦∗,  𝑦∗) = G(𝑇𝑥∗,  𝑇𝑦∗, 𝑇 𝑦∗) 

                                      ⪯ a1G(𝑥∗,  𝑦∗,  𝑦∗) 

                                      +a2G(𝑥∗, 𝑥∗, T𝑥∗) 

                              +a3G( 𝑦∗,  𝑦∗, T 𝑦∗) 

                              +a4G( 𝑦∗,  𝑦∗, T 𝑦∗) 

                             ⪯ a1G(𝑥∗,  𝑦∗,  𝑦∗) 

                              +a2G(𝑥∗, 𝑥∗, 𝑥∗) 

                              +a3G( 𝑦∗,  𝑦∗,  𝑦∗) 

                              +a4G( 𝑦∗,  𝑦∗,  𝑦∗) 

                              = a1G(𝑥∗,  𝑦∗,  𝑦∗) 

By Lemma 2.19 (PT6), we have 𝑥∗ =  𝑦∗. The proof is 

completed.                                                                       ■ 

Theorem 3.5 Let (X, G) be a complete Gb-cone metric 

space with the coefficient s ≥ 1 relative to a solid cone P 

and let 𝑎𝑖 ≥ 0, (𝑖 = 1,2,3,4) be constants with  𝑠(𝑎1 +
𝑎2 + 𝑎3) + 𝑎4 < 1. Suppose the mapping 𝑇 ∶  𝑋 → 𝑋 

satisfies the contractive condition 

(3.16)   G(Tx, Ty, Tz) ⪯ a1G(x, y, z) + a2G(x, x, Tx) 

                                    +a3G(y, y, Ty) + a4G(z, z, Tz) 

∀ 𝑥, 𝑦, 𝑧 ∈  𝑋. Then T has a unique fixed point in X. 

Furthermore, the iterative sequence (𝑇𝑛𝑥) converges to 

the fixed point. 

Proof Choose x0 ∈ X. We construct the iterative 

sequence (xn), where xn = Txn−1, n ≥ 1, i.e. xn+1 =
Txn = 𝑇𝑛+1x0. From (3.16), we have 

(3.17)    G(xn, xn, xn+1) = G(Txn−1, Txn−1, Txn) 

                                       ⪯ a1G(xn−1, xn−1, xn) 

                                        +a2G(xn−1, xn−1, Txn−1) 

                                        +a3G(xn−1, xn−1, Txn−1) 

                                        +a4G(xn, xn, Txn) 

                                       ⪯ a1G(xn−1, xn−1, xn) 

                                        +a2G(xn−1, xn−1, xn) 

                                        +a3G(xn−1, xn−1, xn) 

                                        +a4G(xn, xn, xn+1) 

Thus, we have 
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(3.18)  G(xn, xn, xn+1) ⪯ (
a1+a2+𝑎3

1−𝑎4
) G(xn−1, xn−1, xn) 

                                     = λG(xn−1, xn−1, xn) 

where  𝜆 =
a1+a2+𝑎3

1−𝑎4
<

1

s
. So, by Lemma 3.1, (xn) is 

Cauchy sequences in (𝐺, 𝑋). Since (X, G) is a complete 

Gb-cone metric space, for any 𝑐 ∈ 𝔼 with 𝑐 ≫ 𝜃, there 

exists 𝑥∗ ∈ 𝑋 such that  

(3.19)          𝐺(𝑥𝑛 , 𝑥𝑛, 𝑥∗) ≪
(1−𝑠𝑎4)𝑐

3𝑠a1
,  

                𝐺(𝑥𝑛+1, 𝑥∗, 𝑥∗) ≪
(1−𝑠𝑎4)𝑐

3𝑠
 

                G(𝑥𝑛, 𝑥𝑛 , 𝑥𝑛+1) ≪
(1−𝑠𝑎4)𝑐

3𝑠(a2+a3)
 

for all 𝑛 > 𝑛0. Hence 

(3.20)       𝐺(𝑥∗, 𝑥∗, 𝑇𝑥∗) 

                ⪯ 𝑠[𝐺(𝑥∗, 𝑥∗, 𝑇𝑥𝑛) + 𝐺(𝑇𝑥𝑛 , 𝑇𝑥𝑛, 𝑇𝑥∗)] 

                ⪯ 𝑠𝐺(𝑥∗, 𝑥∗, 𝑥𝑛+1) 

                +𝑠a1𝐺(𝑥𝑛, 𝑥𝑛, 𝑥∗) 

                +𝑠a2G(𝑥𝑛, 𝑥𝑛, 𝑇𝑥𝑛) 

                +sa3G(𝑥𝑛, 𝑥𝑛, 𝑇𝑥𝑛) 

                +sa4𝐺(𝑥∗, 𝑥∗, 𝑇𝑥∗) 

               ⪯ 𝑠𝐺(𝑥∗, 𝑥∗, 𝑥𝑛+1) 

                +𝑠a1𝐺(𝑥𝑛, 𝑥𝑛, 𝑥∗) 

                +𝑠a2G(𝑥𝑛, 𝑥𝑛, 𝑥𝑛+1) 

                +sa4G(𝑥𝑛, 𝑥𝑛, 𝑥𝑛+1) 

                +sa4𝐺(𝑥∗, 𝑥∗, 𝑇𝑥∗) 

Thus, we obtain 

(3.21) 𝐺(𝑥∗, 𝑥∗, 𝑇𝑥∗) ⪯
𝑠

(1−𝑠𝑎4)
𝐺(𝑥∗, 𝑥∗, 𝑥𝑛+1) 

                                   +
𝑠a1

(1−𝑠𝑎4)
𝐺(𝑥𝑛, 𝑥𝑛 , 𝑥∗) 

                                   +
𝑠(a2+a3)

(1−𝑠𝑎4)
G(𝑥𝑛, 𝑥𝑛, 𝑥𝑛+1) 

                                  ≪
𝑠

(1−𝑠𝑎4)

(1−𝑠𝑎4)𝑐

3𝑠
 

                                   +
𝑠a1

(1−𝑠𝑎4)

(1−𝑠𝑎4)𝑐

3𝑠a1
 

                                   +
𝑠(a2+a3)

(1−𝑠𝑎4)

(1−𝑠𝑎4)𝑐

3𝑠(a2+a3)
 

                                   = c 

for each 𝑛 > 𝑛0. Then by Lemma 2.19 (PT4), we deduce 

that 𝐺(𝑥∗, 𝑥∗, 𝑇𝑥∗) = 𝜃, i.e. 𝑇𝑥∗ = 𝑥∗ and so 𝑥∗ is fixed 

point of 𝑇. Now we show that the fixed point is unique. If 

there is another fixed point 𝑦∗, by the given condition 

(3.16), we obtain 

(3.22) G(𝑥∗,  𝑦∗,  𝑦∗) = G(𝑇𝑥∗,  𝑇𝑦∗, 𝑇 𝑦∗) 

                                  ⪯ a1G(𝑥∗,  𝑦∗,  𝑦∗) 

                                   +a2G(𝑥∗, 𝑥∗, T𝑥∗) 

                                   +a3G( 𝑦∗,  𝑦∗, T 𝑦∗) 

                                   +a4G( 𝑦∗,  𝑦∗, T 𝑦∗) 

                                  ⪯ a1G(𝑥∗,  𝑦∗,  𝑦∗) 

                                  +a2G(𝑥∗, 𝑥∗, 𝑥∗) 

                                  +a3G( 𝑦∗,  𝑦∗,  𝑦∗) 

                                  +a4G( 𝑦∗,  𝑦∗,  𝑦∗) 

                                 = a1G(𝑥∗,  𝑦∗,  𝑦∗) 

By Lemma 2.19 (PT6), we have  𝑥∗ =  𝑦∗. The proof is 

completed. 

Next examples illustrate Theorem 3.4 and Theorem 3.5. 

Example 3.6 Let 𝑋 =  [0,1],    𝔼 =  ℝ2   and  𝑃 =
 {(𝑥, 𝑦) ∈ 𝔼 ∶ 𝑥 ≥  0, 𝑦 ≥  0}. Define 𝐺: 𝑋 × 𝑋 × 𝑋 → 𝔼 

by 

 G(x, y, z) = max{(|x − y|2, |x − y|2), 

(|y − z|2, |y − z|2), 

(|z − x|2, |z − x|2)} 

Then, it is easy to see that (𝑋, 𝐺) is a Gb-cone metric 

space with the coefficient  𝑠 =  2. But it is not a G-cone 

metric space since the rectangle inequality is not 

satisfyied. Let us define 𝑇 ∶  𝑋 → 𝑋as 𝑇𝑥 =
1

6
𝑥2 for 

all  𝑥 ∈ 𝑋.Therefore 

 G(Tx, Ty, Tz) = max{(|Tx − Ty|2, |Tx − Ty|2), 

                                     , (|Ty − Tz|2, |Ty − Tz|2)                                    

                                      , (|Tz − Tx|2, |Tz − Tx|2)} 

                       = max {(|
1

6
𝑥2 −

1

6
𝑦2|

2
, |

1

6
𝑥2 −

1

6
𝑦2|

2
) , 

                                   , (|
1

6
𝑦2 −

1

6
𝑧2|

2
, |

1

6
𝑦2 −

1

6
𝑧2|

2
) 

                                   , (|
1

6
𝑧2 −

1

6
𝑥2|

2
, |

1

6
𝑧2 −

1

6
𝑥2|

2
)} 

                        = max {
1

36
|𝑥 + 𝑦|2(|𝑥 − 𝑦|2, |𝑥 − 𝑦|2), 

                                    ,
1

36
|𝑦 + 𝑧|2(|𝑦 − 𝑧|2, |𝑦 − 𝑧|2) 

                                    ,
1

36
|𝑧 + 𝑥|2(|𝑧 − 𝑥|2, |𝑧 − 𝑥|2)} 

                        ⪯
1

9
max{(|𝑥 − 𝑦|2, |𝑥 − 𝑦|2)  

                                      , (|𝑦 − 𝑧|2, |𝑦 − 𝑧|2) 

                                      , (|𝑧 − 𝑥|2, |𝑧 − 𝑥|2)} 

                        ⪯
1

9
G(x, y, z) 

where 𝑎1 =
1

9
, a2 = a3 = a4 = 0 with 𝑠(𝑎1 + 𝑎2 +

𝑎3) + 𝑎4 = 0.222 < 1 and 𝑠(𝑎1 + 𝑎2) + 𝑎3 + 𝑎4 =
0.222 < 1. It is clear thatthe conditions of Theorem 3.4 

and Theorem 3.5 are satisfied.Therefore, T has a fixed 

point 𝑥 =  0. 
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5. COMMON FIXED POINT THEOREM 

Now, we give a common fixed theorem for two weakly 

compatible self-mappings satisfying the contractive 

condition in 𝐺𝑏-cone metric spaces without the 

assumption of normality. 

We need the following definition: 

Definition 3.7 (see [29-30]) Let 𝑆 and 𝑇 be two self-

mappings on a nonempty set  𝑋. Then 𝑆 and 𝑇are said to 

be weakly compatible if they commute at all of their 

coincidence points; that is, 𝑆𝑥 =  𝑇𝑥 for some 𝑥 ∈  𝑋 and 

then 𝑆𝑇𝑥 =  𝑇𝑆𝑥. 

Lemma 3.8 (see [30]) Let 𝑆  and 𝑇 be weakly compatible 

self-mappings of a nonempty set 𝑋. If S and T have a 

unique point of coincidence  𝑤 = 𝑆𝑥 = 𝑇𝑥, then 𝑤 is the 

unique common fixed point of S and T. 

Now, our common fixed point theorem as follows. 

Theorem 3.9 Let (X, G) be a cone Gb-metric space with 

the coefficient s ≥ 1 relative to a solid cone P. Let 

S, T: X → X  be two mappings and assume that there exist 

non-negative constants ai ∈ [0,1), i = 1,2,3,4,5,6,7 with 

3𝑠𝑎1 + (𝑠 + 2) ∑ 𝑎𝑖

4

𝑖=2

+ (𝑠2 + 𝑠 + 1) ∑ 𝑎𝑖

7

𝑖=5

< 3 

such that the following contractive condition holds for all 

x, y, z ∈ X: 

(3.23) G(Sx, Sy, Sz) ⪯ a1G(Tx, Ty, Tz) + a2G(Tx, Sx, Sx) 

                                  +a3G(Ty, Sy, Sy) + a4G(Tz, Sz, Sz) 

                                  +a5G(Tx, Sy, Sy) + a6G(Ty, Sz, Sz) 

                                  +a7G(Tz, Sx, Sx) 

If the range of S contains the range of T and T(X) or S(X) 

is a complete subspace of X, then S and T have a unique 

point of coincidence in X. Moreover, if 𝑆 and 𝑇 are 

weakly compatible. Then 𝑆 and 𝑇 have a unique common 

fixed point in 𝑋. 

Proof For an arbitrary x0 ∈ X, since because S(X) ⊂
T(X), there exists an 𝑥1 ∈ 𝑋 such that 𝑆x0 =  Tx1. By 

induction, a sequence (xn) can be chosen such that 

𝑆xn =  Txn+1 (n ≥ 1). If 𝑇xn0−1 =  𝑇xn0
= 𝑆xn0−1 for 

some natural number n0, then xn0−1 is a coincidence 

point of 𝑆 and 𝑇 in X.  Suppose that 𝑇xn−1 =  𝑇xn for 

all n ≥ 1. Thus, by (3.23) for any 𝑛 ∈ ℕ, we have 

(3.24)  G(Txn, Txn+1, Txn+1) 

                          = G(Sxn−1, Sxn, Sxn) 

                          ⪯ a1G(Txn−1, Txn, Txn) 

                          +a2G(Txn−1, Sxn−1, Sxn−1) 

                          +a3G(Txn, Sxn, Sxn) 

                          +a4G(Txn, Sxn, Sxn) 

                          +a5G(Txn−1, Sxn, Sxn) 

                          +a6G(Txn, Sxn, Sxn) 

                          +a7G(Txn, Sxn−1, Sxn−1) 

                          = a1G(Txn−1, Txn, Txn) 

                          +a2G(Txn−1, Txn, Txn) 

                          +a3G(Txn, Txn+1, Txn+1) 

                          +a4G(Txn, Txn+1, Txn+1) 

                          +a5G(Txn−1, Txn+1, Txn+1) 

                          +a6G(Txn, Txn+1, Txn+1) 

                          +a7G(Txn, Txn, Txn) 

                         ⪯ a1G(Txn−1, Txn, Txn) 

                          +a2G(Txn−1, Txn, Txn) 

                          +a3G(Txn, Txn+1, Txn+1) 

                          +a4G(Txn, Txn+1, Txn+1) 

                          +a5s[G(Txn−1, Txn, Txn) 

                          +G(Txn, Txn+1, Txn+1)] 

                          +a6G(Txn, Txn+1, Txn+1) 

Set  

(3.25)      𝐺𝑛 = G(Txn, Txn+1, Txn+1).  

Thus, from (3.24) we have  

(3.26)   𝐺𝑛 ⪯ (a1 + a2 + sa5)𝐺𝑛−1 

                   +(a3 + a4 + sa5 + a6)𝐺𝑛 

Similarly, 

(3.27)    G(Txn+1, Txn, Txn+1) 

 = G(Sxn, Sxn−1, Sxn) 

                              ⪯ a1G(Txn, Txn−1, Txn) 

                               +a2G(Txn, Sxn, Sxn) 

                               +a3G(Txn−1, Sxn−1, Sxn−1) 

                               +a4G(Txn, Sxn, Sxn) 

                               +a5G(Txn, Sxn−1, Sxn−1) 

                               +a6G(Txn−1, Sxn, Sxn) 

                               +a7G(Txn, Sxn, Sxn) 

                              = a1G(Txn, Txn−1, Txn) 

                               +a2G(Txn, Txn+1, Txn+1) 

                               +a3G(Txn−1, Txn, Txn) 

                               +a4G(Txn, Txn+1Txn+1) 

                               +a5G(Txn, Txn, Txn) 

                               +a6G(Txn−1, Txn+1, Txn+1) 

                               +a7G(Txn, Txn+1, Txn+1) 

                              ⪯ a1G(Txn, Txn−1, Txn) 

                               +a2G(Txn, Txn+1, Txn+1) 

                               +a3G(Txn−1, Txn, Txn) 
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                               +a4G(Txn, Txn+1Txn+1) 

                               +a6s[G(Txn−1, Txn, Txn) 

                               +G(Txn, Txn+1, Txn+1)] 

                               +a7G(Txn, Txn+1, Txn+1) 

Thus, 

(3.28)  𝐺𝑛 ⪯ (a1 + a3 + sa6)𝐺𝑛−1 

                            +(a2 + a4 + sa6 + a7)𝐺𝑛 

and 

(3.29)    G(Txn+1, Txn+1, Txn) 

                             = G(Sxn, Sxn, Sxn−1) 

                             ⪯ a1G(Txn, Txn, Txn−1) 

                              +a2G(Txn, Sxn, Sxn) 

                              +a3G(Txn, Sxn, Sxn) 

                              +a4G(Txn−1, Sxn−1, Sxn−1) 

                              +a5G(Txn, Sxn, Sxn) 

                              +a6G(Txn, Sxn−1, Sxn−1) 

                              +a7G(Txn−1, Sxn, Sxn) 

                             = a1G(Txn, Txn, Txn−1) 

                          +a2G(Txn, Txn+1, Txn+1) 

                          +a3G(Txn, Txn+1, Txn+1) 

                          +a4G(Txn−1, Txn, Txn) 

                          +a5G(Txn, Txn+1, Txn+1) 

                          +a6G(Txn, Txn, Txn) 

                          +a7G(Txn−1, Txn+1, Txn+1) 

                        ⪯ a1G(Txn, Txn, Txn−1) 

                          +a2G(Txn, Txn+1, Txn+1) 

                          +a3G(Txn, Txn+1, Txn+1) 

                          +a4G(Txn−1, Txn, Txn) 

                          +a5G(Txn, Txn+1, Txn+1) 

                          +a7s[G(Txn−1, Txn, Txn) 

                          +G(Txn, Txn+1, Txn+1)] 

Thus, 

(3.30)  𝐺𝑛 ⪯ (a1 + a4 + sa7)𝐺𝑛−1 

+(a2 + a3 + a5 + sa7)𝐺𝑛 

Adding (3.26), (3.28) and (3.30), we obtain 

3𝐺𝑛 ⪯ [3a1 + a2 + a3 + a4 + s(a5 + a6 + a7)]𝐺𝑛−1 

+[2(a2 + a3 + a4) + (s + 1)(a5 + a6 + a7)]𝐺𝑛 

Thus 

(3.31)       𝐺𝑛 ⪯ (
3a1+∑ ai

4
i=2 +s ∑ ai

7
i=5

3−2 ∑ ai
4
i=2 −(s+1) ∑ ai

7
i=5

) 𝐺𝑛−1 

Since  

3𝑠𝑎1 + (𝑠 + 2) ∑ 𝑎𝑖

4

𝑖=2

+ (𝑠2 + 𝑠 + 1) ∑ 𝑎𝑖

7

𝑖=5

< 3, 

we have 

(3.32)         𝐺𝑛 ⪯ 𝜆𝐺𝑛−1 ⪯ 𝜆2𝐺𝑛−2 ⪯ ⋯ ⪯ 𝜆n𝐺0 

where 𝜆 =
3a1+∑ ai

4
i=2 +s ∑ ai

7
i=5

3−2 ∑ ai
4
i=2 −(s+1) ∑ ai

7
i=5

. Obviously, 𝜆 ∈  [0 ,
1

𝑠
). 

Thus, setting any positive integers 𝑚 and 𝑛, we have 

(3.33)  G(Txn, Txn+m, Txn+m) 

                    ⪯ sG(Txn, Txn+1, Txn+1) 

                    +sG(Txn+1, Txn+m, Txn+m) 

                    ⪯ sG(Txn, Txn+1, Txn+1) 

                    +s2G(Txn+1, Txn+2, Txn+2) 

                    +s2G(Txn+2, Txn+m, Txn+m) 

                    ⪯ sG(Txn, Txn+1, Txn+1) 

                    +s2G(Txn+1, Txn+2, Txn+2) 

                    +s3G(Txn+2, Txn+3, Txn+3) + ⋯ 

                    +sm−1G(Txn+m−2, Txn+m−1, Txn+m−1) 

                    +sm−1G(Txn+m−1, Txn+m, Txn+m) 

                    ⪯ (s𝜆n + s2𝜆n+1 + ⋯ + sm𝜆n+m−1)𝐺0 

                  =
s𝜆n[1−(s𝜆)m]

1−s𝜆
𝐺0 

                  ⪯
s𝜆n

1−s𝜆
𝐺0 

Since 𝜆 ∈  [0 ,
1

𝑠
), we notice that  

s𝜆n

1−s𝜆
G(Tx0, Tx1 , Tx1) =

s𝜆n

1−s𝜆
𝐺0 → 𝜃 as 𝑛 → +∞ for any 𝑚 ∈ ℕ. By Lemma 

2.19 (PT7), for 𝑐 ∈ 𝑖𝑛𝑡𝑃, we can choose 𝑛0 ∈ ℕ such 

that 
s𝜆n

1−s𝜆
𝐺0 ≪ 𝑐 for all  𝑛 > 𝑛0. Thus, for each 𝑐 ∈

𝑖𝑛𝑡𝑃, G(Txn, Txn+m, Txn+m)  ≪ c for all   𝑛 > 𝑛0,   𝑚 ≥
1. Therefore (Txn) is a 𝐺𝑏-cone Cauchy sequence in 

𝑇(𝑋). If 𝑇(𝑋) ⊂ 𝑋 is complete, there exists 𝑞 ∈ 𝑇(𝑋) 

and 𝑝 ∈ 𝑋 such that 𝑇𝑥𝑛 → 𝑞 as 𝑛 → +∞ and 𝑇𝑝 = 𝑞. (If 

𝑆(𝑋) ⊂ 𝑋 is complete, there exists 𝑞 ∈ 𝑆(𝑋) such that 

𝑆𝑥𝑛 → 𝑞 as 𝑛 → +∞. Since 𝑆(𝑋) ⊂ 𝑇(𝑋), we can find 

𝑝 ∈ 𝑋 such that 𝑇𝑝 = 𝑞.) 

Now, we shall show that 𝑆𝑝 = 𝑞. From (3.23), we have 

(3.33)      G(Txn+2, Sp, Sp) 

                            = G(Sxn+1, Sp, Sp) 

                            ⪯ a1G(Txn+1, Tp, Tp) 

                              +a2G(Txn+1, Sxn+1, Sxn+1) 

                              +a3G(Tp, Sp, Sp) 

                              +a4G(Tp, Sp, Sp) 

                              +a5G(Txn+1, Sp, Sp) 

                              +a6G(Tp, Sp, Sp) 

                              +a7G(Tp, Sxn+1, Sxn+1) 
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                             ⪯ a1G(Txn+1, Tp, Tp) 

                              +a2G(Txn+1, Txn+2, Txn+2) 

                              +a3G(Tp, Sp, Sp) 

                              +a4G(Tp, Sp, Sp) 

                              +a5G(Txn+1, Sp, Sp) 

                              +a6G(Tp, Sp, Sp) 

                              +a7G(Tp, Txn+2, Txn+2) 

                             = (a1 + a5)G(Txn+1, q, q) 

                              +a2G(Txn+1, Txn+2, Txn+2) 

                              +(a3 + a4 + a6)G(q, Sp, Sp) 

                              +a7G(q, Txn+2, Txn+2) 

Similarly, 

(3.34)      G(Sp, Txn+2, Sp) 

                             = G(Sp, Sxn+1, Sp) 

                             ⪯ a1G(Tp, Txn+1, Tp) 

                              +a2G(Tp, Sp, Sp) 

                              +a3G(Txn+1, Sxn+1, Sxn+1) 

                              +a4G(Tp, Sp, Sp) 

                              +a5G(Tp, Sxn+1, Sxn+1) 

                              +a6G(Txn+1, Sp, Sp) 

                              +a7G(Tp, Sp, Sp) 

                             = a1G(Tp, Txn+1, Tp) 

                             +a2G(Tp, Sp, Sp) 

                             +a3G(Txn+1, Txn+2, Txn+2) 

                             +a4G(Tp, Sp, Sp) 

                             +a5G(Tp, Txn+2, Txn+2) 

                             +a6G(Txn+1, Sp, Sp) 

                             +a7G(Tp, Sp, Sp) 

                            = (a1 + a6)G(q, Txn+1, q) 

                             +(a2 + a4 + a7)G(q, Sp, Sp) 

                             +a3G(Txn+1, Txn+2, Txn+2) 

                             +a5G(q, Txn+2, Txn+2) 

and 

(3.35) G(Sp, Sp, Txn+2) 

                           = G(Sp, Sp, Sxn+1) 

                           ⪯ a1G(Tp, Tp, Txn+1) 

                             +a2G(Tp, Sp, Sp) 

                             +a3G(Tp, Sp, Sp) 

                             +a4G(Txn+1, Sxn+1, Sxn+1) 

                             +a5G(Tp, Sp, Sp) 

                             +a6G(Tp, Sxn+1, Sxn+1) 

                             +a7G(Txn+1, Sp, Sp) 

                            = a1G(Tp, Tp, Txn+1) 

                             +a2G(Tp, Sp, Sp) 

                             +a3G(Tp, Sp, Sp) 

                             +a4G(Txn+1, Txn+2, Txn+2) 

                             +a5G(Tp, Sp, Sp) 

                             +a6G(Tp, Txn+2, Txn+2) 

                             +a7G(Txn+1, Sp, Sp) 

                           = (a1 + a7)G(q, q, Txn+1) 

                             +(a2 + a3 + a5)G(q, Sp, Sp) 

                             +a4G(Txn+1, Txn+2, Txn+2) 

                             +a6G(q, Txn+2, Txn+2) 

Adding from (3.33) to (3.35), we obtain that 

3G(Txn+2, Sp, Sp) ⪯ (3a1 + ∑ ai

7

i=5

) G(Txn+1, q, q) 

+ (2 ∑ ai

4

i=2

+ ∑ ai

7

i=5

) G(q, Sp, Sp) 

+ (∑ ai

4

i=2

) G(Txn+1, Txn+2, Txn+2) 

+ (∑ ai

7

i=5

) G(q, Txn+2, Txn+2) 

⪯ (3a1 + ∑ ai

7

i=5

) s[G(Txn+1, Txn+2, Txn+2)

+ G(Txn+2, q, q)] 

+ (2 ∑ ai

4

i=2

+ ∑ ai

7

i=5

) s[G(q, Txn+2, Txn+2)

+ G(Txn+2, Sp, Sp)] 

+ (∑ ai

4

i=2

) G(Txn+1, Txn+2, Txn+2) 

+ (∑ ai

7

i=5

) G(q, Txn+2, Txn+2) 

Thus, 

(3 − s (2 ∑ ai

4

i=2

+ ∑ ai

7

i=5

)) G(Txn+2, Sp, Sp) 

⪯ s (3a1 + ∑ ai

7

i=5

) G(Txn+2, q, q) 
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+ (2s ∑ ai

4

i=2

+ (s + 1) ∑ ai

7

i=5

) G(q, Txn+2, Txn+2) 

+ (3sa1 + s ∑ ai

7

i=5

+ ∑ ai

4

i=2

) G(Txn+1, Txn+2, Txn+2) 

Since  

0 ≤ 2 ∑ ai

4

i=2

+ ∑ ai

7

i=5

<
3

s
 

We have 

(3.36)  G(Txn+2, Sp, Sp) 

            ⪯
s(3a1+∑ ai

7
i=5 )

(3−s(2 ∑ ai
4
i=2 +∑ ai

7
i=5 ))

G(Txn+1, q, q) 

              +
(2s ∑ ai

4
i=2 +(s+1) ∑ ai

7
i=5 )

(3−s(2 ∑ ai
4
i=2 +∑ ai

7
i=5 ))

G(q, Txn+2, Txn+2) 

             +
(3sa1+s ∑ ai

7
i=5 +∑ ai

4
i=2 )

(3−s(2 ∑ ai
4
i=2 +∑ ai

7
i=5 ))

G(Txn+1, Txn+2, Txn+2) 

Since (Txn) is a 𝐺𝑏-cone Cauchy sequence in 𝑇(𝑋) and 

𝑇𝑥𝑛 → 𝑞 as 𝑛 → +∞, for any 𝑐 ∈ 𝑖𝑛𝑡𝑃, we can choose 

𝑛1 ∈ ℕ such that for all  𝑛 > 𝑛1, 

G(Txn+1, q, q) ≪
(3−s(2 ∑ ai

4
i=2 +∑ ai

7
i=5 ))c

3s(3a1+∑ ai
7
i=5 )

, 

G(q, Txn+2, Txn+2) ≪
(3−s(2 ∑ ai

4
i=2 +∑ ai

7
i=5 ))c

3(2s ∑ ai
4
i=2 +(s+1) ∑ ai

7
i=5 )

, 

G(Txn+1, Txn+2, Txn+2) ≪
(3−s(2 ∑ ai

4
i=2 +∑ ai

7
i=5 ))c

3(3sa1+s ∑ ai
7
i=5 +∑ ai

4
i=2 )

. 

Thus, from (3.36), for any 𝑐 ∈ 𝑖𝑛𝑡𝑃, we have  

 G(Txn+2, Sp, Sp) 

            ≪
s(3a1+∑ ai

7
i=5 )

(3−s(2 ∑ ai
4
i=2 +∑ ai

7
i=5 ))

(3−s(2 ∑ ai
4
i=2 +∑ ai

7
i=5 ))c

3s(3a1+∑ ai
7
i=5 )

 

            +
(2s ∑ ai

4
i=2 +(s+1) ∑ ai

7
i=5 )

(3−s(2 ∑ ai
4
i=2 +∑ ai

7
i=5 ))

(3−s(2 ∑ ai
4
i=2 +∑ ai

7
i=5 ))c

3(2s ∑ ai
4
i=2 +(s+1) ∑ ai

7
i=5 )

 

            +
(3sa1+s ∑ ai

7
i=5 +∑ ai

4
i=2 )

(3−s(2 ∑ ai
4
i=2 +∑ ai

7
i=5 ))

(3−s(2 ∑ ai
4
i=2 +∑ ai

7
i=5 ))c

3(3sa1+s ∑ ai
7
i=5 +∑ ai

4
i=2 )

 

            = c 

for all 𝑛 > 𝑛1. Therefore, by Lemma 2.19 (PT7), we have 

Txn+2 → Sp and then from Lemma 2.13, 𝑇𝑝 = 𝑆𝑝 = 𝑞. 

Assume that there exist 𝑢, 𝑣 in 𝑋 such that 𝑇𝑢 = 𝑆𝑢 = 𝑣. 

From (2.23), we have 

(3.37)      G(Tu, Tp, Tp) 

                     = G(Su, Sp, Sp) 

                     ⪯ a1G(Tu, Tp, Tp) + a2G(Tu, Su, Su) 

                      +a3G(Tp, Sp, Sp) + a4G(Tp, Sp, Sp) 

                      +a5G(Tu, Sp, Sp) + a6G(Tp, Sp, Sp) 

                      +a7G(Tp, Su, Su) 

                     = a1G(Tu, Tp, Tp) + a5G(Tu, Tp, Tp) 

                      +a7G(Tp, Tu, Tu) 

                     ⪯ (a1 + a5 + 2sa7)G(Tu, Tp, Tp) 

(3.38)   G(Tp, Tu, Tp) 

                     = G(Sp, Su, Sp) 

                     ⪯ a1G(Tp, Tu, Tp) + a2G(Tp, Sp, Sp) 

                      +a3G(Tu, Su, Su) + a4G(Tp, Sp, Sp) 

                      +a5G(Tp, Su, Su) + a6G(Tu, Sp, Sp) 

                      +a7G(Tp, Sp, Sp) 

                     = a1G(Tp, Tu, Tp) + a5G(Tp, Tu, Tu) 

                      +a6G(Tu, Tp, Tp) 

                     ⪯ (a1 + 2sa5 + a6)G(Tu, Tp, Tp) 

(3.39)  G(Tp, Tp, Tu) 

                     = G(Sp, Sp, Su) 

                     ⪯ a1G(Tp, Tp, Tu) + a2G(Tp, Sp, Sp) 

                      +a3G(Tp, Sp, Sp) + a4G(Tu, Su, Su) 

                      +a5G(Tp, Sp, Sp) + a6G(Tp, Su, Su) 

                      +a7G(Tu, Sp, Sp) 

                     = a1G(Tp, Tp, Su) + a6G(Tp, Tu, Tu) 

                      +a7G(Su, Sp, Sp) 

                    ⪯ (a1 + 2sa6 + a7)G(Tu, Tp, Tp) 

Adding from (3.37) to (3.39), we have 

(3.40)    3G(Tp, Tp, Tu) 

⪯ [3a1 + (1 + 2s) ∑ ai

7

i=5

] G(Tp, Tp, Tu) 

Hence 

(3.41)    G(Tp, Tp, Tu) 

⪯ [a1 + (
1 + 2s

3
) ∑ ai

7

i=5

] G(Tp, Tp, Tu) 

Since 1 + 2s ≤ 𝑠2 + 𝑠 + 1 because 𝑠 ≥ 1 and then 

3a1 + (1 + 2s) ∑ ai

7

i=5

< 3 

That is, 

a1 + (
1 + 2s

3
) ∑ ai

7

i=5

< 1 

Thus, by Lemma 2.19 (PT7), we can obtain that 

𝐺(𝑇𝑝, 𝑇𝑝, 𝑇𝑢) = 𝜃,  

𝑖. 𝑒.  𝑣 = 𝑇𝑝 = 𝑇𝑢 = 𝑞. 

Moreover, the mappings 𝑆 and 𝑇 are weakly compatible, 

by Lemma 3.8, we know that 𝑞 is the unique common 

fixed point of S and T.                                                     
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Example 3.10 Let X = [1, +∞), 𝔼 = 𝐶ℝ
1[0,1] with the 

norm ‖𝑥‖ = ‖𝑥‖∞ + ‖𝑥′‖∞  and consider 

𝑃 = {𝜑 ∈ 𝔼: 𝜑 ≥ 0} ⊂ 𝔼. 

Define 𝐺: 𝑋 × 𝑋 × 𝑋 → 𝔼  by 

 G(x, y, z) = max{|x − y|2, |y − z|2, |z − x|2}et,   

∀ x, y, z ∈ X. Then (𝑋, 𝐺) is a complete 𝐺𝑏-cone metric 

space with the coefficient 𝑠 = 2, but it is not a cone 

metric space. We consider the functions 𝑆, 𝑇: 𝑋 → 𝑋 

defined by  

𝑆𝑥 =
1

6
ln 𝑥 + 1 and  𝑇𝑥 =  ln 𝑥 + 1. 

Obviously, 𝑆(𝑋) ⊂ 𝑇(𝑋) is a complete subspace of 

𝑋.Here 

     G(Tx, Ty, Tz) = max{|Tx − Ty|2, |Ty − Tz|2 

                                       , |Tz − Tx|2}et 

                           = max{|ln 𝑥 − ln 𝑦|2, |ln 𝑦 − ln 𝑧|2 

                                        , |ln 𝑧 − ln 𝑥|2}et 

     G(Tx, Sx, Sx) = |Tx − Sx|2et 

                           = |ln 𝑥 −
1

6
ln 𝑥|

2
et 

                           =
25

36
(ln 𝑥)2et 

     G(Ty, Sy, Sy) = |Ty − Sy|2et 

                           = |ln 𝑦 −
1

6
ln 𝑦|

2
et 

                           =
25

36
(ln 𝑦)2et 

      G(Tz, Sz, Sz) = |Tz − Sz|2et 

                               = |ln 𝑧 −
1

6
ln 𝑧|

2
et 

                               =
25

36
(ln 𝑧)2et 

         G(Tx, Sy, Sy) = |Tx − Sy|2et 

                               = |ln 𝑥 −
1

6
ln 𝑦|

2
et 

         G(Ty, Sz, Sz) = |Ty − Sz|2et 

                               = |ln 𝑦 −
1

6
ln 𝑧|

2
et 

         G(Tz, Sx, Sx) = |Tz − Sx|2et 

                               = |ln 𝑧 −
1

6
ln 𝑥|

2
et 

     Now, 

         G(Sx, Sy, Sz) 

            = max{|Sx − Sy|2, |Sy − Sz|2, |Sz − Sx|2}et 

            = max {|
1

6
ln 𝑥 −

1

6
ln 𝑦|

2
, |

1

6
ln 𝑦 −

1

6
ln 𝑧|

2
 

                        , |
1

6
ln 𝑧 −

1

6
ln 𝑥|

2
} et 

           ⪯
1

36
[max{|ln 𝑥 −  ln 𝑦|2, |ln 𝑦 − ln 𝑧|2, 

               +|ln 𝑧 − ln 𝑥|2} + (ln 𝑥)2 + (ln 𝑥)2 

               +(ln 𝑥)2 + |ln 𝑥 −
1

6
ln 𝑦|

2
 

               + |ln 𝑦 −
1

6
ln 𝑧|

2
+ |ln 𝑧 −

1

6
ln 𝑥|

2
] et 

           ⪯
1

36
max{|ln 𝑥 − ln 𝑦|2, |ln 𝑦 − ln 𝑧|2, 

               +|ln 𝑧 − ln 𝑥|2}et +
1

25

25

36
(ln 𝑥)2et 

               +
1

25

25

36
(ln 𝑥)2et +

1

25

25

36
(ln 𝑥)2et 

               +
1

36
|ln 𝑥 −

1

6
ln 𝑦|

2
et +

1

36
|ln 𝑦 −

1

6
ln 𝑧|

2
et 

               +
1

36
|ln 𝑧 −

1

6
ln 𝑥|

2
et 

            = a1G(Tx, Ty, Tz) + a2G(Tx, Sx, Sx) 

              +a3G(Ty, Sy, Sy) + a4G(Tz, Sz, Sz) 

              +a5G(Tx, Sy, Sy) + a6G(Ty, Sz, Sz) 

              +a7G(Tz, Sx, Sx) 

where 

             𝑎1 =  a5 =  a6 =  a7  =
1

36
, 

                     a2 =  a3 =  a4 =
1

25
.  

and 

3𝑠𝑎1 + (𝑠 + 2) ∑ 𝑎𝑖

4

𝑖=2

+ (𝑠2 + 𝑠 + 1) ∑ 𝑎𝑖

7

𝑖=5

= 1.23 < 3 

Also 𝑆1 =  𝑇1 ⇒ 𝑆𝑇1 =  𝑇𝑆1, that is, the pair (𝑆, 𝑇) is 

weakly compatible. It is clear that the conditions of 

Theorem 3.9 are satisfied. Here 𝑥∗  =  1is a unique 

common fixed point of 𝑆 and 𝑇.                                       ■ 

6. CONCLUSION 

In this paper, introduced the concept of 𝐺𝑏-cone metric 

space and we described some properties of such metric. 

Also, we established some fixed point and common fixed 

theorems for contraction mappings in 𝐺𝑏-cone metric 

spaces using the idea of weakly compatible mappings. 

Also, presented examples are showing that our results are 

real generalization of known ones in fixed point theory. 

Our results may be the motivation to other authors for 

extending and improving these results to be suitable tools 

for their applications.                               
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