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ABSTRACT

The aim of this paper is to study norms of some circulant matrices and some special matrices, which entries consist

of harmonic Fibonacci numbers.
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1. INTRODUCTION

The Fibonacci sequence plays an important role in applied
mathematics, number theory and many other areas. The
Fibonacci sequence is defined by the following recurrence
relation, for n > 1;

Fpy1 = Fy+Fay

where Fy =0, F; = 1. In [1], Tuglu et al. investigated finite
sum of the reciprocal Fibonacci numbers

n
_ Z 1
k=1 Fk
which is called harmonic Fibonacci numbers. Then the authors

gave some combinatorics properties of harmonic Fibonacci
numbers as follows:
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where m is a nonnegative integer and H, is the n'h
harmonic number.

Recently, there have been many papers on the norms of some
special matrices [2-6]. For example in [2], Solak has given
some bounds for the circulant matrices with classical Fibonacci
and Lucas numbers entries. In [3], Kocer et al. obtained norms
of circulant and semicirculant matrices with Horadams numbers.
In [4], Shen gave upper and lower bounds for the Toeplitz
matrices involving k —Fibonacci and k —Lucas numbers. In



498 GU J Sci, 25(3):497-501 (2015)/ Naim TUGLU, Can KIZILATES

[5], Bahsi and Solak defined special matrices with harmonic
numbers and they gave spectral norms, Euclidean norms and
determinants of these matrices. In [6], Zhou et al. gave spectral
norms of circulant matrices involving binomial coefficients and
harmonic numbers.

Motivated by the above papers, we investigate spectral norms
of circulant matrices involving harmonic Fibonacci numbers.
Then we give Euclidean norms of some special matrices with
harmonic Fibonacci numbers. Now we give some definitions
and lemmas related to our study.

Definition 1. [7] A circulant matrix is an n X n matrix with
the following form:

Co ¢ €2t Cp2 Cpa
Ch1 Co €1 " Cp3 Cp2

C=|¢n-2 tn-1 G = Cpn-a Cn-z |
(41 €2 €3 ° Ch1 O

Obviously, the circulant matrix C is determined by its first row
elements Co, €1y Cgy vy Cp—1, thus we denote
C = Circ(co, €1, €2y Cpoq). Let A=(a;;) be any mxn
matrix. The well known Euclidean norm of matrix A is

Allg =

and also the spectral norm of A matrix is

IAll, = |max 2;(A%4) ,
1<isn

where 1;(AFA) is an eigenvalue of A¥A and AY s
conjugate transpose of matrix A. Then the following inequality
holds:

1
—IlAllg = l1All; < llAllg - 1.5
\/%” le < lIAll; < lAllg (1.5)

In [8], finite difference of f(x) is defined as
AfG) =flx+1)—f(x).

A operator has an inverse, the anti-difference operator X
defined as follows. Let a and b are integers with b > a. If
Af(x) = g(x) then

zb: g(x)8y

Anti-difference operator has some properties as follows:

b-1
=) 90 =)~ f(@.

b b

Zu(x)Av(x)Sx =u(x)v(x)[5+ - Z v(x + DAu(x)s, (1.6)

a a

and for m # —1,

. xm+1
Zx—t?x T+t

where x™ =x(x — 1)(x—2)--(x —m + 1).

2. MAIN RESULTS

Theorem 1. For m nonnegative integer, the spectral norm of
the matrix

a=ie((2)Fo(3) o () o)

is
n-1
lal, = Foe > ()7
z- m+1 o] m+1)Fpq

Proof. Since the circulant matrix A is normal, its spectral
norm equal to spectral radius. Furthermore, A is irreducible
and its entries are nonnegative the spectral radius of the A
matrix is equal to its Perron roots. Let v denote all ones

vectors of order n (v = (1,1,...,1)7 ). Then

w=(3 ()5 )

k=0

As, TRZA(K)F is an eigenvalue of A associated with a

positive eigenvector, it is necessarily the Perron value of A.
Therefore from the (1.1), we have

Z(k+1) 1
m+1 = m+1 Fk+l.

Al =

Corollary 1. We have

Proof. The proof is trivial from the definition of the Euclidean
norm and the relation between Euclidean norm and spectral
norm in (1.5).

Theorem 2. The spectral norm of the matrix

FO Fl Fn—l

B =Ci — 5 e
irel 475 -
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n—1

IBll, = H, F, —
£t Fieva

Hytq

Proof. Analysis similar to that in the proof of Theorem 1 shows
that

n-1 Fk
1Bll, = ) =
k=0

and from the (1.2)
n—1 H

1B = Ho Fy = D 72
=0 k+1

Corollary 2. We have

n-1 sz n—lH

S i - g s
2 —="n'n =

(ke +1) et Fiein

Proof. The proof is trivial from the definition of the Euclidean
norm and the relation between Euclidean norm and spectral
norm in (1.5).

- 2
n-1 Fk
"Lk

Lemma 1. For the harmonic Fibonacci numbers, we have

n

2 n 2
Z (n+1) F _1 (k+1) (ZFk+

n+l o & Fii1

& Fk+1)

Proof. The proof is based on the properties of difference
operator. Let u(k) = sz and Av(k) = ki be in (1.6). Then

we obtain Au(k) = (2 Fe +—) and v(k) = —kj. By
+1
using the equation (1. 6) We have

n n
2 (m+1)2% 1 (k+1)2
= — —_ — - - F
Z kR 7 T3 Fi1 (2 Kt
k=1 k=1

Fk+1).

Lemma 2. For the harmonic Fibonacci numbers, we have

= (n+ 1)z
=2 2
E (n—k) Fn+k -T2 F2n —-n Fn+1
k=1
k+1)(2n—-k
- Z ( )( ) (2 F
n+k+1
+ )
Fn+k+1

Proof. Repeated application of equation (1.6) enables us to

write u(k) = F+k and Av(k) =n—k. Then we obtain

k2
Au(k) = . 1k+1 (2 Fn+k + m) and v(k) =nk — - By

using the equation (1.6), we have

: (n+ 1)2
2 — 2
E n-k) Fn+k = —7 F2n —-n Fn+1

1 — (k + 1)(2n—k)(2F

2 Fn+k+1

t—).
=1 k Fn+k+1

Lemma 3. For the harmonic Fibonacci numbers, we have

n—1 n—-1 2k 1
D 2ktRE — ot —Z—(z R+ )
= £t Fiean Fie4a

Proof. Let u(k) = sz and Av(k) = 2¥=1 be in (1.6). Then

we obtain Au(k) = <2F +—) and v(k) = 2k-1. By
using the equation (1. 6) we have

n-1 n-1 k

2 1
Z 2k—1 sz = Zn_l Fnz — Z (2 F + )
re] = Fk+1 Fk+1

n n
Definition 2. Let P = [F ] , H= [F,+J 1] and

R = [/ 7‘111 ] are matrices, which entries consist of

harmonic FlbonaCC| numbers such that these matrices are

1 1 1 1
2 2 2 2
5 5 5 05
=2 2 2 2 |, @D
Fn Fn Fn Fn
/Fl F, T \
F, Fs F, R
H = , 2.2
Fs  Fy Fs = R &9
l : : -
k Fn Fn+1 Fn+2 F2n+1/
0 0 0 F,
0 0 F, F,
R=| 0 - F, V2 F, Bl @3

Tn

S

e

S

j(“i% J("i)a

Now, we give some theorems on the norms of these matrices by
using the difference operator.
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Theorem 3. The eigenvalues of the n x n matrix P are

AL=mn+1DF

n+l

A =0

for m=23,..,n

Proof. The eigenvalues of the matrix P are

n

k

F )
pr k+1

|[AI — P| =0 such that

A1-1
-2

We calculate the determinant, we obtain
- 5
W=Pl=2"(1-1-2-3—- —F)

If we solve the characteristic equation

r(a-1-2-

The eigenvalues of the matrix P are

5

2

-1
A=2

-1 -1

A 0

s
2

0 0

o F) =0

5
A=1+42+42-4F

for m=2,3,..,n.
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Theorem 4. The Euclidean norm of the matrix P is

n
2 k+1 1
1Pl = |[n(n+1)F2, —nz . (ZF + ) .

kK 'F
k=0 k+1 k+1

Proof. Definition of the Euclidean norm and from the (1.4), we
have

IPlls =

n
2
n Z Fe
k=1

n
2 k+1 1
= n(n+1)Fn+1—nZF (ZFk+F )
= b k+1

Theorem 5. The spectral norm P is

n

2 k+1 1
1P, = n(n+1)Fn+1—nZF (ZF + )

kK TF
=0 k+1 k+1

Proof. The spectral norm of P is

_ (DH
IPIl; = /gﬁsﬁll(F P)

where A;(PYP) are eigenvalues of PHP and P¥ is conjugate
transpose of P. Therefore

n 2 n 2 n 2
k=1 Fy Yk=1 Fe = k=1 F
n 2 n 2 n 2
PHP — k=1 Fk k=1 Fk k=1 Fk
n 2 n 2 n 2
k=1 Fk Zk:l Fk k=1 Fk

The eigenvalues of the matrix PHP are
n
2.1 = Z sz
k=1

and

A =0

where m = 2,3, ... ,n. From (1.4) we obtain

n

2 k+1 1
1Pl = [+ RS, —n ) = (2F +2—) .

= Pt k+1
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Theorem 6. For the Euclidean norm of the H matrix

n+1)2% 2 n% 2 1[(n+1)2 1
(ivipe wpr  OHDEE
2 o2 M 2] Fap Fopa

1nzl(k+1)[ « <2F T >+2n_k<2F T )]
24 L Y A T A

is valid.

HIE =

Proof. Definition of Euclidean norm

n n—-1
2 2
IHIZ = Z kF? + Z(n K FZ, .
k=1 k=1

Therefore from the Lemma 1 and Lemma 2

n+1)2% 2 n: 2 1[(n+1)2 1
H|? = —— — i b A i =
A1z 2 FZn + 2 Fn+1 2| Fou n +Fn+1

n-1

1 k 1 2n—k 1
S e (o, )+ 2 oy )|
24 Feor\” & 7 Fen) Funaa W " B

[E—

Theorem 7. The Euclidean norm of the matrix R is

n—-1

2k 1
IRll; = |2n1F> — z—(z Fo+ )
k=0

Fiess Fies1

Proof. From the definition of Euclidean norm

n—1

12
IRIE = ) 2571 .

k=1

By using the Lemma 3, we obtain

n-1

2k 1
IRllg = [2n-1F2 — Z—(z Fo+ )
=t Fiean Fry1
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