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ABSTRACT 

 
This work deals with parameter identification of a vehicle using population based algorithms such as Particle Swarm 

Optimization (PSO), Artificial Bee Colony Optimization (ABC) and Genetic Algorithm (GA). Full vehicle model 

with seven degree of freedom (DoF) is employed, and two objective functions based on reference and computed 
responses are proposed. Solving the optimization problem vehicle mass, moments of inertia and vehicle center of 

gravity parameters, which are necessary for later applications such as vehicle control and performance analysis, are 

obtained. It is demonstrated the proposed approach achieves to determine unknown parameters with negligible 
relative errors in spite of noise interference.  
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1. INTRODUCTION 

 

Vehicle dynamic parameters such as mass, moment of 

inertia, and center of gravity coordinates may change 

depending on loading conditions. These changes have 

significant impact on handling, ride, breaking and traction 

performance of vehicle [1]. In order to improve dynamic 

control of vehicle, accurate values of these properties are 

needed [2].  

 

Various approaches mainly focused on vehicle’s 

longitudinal and lateral motions are introduced for vehicle 

parameter identification. Venture et al. [2], for example, 

proposed a method based on multi-body model of the car. 

Furukawa and Dissanayake [3] introduced a multi-

objective optimization based method to determine vehicle 

state parameters. By this way, a solution space rather than 

a single solution is obtained, which enables parametric 

study. Wesemeier and Isermann [4] used one track vehicle 

model to determine cornering stiffness and center of 

gravity parameters. The proposed method needs input 

variables such as vehicle forward speed, lateral 

acceleration, yaw rate and slip angle. Khaknejad et al [5] 

identified mass, yaw moment of inertia, the distance 

between center of mass and front axle, and velocity of a 

sedan car using bicycle model of vehicle and least square 

estimation with exponential forgetting factor. The authors 

state that estimated parameters can be used to develop 

adaptive control systems and to prepare benchmark tables. 

Wilhelm et al [6] proposed an objective function (OF) 

based on the difference of measured and simulated 

powers, and they used MATLAB optimization toolbox to 

minimize the function. By this way mass, rolling 

resistance and aerodynamic coefficients as well as 

efficiency of power train of an electric vehicle are 

determined. Recently, Kidambi et.al. [7] assessed the 
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accuracy and performance of four estimation methods, i.e. 

recursive least squares with multiple forgetting factors; 

extended Kalman filtering; a dynamic grade observer; and 

parallel mass and grade (PMG) estimation using a 

longitudinal accelerometer.  

 

Rozyn and Zhang [1] state that longitudinal estimators 

require the input forces. If the input forces are not 

measured correctly the inertia parameters may be 

estimated with errors over 20 %. To measure these forces 

many sensors are necessary, which increases cost and 

complexity. Thus, the authors, different from the many 

works based on vehicle longitudinal and/or lateral 

dynamics, used vertical vibration model to predict mass, 

pitch and roll inertia moments. Their method is based on 

modal parameter estimation using free-decay responses of 

the vehicle and estimation of the system characteristic 

matrix. To this end the authors used simplified 3 degree of 

freedom (DoF) model of the 12 DoF vehicle which 

includes vehicle, body-seat, and engine sub-systems. 

Motivated by the authors’ work, a different approach is 

proposed in the present study. Using 7 DoF full vehicle 

vibration model, vertical inputs from four tyres are 

applied, and four time responses from predetermined 

locations on the vehicle are recorded. Then, OFs based on 

the difference of recorded and computed responses are 

minimized to determine vehicle properties. To this end 

popular non-gradient based methods such as GA, PSO, 

and ABC are tested and compared. It is shown that the 

present method gives accurate results. 

 

2. MATERIAL AND METHOD 

 

2.1. Vehicle Model 

 

In this study no model reduction such as in Ref. [1] is 

applied, instead the full car model depicted in Figure 1 is 

considered [8]. This model includes DoFs such as the 

body bounce x, body roll  and pitch ,  wheels hop x1, x2, 

x3, x4. yi (i=1 to 4) denotes independent road excitations, m 

is vehicle body mass, Ix and Iy are mass moments of 

inertia with respect to longitudinal and lateral axes, 

respectively. kf represents front suspension stiffness while 

kr stands for the rear suspension. cf  and cr are the 

corresponding suspension dampings. kR is the stiffness of 

antiroll bar.  ktf  and ktr denote tire vertical stiffnesses, mi (i 

= f, r) indicates wheel masses. ai and bi (i=1,2) are body 

center of gravity coordinates along the vehicle axes.  

 
Figure 1. The vehicle full car model 

 

 

Applying Lagrange method the equations of motion are 

obtained in matrix form as follows (see Ref. [8] for 

details): 

 

[ ]{ } [ ]{ } [ ]{ } { }M X C X K X F                       (1) 
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    (6) 

 

In this work Newmark Beta method is applied to solve 

Eq.(1). 

 

2.2. The Proposed Approach 

 

It is assumed all vehicle parameters except for m, Ix, Iy, a1, 

b1 are known. As in many parameter identification works 

some inputs are applied and response of the system to 

these inputs are recorded. In this work, it is assumed while 

the vehicle moving with constant speed Vt, the tires are 

subject to step like vertical inputs. Hence, the value of Vt 

will determine the width of the power spectrum. That is, 

as Figure 2 depicts, the wider a time signal in time domain 

the narrower its frequency spectrum. Larger values of Vt 

will lead to narrower input signals in time domain. The 

aim is to excite all vibration modes of vehicle in order to 

gather enough data. In general, natural frequencies of a 

vehicle are in the range 0 to 15 Hz, so there is no need to 

consider higher speeds. In this work, the value Vt = 20 

km/h is experienced to be sufficient for the vehicle 

considered. On the other hand, tires at the right and left 

sides should not be subject to step inputs with the same 

height. Otherwise roll mode () of the vehicle may not be 

observed.  

 
Figure 2. Time signals and their power spectrums. 

 

Under these conditions displacement and acceleration 

response of the vehicle are recorded for specific inputs. In 

Ref. [1] it is advised if only accelerometers are used to 

measure response then they should be spaced as far as 

possible to maximize signal to noise ratio of the phase and 

amplitude information. Hence, the authors propose to 

place sensors at the outer edges of the vehicle. In 

accordance with this advice the response points, i.e. zi, 

(i=1,2,3,4), are determined as shown in Figure 1. These 

are computed as follows: 
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Depending on acceleration or displacement response, the 

following OFs can be introduced: 
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where {x} = [m, Ix, Iy, a1, b1] is the vector including 

unknown vehicle parameters, |||| is the norm of variable. 

Upper scripts r and c indicate reference and computed 

data, respectively. Reference data is the vehicle response 

recorded for specific input. In practice this is measured by 

sensors for a vehicle state. But in this work, because of 

lack of experimental data, this is produced using 

mathematical model, and contaminated by random 

numbers to represent measurement noise. To determine 

the element of {x} the following optimization problem is 

formed: 

 

min( )    subject  to  {LB}<{ }<{UB}f x                       (9) 

 

where f is f1 or f2 in Eq.(8), {LB} and {UB} denote lower 

and upper boundary vectors determining the range in 

which unknown parameters can take value. Generally, to 

solve the problems like this, population based algorithms 

are implemented to avoid local solutions. Thus, two 

popular and easily applicable algorithms, i.e. PSO and 

ABC, are applied in this work as well as GA toolbox of 

MATLAB (R2014a).  

 

2.3. The Optimization Algorithms 

 

PSO is developed by Kennedy and Eberhart [9]. It is a 

stochastic optimization method inspired by swarm 

behavior of birds and insects. The algorithm is initialized 

with a "swarm" including randomly created particles. 

Particles refer to the candidate points in the search space 

of the problem. To obtain the best solution each particle 

adjusts its trajectory towards its own previous best 

position and towards the previous best position of the 

swarm. By this way, each particle moves in the search 

space with an adaptive velocity, and stores the best 

position of the search space. Various versions of PSO are 

available in the literature. In this work, the one called 

contemporary PSO (CPSO) is employed because of its 

higher convergence speed. In CPSO location (x) and 

velocity (v) of a particle are updated with the following 

equations [10,11]. 

 

 1

1 1 2 2    (  -  )  (  -  )k k k k k k

ij ij ij ij gj ijv v c R p x c R p x                (10) 

1 1

max    ,     1,2,.., ,    1,2,..., ,   1,2,...,k k k

ij ij ijx x v i N j m k K             (11) 

 

where k is the iteration counter, Kmax denotes the 

maximum number of iterations, m is dimension of the 

problem, 
k

ijp   and 
k

gjp  are, respectively, the best positions 

of the ith particle and the swarm found until the kth 

iteration. R1 and R2  U(0,1), where U means uniform 

random distribution. 1c  and 2c  are positive weighting 

constants called cognitive and social coefficients, 

respectively.  is the constriction factor defined as 

 
-1

2  2 2 -   -   -  4    , where 1 2c c   , and 

4  . Common values of acceleration coefficients are 

1 2  2.05c c  , thus χ 0.7298  [11]. The pseudo code 

of the algorithm is as follows 

 

1. Generate random population 

2. Repeat 

    2.1 Evaluate fitness values 

    2.2 Modify the best particles in the swarm 

    2.3 Choose the best particle 

    2.4 Calculate the velocities by Eq.(10) 

    2.5 Update particle positions by Eq.(11) 

3. Until requirements are met 

 

Another population based method to be tested is the ABC 

algorithm. This is based on the intelligent foraging 

behavior of honey bees [12]. The bees, i.e. the individuals 

in the swarm, are classified into three types: Employed, 

onlooker, and scout bees. Each employed bee is associated 

with a food source, which it exploits currently. A bee 

waiting in the hive to choose a food source is an onlooker 

bee. The employed bees share information about the food 

sources with onlookers. A scout bee carries out a random 

search to discover new food sources [13]. At each 

iteration the employed and onlooker bees improve the 

solutions by a neighborhood search. A new solution  

( iv ) in the neighborhood of an existing one ( ix ) is 

produced as follows: 

 

, , , ,    (  -  )i j i j i j s jv x V x x  , si        (12) 

 

where s  [1,N] is an integer, and V is a uniform random 

number in the interval [-1,1]. s and the dimension 

parameter j are chosen randomly. Then, greedy selection 

is performed between ix and iv . The onlooker bees are 

placed on food sources by the roulette wheel selection 

method. Thus, an onlooker bee chooses a food source at 

position ix
 
with a probability ip calculated as follows: 

i

i SN

nn=1

fit
p  =

fit
                                                        (13) 
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where SN denotes the number of employed bees, and it is 

equal to half of the population; SN=N/2, [13]. "fit" means 

the fitness value calculated by the following equation 

 

 i

ii

i i

1
   if   fit 0

1 + fitfit  =

1 + abs(fit )   if   fit  > 0






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                          (14) 

 

A solution representing a food source is abandoned by an 

employed bee if it cannot be improved for a 

predetermined number of trials indicated by the parameter 

“limit”. The employed bee then becomes a scout bee and 

randomly produces a new solution replacing the existing 

solution. The value of limit is determined as limit=SN x D, 

where D is dimension of the problem [14]. The pseudo 

code of the algorithms is as follows: 

 

1. Generate random population; xi, i=1,..,SN 

2. Evaluate the population 

3. Repeat  

    2.1 Produce new solution by Eq.(12) and apply greedy 

selection 

    2.3 Calculate pi values by Eq.(13) 

    2.4 Place the onlookers on the food sources 

    2.5 Determine the abandoned solution (if any); 

    2.6 Record the best solution 

3. Until requirements are met 

 
Computer codes written in MATLAB environment are 

used. The code for CPSO is written by the author of this 

work, and that for the ABC algorithm is downloaded from 

the owner’s website [15]. 

 

3. RESULTS AND DISCUSSION 

 

As an application the following vehicle properties [1] are 

considered: m = 1300 kg, mf = 40 kg, mr = 65 kg, Ix = 500 

kgm2, Iy = 2500 kgm2, a1 = a2 = 1.3m, b1 = b2 = 0.75m, kf = 

45000 N/m, kr = 80000 N/m, ktr = ktf  = 200000 N/m, kR = 

50000 N/m, cf = 2800 Ns/m, cr = 3500 Ns/m. While 

vehicle speed is Vt = 20 km/h tires are subject to inputs as 

in Figure 3. Input heights are different, as stated before. 

That is, front right and rear right tires are subject to step 

displacement with height 5cm (y1 and y2) while the input 

height is 4 cm for the left tires. To obtain reference data, 

displacement and acceleration responses to these inputs 

are computed, and noise is added as follows: 

 

( )* * ( ( ))r c c cz z std z Np randn size z                       (15) 

 

where Np noise percentage, std() is the standard deviation, 

randn means uniform random distribution with zero mean 

and unit standard deviation. Noise is assumed to represent 

errors due to measurement and instrumentation. In 

practice, reference data is measured for a state of the 

vehicle. However, in this work it is produced by the 

mathematical model of the vehicle and noise is added as 

in Eq.(15). Noisy displacements and accelerations are as 

shown in Figure 4.  

 

 

 
Figure 3. Inputs to the tires 
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Figure 4. Vehicle response to the inputs 

 

The optimization algorithms were run with the following 

parameters: Population size 20; number of iterations 50. 

The search space is determined in the range between 30% 

lower and upper of the optimum values ({OV}), i.e. {LB} 

= 0.7{OV}, {UB} = 1.3{OV}, that is the range of search 

space is wider compared to some relevant works in the 

literature. In GA default values are retained for the other 

parameters. For example, crossover fraction is 0.8, 

mutation function type is Gaussian, method of 

reproduction is Elite Count with the value equal to 

0.05x(Population Size). Besides, the value of TolFun is set 

to zero to avoid early convergence before maximum 

number of generations is reached. Each algorithm was run 

thirty times to obtain statistical results. The mean of 

estimated values and their closeness to the real results are 

given in Table 1 and 2, depending on the noise amount in 

the reference data, and the OFs employed. In the Tables 

RE means relative error, NRE is the norm of relative 

errors, which is a measure of the closeness of solution 

vector to {OV}. Bold numbers correspond to the best 

results. According to the Tables, ABC finds the closest 

solution to the real at each case. The other two, generally, 

exhibits similar performance and gives acceptable results 

as well. However, in ABC the only parameter is the 

“limit” number while the other two, especially GA, have 

more parameters needing adjustment, and they are 

generally problem dependent. On the other hand, f2 seems 

to be superior to f1, thus in practice acceleration response 

may be more useful. Acquisition of acceleration response 

is more feasible considering current instruments. Besides, 

relative errors, when compared with the relevant literature, 

indicate that the proposed approach yields accurate results 

in spite of noise interference.  

 

Table 1. Estimated values for f1 in Eq.(8). (Est: Estimated, RE: Relative error, NRE: Norm of Relative Errors.) 

Np = 10% 

  GA CPSO ABC 

 {OV} Est RE (%) Est RE (%) Est RE (%) 

m 1300 1321 1.589 1299.95 -0.003 1299.81 -0.015 

Ix 500 517 3.299 510 1.930 497 -0.700 

Iy 2500 2499 -0.024 2499 -0.052 2497 -0.117 

a1 1.3 1.296 -0.337 1.299 -0.039 1.302 0.165 

b1 0.75 0.755 0.725 0.751 0.155 0.7502 0.023 

NRE (%) ---  3.75  1.94  0.729 

Np = 20% 

  GA CPSO ABC 

 {OV} Est RE (%) Est RE (%) Est RE (%) 

m 1300 1312 0.923 1297 -0.259 1297 -0.211 

Ix 500 527 5.412 505 0.997 498 -0.430 

Iy 2500 2462 -1.511 2495 -0.218 2495 -0.196 

a1 1.3 1.312 0.894 1.304 0.326 1.304 0.285 

b1 0.75 0.759 1.235 0.7502 0.030 0.7503 0.044 

NRE (%) ---  5.894  1.103  0.593 

 

0 0.5 1 1.5 2
-0.01

-0.005

0

0.005

0.01

0.015

time (s)

d
is

p
la

c
e

m
e

n
t 
(m

)

 

 

z
1

z
2

z
3

z
4

0 0.5 1 1.5 2

-10

0

10

time (s)

a
c
c
e

le
ra

ti
o

n
 (

m
/s

2
)

 

 

d
2
z

1
/dt

2
d

2
z

2
/dt

2
d

2
z

3
/dt

2
d

2
z

4
/dt

2



 GU J Sci, 3(2):31-38 (2015)/ Hakan GÖKDAĞ 37 

 

 

Table 2. Estimated values for f2 in Eq.(8) 

Np = 10% 

  GA CPSO ABC 

 {OV}  RE (%)  RE (%)  RE (%) 

m 1300 1287 -0.933 1300.22 0.017 1300.06 0.004 

Ix 500 517 3.482 535 7.067 500.91 0.182 

Iy 2500 2493 -0.284 2498 -0.072 2498 -0.067 

a1 1.3 1.3298 2.289 1.2969 -0.234 1.3003 0.024 

b1 0.75 0.7588 1.171 0.7504 0.048 0.7503 0.037 

NRE (%) ---  4.44  7.07  0.199 

Np = 20% 

  GA CPSO ABC 

 {OV}  RE (%)  RE (%)  RE (%) 

m 1300 1301 0.117 1298 -0.124 1296 -0.284 

Ix 500 542 8.422 536 7.250 507 1.445 

Iy 2500 2562 1.040 2503 0.111 2504 0.177 

a1 1.3 1.326 1.969 1.301 0.083 1.301 0.106 

b1 0.75 0.755 0.642 0.751 0.116 0.751 0.087 

NRE (%) ---  8.74  7.25  1.49 

 

Figure 5 shows the body center of gravity displacement (x), pitch () and roll () angle responses of the system for true 

(m=1300 kg, Ix=500 kgm2, Iy=2500 kgm2,a1=1.3 m, b1=0.75 m) and estimated parameters by ABC in Table 2 (m=1296 kg, 

Ix=507 kgm2, Iy=2504 kgm2,a1=1.301 m, b1=0.751 m). It is clear both responses are in well agreement. 

 

 

 
Figure 5. Vehicle time responses. 

 

 

4. CONCLUSION 

 

In this work an approach to determine some vehicle 

parameters is introduced. Using full vehicle model vertical 

response is obtained for predetermined vehicle speed and 

bump geometry. Then objective functions based on the 

difference of previously recorded responses and vehicle 

mathematical model output are defined and minimized by 

non-gradient algorithms such as GA, PSO and ABC. It is 

observed when acceleration response based objective 

function is minimized by ABC algorithm, the most 

accurate results are obtained in spite of noise interference. 

The results show that the present method has the potential 

to be employed in vehicle parameter identification 

practices. 

 

 REFERENCES 

 

[1]   Rozyn, M. and Zhang, N., “A method for estimation 

of vehicle inertial parameters”, Vehicle System 

Dynamics: International Journal of Vehicle 

Mechanics and Mobility, 48:5, 547-565, (2010). 

[2] Venture, G., Bodson, P., Gautier, M., and Khalil, W., 

“Identification of the dynamic parameters of a car”, 

SAE Technical Paper, doi:10.4271/2003-01-1283. 



38 GU J Sci, 3(2):31-38 (2015)/ Hakan GÖKDAĞ 

[3] Furukawa, T, and Dissanayake, G., “Parameter 

identification of autonomous vehicles using multi-

objective optimization”, Engineering Optimization, 

34:4, 369-395, (2002). 

[4] Wesemeier, D., and Isermann, R., “Identification of 

vehicle parameters using stationary maneuvers”, 

Control Engineering Practice, 17, 1426-1431, (2009). 

[5] Khaknejad, M. B., Kazemi, R., Azadi, Sh., and 

Keshavaraz, A., “Identification of vehicle parameters 

using modified least square method in ADAMS/Car”, 

Proceedings of 2011 International Conference on 

Modelling, Identification and Control, Shanghai, 

China, 98-103, (2011). 

[6] Wilhelm, E., Bornatico, R., Widmer, R., Rodgers, L., 

and Soh, G.S., “Electric vehicle parameter 

identification”, EVS26 International Battery, Hybrid 

and Fuel Cell Electric Vehicle Symposium, Los 

Angeles, California, 1-10, (2012). 

[7] Kidambi, N., Harne, R.L., Fuji, Y., and Pietron, G.M. 

“Methods in vehicle mass and road grade 

estimation”, SAE International Journal of Passanger 

Cars-Mechanical Systems doi:10.4271/2014-01-

0111.  

[8] Jazar, R.N. Vehicle Dynamics Theory and 

Application, Springer, New York, (2008). 

[9] Kennedy, J., and Eberhart, R. “Particle swarm 

optimization”, Proceedings of the 4th IEEE 

International Conference on Neural Networks, 4, 

1942-1948, (1995). 

[10]  Clerc, M., and Kennedy, J., “The particle swarm-

explosion, stability, and convergence in a 

multidimensional complex space”, IEEE 

Transactions on Evolutionary Computation 6(1), 58-

73, (2002).  

[11]  Parsopoulos, K. E., and Vrahatis, M. N., Particle 

Swarm Optimization and Intelligence: Advances and 

Applications. IGI Global, Hershey PA, (2010).  

[12] Baştürk, B., and Karaboğa, D., “An artificial bee 

colony (ABC) algorithm for numeric function 

optimization”, Proceedings of the IEEE Swarm 

Intelligence Symposium, Indianapolis (USA), May 

(2006). 

[13] Narasimhan, H., “Parallel artificial bee colony 

(PABC) algorithm”, IEEE World  Congress on 

Nature & Biologically Inspired Computing, 

Coimbatore, 306-311, (2009). 

[14] Karaboğa, D., and Akay, B. “A comparative study of 

artificial bee colony algorithm”, Applied 

Mathematics  and Computation, 214, 108-132, 

(2008).  

[15] http://mf.erciyes.edu.tr/abc/software.htm. 

http://mf.erciyes.edu.tr/abc/software.htm

