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ABSTRACT 

 
This paper proposes two data envelopment analysis (DEA) cross efficiency models for selecting the most efficient 
alternatives in manufacturing technology. The cross efficiency evaluation (CEE) method which is developed as a 
contribution to the classical Data Envelopment Analysis (DEA) is a method successively used in the ranking 
problems. In its original, the CEE method includes the efficiency evaluations made use for the reusage of optimal 
weights in the other Decision Making Units (DMUs) obtained for a DMU by the classical DEA. Since the optimal 
weights in the classical DEA solutions have usually multiple solutions, this reduces the usefulness of CEE method. 
This study suggests new methods for the second stage of CEE method to remove the question of multiple optimal 
weights. A numerical example illustrates proposed models, and an application and a comprehensive simulation 
experiment in technology selection with multi-inputs/multi-outputs shows the usefulness of the proposed 
approaches.  
 

Keywords: Data envelopment analysis, technology selection, cross efficiency, multiple optimal weights. 

 

1. INTRODUCTION 

 
Technology selection is an important part of 
management of technology. Selecting the best 
technology is always a difficult task for decision-
makers. Selection of a robot for a specific industrial 
application is one of the most challenging problems in 
real time manufacturing environment. It has become 
more and more complicated due to increase in 
complexity, advanced features and facilities that are 
continuously being incorporated into the robots by 
different manufacturers. Knott and Getto in [1] 
published one of the preliminary works on robot 
selection. In this study, the problem of robot selection 
has been analyzed according to an economical point of 
view. A similar work has been proposed by Huang and 
Ghandforoush [2]. The most important disadvantages of 
the specific approach are the lack of flexibility and 
reliability, which have reduced the diffusion of 

economic models. Some mathematical programming 
approaches have been used for technology selection in 
the past. Rai et al. [3] addressed application of a fuzzy 
Goal Programming (GP) concept to model the problem 
of machine-tool selection and operation allocation with 
explicit considerations given to objectives of 
minimizing the total cost of machining operation, 
material handling and setup. Chan et al. [4] presented a 
fuzzy GP approach to model the machine tool selection 
and operation allocation problem of flexible 
manufacturing systems. Jaganathan et al. [5] proposed 
an integrated fuzzy analytic hierarchy process (AHP) 
based approach to facilitate the selection and evaluation 
of new manufacturing technologies in the presence of 
intangible attributes and uncertainty. However, there are 
many models which are based on either mathematical 
programming principles [6] or regression analysis [7-9]. 
Multi-criteria decision-making techniques [10-18], in a 
combination with the ranking methods, give satisfactory 
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solutions on decision problems. However, the large 
number of parameters, which decision makers have to 
take into consideration, conduces to the complexity of 
the procedure. The increased expectations for system’s 
production level, as well as the requirements of decision 
makers, have contributed to the introduction of fuzzy 
logic and genetic algorithms in decision making [19-
25]. For the majority of fuzzy methodologies, the first 
step is data defuzzification, continuing with the 
traditional technique of data processing. While 
researches are based on optimizing selection process 
and developing a flexible selection system, a 
combination of two or more methodologies has been 
proposed, in order to benefit from all of their 
advantages [26, 27]. Finally, there were many 
alternative methodologies proposed which are classified 
in a general category [28-30]. Recently, the concept of 
graph representation for data processing has been 
introduced in the field of robot selection by Rao and 
Padmanabhan [31]. A different aspect of robot selection 
problem has been presented by Koulouriotis and Ketipi 
[32] using a fuzzy digraph model. Athawale and 
Chakraborty [33], in their recent research, presented 
some multi-criteria decision-making methods applied in 
robot selection cases and studied their ranking 
performance, while Koulouriotis and Ketipi [34] 
presented an early bibliographic overview on robot 
selection methodologies.  

 
A number of studies have used DEA for robot selection. 
Khouja [35] proposed a decision model for technology 
selection problems using a two-phase procedure. In 
phase 1, DEA is used to identify technologies that 
provide the best combinations of vendor specifications 
on the performance parameters of the technology. In 
phase 2, a MADM model is used to select a technology 
from those identified in phase 1. Baker and Talluri [11] 
proposed an alternate methodology for technology 
selection using DEA. They addressed some of the 
shortcomings in the methodology suggested by Khouja 
[35] and presented a more robust analysis based on 
cross-efficiencies in DEA. Karsak [36] developed a 
two-phase procedure for the selection of industrial 
robots that integrated DEA with a fuzzy decision-
making algorithm that enabled the decision-maker to 
fully rank robot alternatives by taking into account both 
objective and subjective criteria. Karsak [37] considered 
both quantitative and qualitative criteria expressed as 
fuzzy numbers or linguistic variables in robot 
evaluation using a DEA-based methodology. Talluri 
and Yoon [38] presented a cone-ratio DEA approach for 
robot selection that made use of weight restriction 
constraints to incorporate a priori information on the 
priorities of factors.  
 
Data Envelopment Analysis is a nonparametric 
efficiency method developed for the first time by 
Charnes et al. [39] having the purpose to measure the 
relative efficiencies of similar economical DMUs in 
respects of  goods and services they produced. One of 
the uses of data envelopment analysis (DEA) is 
technology selection. In original DEA formulations the 
assessed decision-making units (DMUs) can freely 
choose the weights or values to be assigned to each 
input and output in a way that maximizes its efficiency, 

subject to this system of weights being feasible for all 
other DMUs. As the applications of this so powerful 
technique are improved, many new problems have 
arisen [40-43]. These problems which were dependent 
of each other’s and known for a long time are the weak 
discrimination power, the issue of unrealistic weights 
distribution and having multiple optimal solutions to 
weights for the efficient DMUs. The weak 
discrimination power or the lack of discrimination 
power appears in the case in which the number of 
DMUs under evaluation is insufficient in comparison 
with the total number of inputs and outputs. For the 
classical DEA models, this mostly results the solutions 
determining too many DMUs as efficient. The problem 
of unrealistic weight distribution for DEA occurs when 
some DMUs are rated as efficient because of input and 
output weights have the extreme or zero values. Having 
multiple optimal solutions to weights affects the 
consistency of operations related to weights to an 
important extent. The super efficiency and cross 
efficiency methods are the most frequently studied areas 
in DEA literature.  

 
The cross efficiency method is a useful technique 
developed by Sexton et al. [44] so as to rate the DMUs 
by using the cross evaluation scores computed as 
related to all DMUs and hence identify the best DMUs 
[45]. The basic idea of cross evaluation is to use DEA 
as machinery in peer evaluation instead of self-
evaluation. Peer evaluation refers to the assigned score 
for each DMU that obtained by using the optimal 
weights of other DMUs. The advantages of cross 
efficiency method are the ability of rating DMUs and 
being a useful tool without feeling the need of any 
expert opinion or prerequisites to work out the 
unenviable cases such as multiple solutions, solutions 
with extreme or zero values for the weights in DEA.  
 
Although the cross efficiency method has a widespread 
usage, it has also some deficiencies arising from the 
classical DEA. As stated by Doyle and Green [46], the 
non-uniqueness, i.e., having multiple solutions to 
optimal weights in DEA decreases the usefulness of 
cross efficiency method. Sexton et al. [44] and Doyle 
and Green [46] recommended the use of a secondary 
objective (model) for the cross efficiency evaluation 
related to the non-uniqueness of optimal weights in 
DEA. They proposed the aggressive and benevolent 
models for the secondary objective. The basic idea in 
the benevolent approach is to obtain the set of optimal 
weights maximizing not only the efficiency of a DMU 
under evaluation but also the average efficiency of other 
DMUs. In the aggressive models, on the contrary it is 
searched the set of optimal weights minimizing the 
average efficiency of other DMUs. In recent days, 
Liang et al. [47] attempted some new suggestions for 
the second stage in cross efficiency evaluation. Their 
suggestions consist of three different models including 
the minimization of deviations from the ideal point (the 
minsum efficiency), the minimization of maximum 
inefficiency amount (the minmax efficiency) and the 
minimization of absolute deviations from the average 
efficiency. The first two models of these suggestions are 
used in the multicriteria DEA approach proposed by Li 
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and Reeves [48] for the problems of ranking the units 
and unrealistic weight distribution. 
 
In some cases, decision maker must select only one 
DMU throughout a set of considered DMUs. There 
have been several studies to extend some integrated 
DEA models for finding a unique efficient DMU. Ertay 
and Ruan [49] suggested a cross-efficiency approach to 
determine the most efficient number of operators. Ertay, 
Ruan, and Tuzkaya [50] integrated DEA and analytic 
hierarchy process (AHP) in manufacturing systems and 
developed a robust layout framework for evaluating 
facility layout design (FLD) alternatives in a plastic 
profile production system. Amin et al. [51] proposed an 
MILP model to deal with the technology selection 
problem. However, their model designed for single 
input and multiple outputs. Amin and Toloo [52] 
formulated a new mixed integer linear programming 
(MILP) model to find the most efficient unit. Amin [53, 
54] explained some drawbacks of previous MILP 
models and introduced a new mixed integer non-linear 
programming (MINLP) model to modify these flaws. It 
was mathematically proved that these models can 
determine the best efficient unit, however the suggested 
models were nonlinear in nature. Amin and 
Emrouznejad [55] formulated an integrated minimax 
linear programming (LP) model for finding relevant 
search engines and compared the achieved result with 
ordered weighted averaging operator. Amin, Gattoufia, 
and Rezaee Serajib [56] introduced the maximum 
discrimination between the weights of the criteria and 
achieved the optimal solution of the proposed 
corresponding DEA model efficiently without the need 
of solving the related mathematical models. Foroughi 
[57] proposed a new integrated maximin MILP model 
that finds the most efficient unit by maximizing the 
minimum possible distance between a selected unit and 
the next ranked unit. It was shown that the suggested 
approach can also be extended to rank all extreme 
efficient DMUs. Wang and Jiang [58] clarified that 
Foroughi’s model is very complicated and involves 
many redundant constraints and proposed a new 
approach to identify the most efficient DMU. Toloo 
[59] formulated an MILP model for finding the most 
efficient unit without explicit input. By excluding the 
non-Archimedean epsilon, Toloo [60] proposed an 
approach which finds the most efficient DMU with 
fewer computations. Toloo [61] proposed an integrated 
model that is able to determine the most efficient unit 
under a common condition is developed. This model 
formulated a minimax mixed integer linear 
programming (MILP) model for finding the most 
efficient DMU.  

 
This paper depicts the technology selection process 
through cross efficiency DEA model. The objective of 
this paper is to propose new DEA cross efficiency 
models for selecting the best technologies. 
 
The paper is organized as follows. In Section 2, the 
basic DEA model and related concepts are given. In 
Section 3, cross efficiency method is presented and its 
aggressive formulation is explained. In Section 4, the 
model in which the input and output components are 
respectively approximated to the weighted input and 

weighted sums and the model that the variation of 
weights is minimized are given for the second stage of 
cross efficiency evaluation. In Section 5, the basic CCR, 
aggressive cross efficiency method, Toloo [61] model 
and proposed models for cross efficiency evaluation are 
applied to robot selection data and their solutions are 
compared. In Section 6, for the comparison the models 
in terms of ranking and discrimination power, a 
comprehensive simulation experiment is conducted. 
Lastly, in Section 7, a summary of the research and its 
results are provided. 
  
2. DATA ENVELOPMENT ANALYSIS 

 
Data Envelopment Analysis (DEA) is a mathematical 
programming approach that utilizes multiple inputs and 
outputs to measure relative efficiencies within a group 
of decision making units (DMUs). Assuming that there 
are n  DMUs to be evaluated in terms of m  inputs and 

s  outputs. Let ijx ( 1,  . . . , i m= ) and rjy  (

1,  . . . , r s= ) be the input and output values of 

DMU j  ( 1,  . . . , j n= ). Then the efficiency of 

DMU p  can be defined as 
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where DMU p  refers to the DMU under evaluation. 

This fractional program, well known as CCR model, 
can be converted into a linear programming problem 
where the optimal value of the objective function 



4 GU J Sci Part:A, 3(1):1-14(2015)/ H. Hasan ÖRKÇÜ, Mediha ÖRKÇÜ 

 

indicates the relative efficiency of DMU p . Hence the 

reformulated linear programming problem is as follows: 
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In these models, DMU p

 is efficient if and only if 

* 1pθ = ; otherwise, it is referred to as non- efficient. 

 
3. CROSS EFFICIENCY EVALUATION 

 

The cross efficiency method was developed as a DEA 
extension tool that can be utilized to identify best 
performing DMUs and to rank DMUs using cross 
efficiency scores that are linked to all DMUs [44]. The 
idea of the cross efficiency method that alleviates the 
weak discrimination of the classical DEA model could 
be explained in two stages. In the first stages, the 
classical DEA analysis is performed and for each DMU 
optimal weights of inputs and outputs are calculated. 
The optimal weights computed by classical DEA have 
multiple solutions especially for the efficient DMUs and 
these solutions provide unrealistic weights, i.e., weights 
with extreme or zero values. In the second stage, these 
drawbacks are reduced and suitable set of weights 
preserving the efficiency values obtained by DEA is 
selected for each DMU. 
 
The first stage is calculated for each DMU optimal 
weights of inputs and outputs using the classical DEA 
formulation. Given the results of the first stage, we 
could use the weights used by the DMU for itself to 
calculate the peer rated efficiency for each of the other 

DMUs. The peer evaluation score, ,p jθ , is the 

efficiency score for DMU j
 using the weights obtained 

by  DMU p
 [45]. 
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Since the optimal weights obtained by classical DEA in 
the first stage are generally multiple solutions, the 

values ,p jθ  will also change depending on these values 

in the second stage. To reduce this undesirable case, 
there are some model suggestions preserving the self 

efficiency scores, ,p pθ , obtained for each DMU. The 

one so-called aggressive efficiency model developed by 
Sexton et al. [44] and extended by Doyle and Green 
[46] is given in (5) below. In this approach, the 
efficiencies of other DMUs are tried to minimize while 
the efficiency of the DMU under evaluation is 
preserved. In contrary, it is tried to maximize the 
efficiencies of other DMUs, in benevolent approach. 
Since the discrimination of DMUs is an important 
problem in DEA, the aggressive model seems more 
convenient than the benevolent model in respect of the 
discrimination problem.  
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The second stage is repeated for each DMU p ;

1,  . . . , p n= . The weights ,r pu  and ,i pv  

obtained from model (5) are used in computing the 

score ,p jθ  for DMU j  by the aid of equality (4). 

After the computation of all the cross evaluation scores, 

the cross efficiency score for DMUk  is derived by 

[45]. 
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The existence of complete weight flexibility in classical 
DEA solutions gives rise to obtaining unrealistic 
(inappropriate) weights for efficient DMUs. DMUs 
having extreme weights are potential “false positive” 
candidates. A “false positive” DMU is a DMU 
evaluated as efficient because of having good values 
only in a few inputs and outputs in spite of it has very 
bad values in most of inputs and outputs. Using a 
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measure of false positive index, FPI, Baker and Talluri 
[11] demonstrated an effective way of measuring false 

effectiveness. The FPI value for DMUk  is calculated 

as  
 

( )kk k

k

CE
FPI

CE

θ −
= .        (7) 

 
A high FPI value for an efficient DMU indicates that it 
has been evaluated as efficient because of having good 
values only in one or a few inputs and outputs in spite 
of it has very bad values in most of inputs and outputs 
in respect of the other units. Such a high FPI value 
appears in the case in which the difference between the 
self and peer efficiencies computed for the unit 
increases. In essence this shows that any unit having 
high FPI value is not a good unit compared to other 
units.   
 

4. PROPOSED METHODS FOR TECHNOLOGY 

SELECTION 

 

4.1. Closing the input and output components to 

weighted output sum 

 
In the classical DEA it is known that the optimal 
weights, especially the optimal weights obtained for the 
efficient units are multiple optimal. In addition, in the 
case the values of an output (input) variable are greater 
than the values of other output (input) variables; the 
weight assigned to this output (input) generally 
becomes zero or very near zero. In this way, a variable 
which can be able to affect the performance of a DMU 
has no (ability of) contribution to the efficiency of 
DMU under evaluation. To give an importance to each 
input and each output proportional to their greatness 
eliminates this drawback [62].   
 
In the proposed approach, closing each weighted output 
component to weighted output sum it is provided to 
make a contribution to efficiency account of each 
output component proportional to the output values, i.e., 
to the extent that their greatness or smallness, and it is 
also aimed to obtain more appropriate weights than the 
classical DEA model. Similarly, it is also provided to 
make a contribution to efficiency account of each input 
component proportional to the input values, i.e., to the 
extent that their greatness or smallness by closing each 
weighted input component to weighted input sum (i.e., 

to the value 1, 
1

1
m

i ip
i

v x
=

=∑ ). In the second stage of 

cross evaluation, a model is given by (8) in which the 
classical DEA efficiency scores for each unit are 
preserved and more appropriate weight values are 
selected for the units for which the optimal weights 
obtained by classical DEA in the first stage have 
possibly multiple and inappropriate solutions.  
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where 
*
pθ  is the efficiency value for DMU p  

obtained from the classical DEA given in (3). The pz  

variable in the model symbolizes the maximum 
deviation from the weighted output sum and weighted 
input sum for the output component and input 
component, respectively.  
 
4.2. Minimization of Variations for Weights  

 
The optimal weights of inputs and outputs of DMUs 
and efficiency values of DMUs are obtained by 
weighted sum of outputs are maximized in classical 
DEA. In many cases, it is known that multiple optimal 
solutions are obtained for efficient DMUs. Since 
multiple optimal solution case causes some problems, 
the important of acquiring the weights with the unique 
optimal solution is increased. For this reason, after 
weighted sum of outputs is maximized in classical 
DEA, the unique optimal weight can be obtained by 
minimizing variations of input and output weights. This 
model serves the same purposes of the model given by 
(8). 

 
The coefficient of variation (CV), the ratio of sample 
standard deviation to the sample mean, is the one of 
methods used in the measuring of variation. It compares 
the relative dispersion in one type of data with the 
relative dispersion in another type of data.  

 

Let ( ) 1,2,  . . . , ru r s=  be the weight on output r  

and let u  be the mean of the ( ) 1, 2,  . . . , ru r s= . 

We define the CV for the weights ru  as 
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The model (9) preserving the classical DEA efficiency 
scores for DMUs minimizes the coefficient of variation 
(CV) for input-output weights. The model (9) used in 
the stage of cross evaluation can be formulated as 
follows: 
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where, 
*
pθ  is the efficiency value for DMU p  

obtained from the classical DEA given in model (3). In 
the solution of this model, because of the structure of 
objective functions for the proposed models, a 
normalized data obtained by dividing each input-output 
with their highest value is used. 
 
5. A NUMERICAL EXAMPLE: EFFICIENCY 

EVALUATION OF INDUSTRIAL ROBOTS 

 
This section examines a well-known numerical example 
to validate proposed models for ranking the decision 
making units. For this purpose, basic CCR, aggressive 
cross efficiency, Toloo [61] model and proposed 
models (model 8 and 9) have been investigated. More 
recently, Toloo [61] proposed an integrated model that 
is able to determine the most efficient unit. We use the 
model (15) in the Toloo [61] study for the comparison 
of the ranking and discrimination power performances 
of the models. 

  
Baker and Talluri [11] realized the efficiency evaluation 
of 27 industrial robots via cross efficiency method. Two 

inputs and two outputs were chosen to measure the 
performance of those industrial robots. Output 

variables: 1y ; load capacity, kg, 2y ; velocity, m/s; 

input variables: 1x ; cost, $10,000, 2x ; repeatability, 

mm. The data set and results are reported in the Table 1 
and Table 2, respectively. 
 
In the Table 2, it is seen that the classical DEA model 
(CCR model) determines 9 robots; 1, 4, 7, 10, 13, 14, 
19, 20 and 27, as efficient ones. As noted by Baker and 
Talluri [11], the robots 1, 4, 20 and 27 have high FPI 
value. For these robots, FPI values are seen as 0.727, 
2.247, 1.890 and 0.695 in the fifth columns of Table 2 
named as FPI-CCR. The other efficient robots have low 
FPI values. By examining efficient units with high FPI 
values, it can be seen that robot 1 produces its second 
output high, robot 4 uses its second input low, robot 20 
uses its first input low and robot 27 produces its second 
output high. On the contrary, these robots have very bad 
values at most of inputs and outputs comparing to the 
other robots. In other words, these robots are considered 
as efficient ones thanks to only one input or output 
value. For the robots 1, 4, 20 and 27, model (8) yields 
FPI values as 0.563, 2.934, 1.615 and 0.408, 
respectively. Also, model (9) yields FPI values as 
0.588, 2.998, 1.678 and 0.399, respectively. The 
obtained results indicate that models (8) and (9) 
determine false positive robots similar to the aggressive 
model.  

 
Baker and Talluri [11] stated that robot 14 is the best 
DMU with the highest cross efficiency value and the 
lowest FPI value according to cross efficiency 
evaluation. For this robot, the aggressive cross 
efficiency and FPI values are seen as 0.821 and 0.218 in 
the third and fifth columns of Table 2 named as CE-
CCR and FPI-CCR, respectively. This result is 
supported by proposed models (8) and (9). For robot 14 
model (8) yields cross efficiency score as 0.861, FPI 
value as 0.162. Also, model (9) yields cross efficiency 
score as 0.849, FPI value as 0.185. 

 
Reference to Table 2 shows that 9 out of 27 industrial 
robots are efficient according to basic CCR model 
(DMUs 1, 4, 7, 10, 13, 14, 19, 20 and 27). The number 
of efficient units are reduced to 3 at the model (8) and 
model (9) (DMU7, DMU14 and DMU19). In the Table 
2, the cross efficiency scores of the proposed models 
are given. Toloo [61] model gives the DMU14 as most 
efficient robot, while DMU7 is selected as the efficient 
with the 1 efficiency score. Toloo [61] model results 
also supports the idea of Baker and Talluri [11] in terms 
of the highest efficiency score and lowest FPI value. 
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Table 1: The data of industrial robots                           Table 2: Industrial robot results 

DMU 1y  2y  1x  2x   DMU CCR 
CE- 
CCR 

Rank 
FPI- 
CCR 

CE- 
Model(8) 

Rank 
FPI- 

Model(8) 
CE- 

Model(9) 
Rank 

FPI- 
Model(9) 

Toloo [61] 
Model 

Rank 

1 1.35 60 7.2 0.15  1 1 0.579 7 0.727 0.640 7 0.563 0.636 7 0.588 0.901 7 

2 1.1 6 4.8 0.05  2 0.904 0.483 9 0.872 0.470 11 0.924 0.469 12 0.937 0.613 11 

3 1.27 45 5 1.27  3 0.529 0.306 21 0.729 0.351 20 0.508 0.366 20 0.452 0.301 24 

4 0.66 1.5 7.2 0.025  4 1 0.308 20 2.247 0.254 24 2.934 0.255 24 2.998 0.501 20 

5 0.05 50 9.6 0.25  5 0.592 0.190 26 2.116 0.223 25 1.654 0.221 26 1.737 0.292 26 

6 0.3 1 1.07 0.1  6 0.482 0.284 22 0.697 0.314 21 0.535 0.329 21 0.482 0.480 21 

7 1 5 1.76 0.1  7 1 0.697 4 0.435 0.761 2 0.314 0.784 2 0.281 1 2 

8 1 15 3.2 0.1  8 0.783 0.562 8 0.393 0.610 8 0.284 0.616 8 0.277 0.621 9 

9 1.1 10 6.72 0.2  9 0.378 0.266 23 0.421 0.284 22 0.331 0.296 22 0.319 0.370 22 

10 1 6 2.4 0.05  10 1 0.703 3 0.422 0.730 5 0.371 0.739 5 0.364 0.925 5 

11 0.9 30 2.88 0.5  11 0.671 0.430 12 0.560 0.491 9 0.366 0.510 9 0.323 0.625 8 

12 0.15 13.6 6.9 1  12 0.102 0.057 27 0.789 0.066 27 0.546 0.069 27 0.514 0.092 27 

13 1.2 10 3.2 0.05  13 1 0.726 2 0.377 0.743 4 0.347 0.746 4 0.351 0.985 4 

14 1.2 30 4 0.05  14 1 0.821 1 0.218 0.861 1 0.162 0.849 1 0.185 1.087 1 

15 1 47 3.68 1  15 0.613 0.365 16 0.679 0.419 16 0.464 0.436 15 0.412 0.565 15 

16 1 80 6.88 1  16 0.604 0.351 17 0.721 0.404 17 0.494 0.415 18 0.462 0.512 19 

17 2 15 8 2  17 0.405 0.196 25 1.066 0.222 26 0.823 0.236 25 0.744 0.295 25 

18 1 10 6.3 0.2  18 0.365 0.258 24 0.415 0.277 23 0.318 0.283 23 0.305 0.355 23 

19 0.3 10 0.94 0.05  19 1 0.665 5 0.504 0.747 3 0.338 0.759 3 0.327 0.992 3 

20 0.8 1.5 0.16 2  20 1 0.346 19 1.890 0.382 19 1.615 0.376 19 1.678 0.550 17 

21 1.7 27 2.81 2  21 0.851 0.348 18 1.445 0.398 18 1.141 0.419 17 1.043 0.532 18 

22 1 0.9 3.8 0.05  22 0.829 0.463 10 0.790 0.452 13 0.834 0.459 13 0.828 0.606 13 

23 0.5 2.5 1.25 0.1  23 0.694 0.442 11 0.570 0.488 10 0.421 0.507 10 0.378 0.615 10 

24 0.5 2.5 1.37 0.1  24 0.636 0.415 13 0.533 0.457 12 0.391 0.476 11 0.351 0.606 12 

25 1 10 3.63 0.2  25 0.553 0.381 14 0.451 0.420 
 

15 0.320 0.431 16 0.293 0.551 16 

26 1.25 70 5.3 1.27  26 0.581 0.368 15 0.579 0.423 14 0.373 0.441 14 0.327 0.575 14 

27 0.75 205 4 2.03  27 1 0.590 6 0.695 0.710 6 0.408 0.721 6 0.399 0.911 6 
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Table 3: Multiple optimal solutions for efficient industrial robots 

Efficient DMU 1u  2u  1v  2v  UCV  VCV  

1 

0.002659800 0.016607001 0.105560 1.59970 1.024 1.239 

0 0.016666670 0.104166660 1.666666870 1.414 1.248 

0 0.016666670 0.108269130 1.469748850 1.414 1.220 

0.014304830 0.016344810 0.108860430 1.441365840 0.094 1.216 

4 

1.51030 0.00213490 0.0034160 39.0160 1.410 1.414 

1.51515150 0 0 40 1.414 1.414 

1.50111511 0.006176016 0.00128667 39.62943901 1.403 1.414 

1.50 0.0066667 0 40 1.402 1.414 

7 

0.989640 0.00207230 0.338010 4.05110 1.408 1.196 

0.946814541 0.01063710 0.548704147 0.34280729 1.383 0.327 

0.866580 0.02668400 0.4469200 2.13420 1.330 0.924 

0.93808855 0.012382289 0.537634401 0.53763454 1.377 0 

10 

0.963550 0.00607520 0.328460 4.23410 1.396 1.211 

1 0 0.328947368 4.210526316 1.414 1.209 

0.93023253 0.01162791 0.290697753 6.046506882 1.379 1.284 

0.9120983 0.014650284 0.333766541 3.97920605 1.370 1.195 

13 

0.824890 0.001013201 0.077750 15.024 1.411 1.400 

0.83333331 0 0.008928572 19.4285717 1.414 1.413 

0.83043981 0.000347222 0.008680556 19.44444466 1.413 1.413 

0.75471693 0.009433964 0.235849112 4.905656338 1.379 1.284 

14 

0.31460 0.020749001 0.0068239 19.4540 1.239 1.413 

0 0.033333335 0.208333328 3.333333731 1.414 1.248 

0.41666667 0.016666667 0.1250 10 1.305 1.379 

0.0320513 0.0320513 0.2146809 2.8255310 0 1.214 

19 

1.31230 0.0606310 0.794940 5.05510 1.289 1.030 

1.64960182 0.050511945 0.815320432 4.671975613 1.330 0.994 

1.08720597 0.067383821 0.760183592 5.70854848 1.249 1.082 

1.64494028 0.050651792 0.84833970 4.051213645 1.330 0.924 

20 

1.250 0 6.250 0 1.414 1.414 

1.20590 0.0235470 6.14780 0.00817660 1.360 1.410 

1.06167528 0.100439848 5.308376422 0.075329886 1.170 1.375 

1.250 0 0.68493150 0.44520550 1.414 0.300 

27 

0 0.004878049 0.250 0 1.414 1.414 

0.00736734 0.004851095 0.1645930 0.168289656 0.291 0.016 

0.32602942 0.003685258 0.188869483 0.12045422 1.383 0.313 

0.00485990 0.00486030 0.16583750 0.16583750 0 0 

 
 
In Table 2, the rank values of DMUs are obtained by the 
model (8) and (9) are almost same the rank values of 
DMUs are obtained by the aggressive cross efficiency 
model in the industrial robot example. Spearman’s rank 
correlation coefficient for model (8) and aggressive cross 

efficiency model is calculated as 0.980sr = . Also, for 

model (9) and aggressive cross efficiency model is 

calculated as 0.977sr = . Moreover, model (8) and 

model (9) are almost same the rank values with the Toloo 
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[61] model. Spearman’s rank correlation coefficients for 
model (8) and Toloo [61] model and model (8) and Toloo 
[61] model are calculated as �� = 0.985 and �� = 0.987, 
respectively. 
 
The results in the Table 2 show that there is a powerful 
correlation in the same direction between the proposed 
models and aggressive cross efficiency model Toloo [61] 
model in terms of efficiency ranking values of the DMUs. 
 
As mentioned in the above the classical DEA model 
(CCR model) rates robots; 1, 4, 7, 10, 13, 14, 19, 20 and 
27, as efficient ones. The optimal solutions of these 
robots are multiple optimal. In Table 3, four solutions 
drawn randomly from the multiple solutions for each of 
efficient robots are given (There are a lot of efficient 
units in this example. In order not to occupy too much 
space, four optimal solutions of efficient DMUs are 
chosen randomly). For robots 1, 10 and 13, model (8) and 
(9) have same optimal solutions given in fourth rows 
(solutions) of each of these DMUs in the Table 3. For 
robots 4, 7, 14, 19, 20 and 27, the optimal weights are 
obtained by model (8) and model (9) are given 
respectively in the third and fourth rows (solutions) of 
each of these units in the Table 3. It is shown that the 
variations of the multiple optimal weights obtained by 
model (8) and model (9) are smaller than the others. 
Meanwhile, CE-CRR (efficiency score obtained by 
aggressive cross efficiency models) shown in Table 2 is 
computed using the solutions in the first row of the Table 
3. 
 

6. SIMULATION EXPERIMENT  

 
In the simulation study, the efficiency scores of the CCR 
model, aggressive cross efficiency CCR model, Toloo 
[61] model and proposed two models are evaluated 
according to the formed possible cases for the different 
number of DMUs (

10,  20, 30, 40, 50, 75,100n = ), and of input 

variables ( 1, 2,. . . , 7i = ), and of output variables  (

1, 2,  . . . , 7o = ). Each case is repeated for 1000 

times. The input and output variables are generated using 
Cobb-Douglas production function.  
 

For each case, using the following hypotheses it is tested 
if the two approaches give the similar rankings to DMUs. 

0H : The DMU efficiency scores for the proposed model 

(model 8 or model 9) are uncorrelated to the DMU 
efficiency scores for the aggressive cross efficiency CCR 
model (or Toloo [61] model). 

1H : The DMU efficiency scores for the proposed model 

(model 8 or model 9) are correlated in the same direction 
to the DMU efficiency scores for the aggressive cross 
efficiency CCR model (or Toloo [61] model).  

 
For testing the hypotheses, the Spearman’s rho rank 
correlation coefficients are used. In Tables 4-7, in the 
column of testing the ranks of methods, the number of 

cases agreed with the hypothesis 1H  per 1000 repeats 

and the average value for the Spearman’s rank 
correlations are given.   
 
Later, in order to compare the number of efficient units 
corresponding to the proposed models and the basic CCR 
model and Toloo [61] models the following hypotheses 
are tested. 
 

0H : There are no difference in terms of number of 

efficient units between the efficient units corresponding 
to the proposed model (model 8 or model 9) and the CCR 
model (or Toloo [61] model). 
 

1H : The number of efficient units for the proposed 

model (model 8 or model 9) are less than that of the CCR 
model (or Toloo [61] model). 
 
For testing the hypotheses, the Mann-Whitney statistic is 
used. In Table 4, in the column of testing the number of 
efficient units, the number of cases agreed with the 

hypothesis 1H  per 1000 repeats and the average value 

for p -values are given. Additionally, all model 

evaluations are performed on standard commercial 
processing unit of 2.50 GHz Intel (R) Core (TM) i5-2520 
M type CPU with 4.00 GB of RAM. 
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Table 4:  Results of the hypotheses testing with model (8) and CCR model 

   Testing the ranks of methods  Testing the number of efficient units 

n  i  o  Number of accepting 1H  sr  Number of accepting 1H  p val. 

 2 1 995 0.912 1000 0.0001 
10 1 2 980 0.887 1000 0.0002 

 2 2 994 0.918 1000 0.0001 
 1 3 990 0.860 998 0.0014 
 3 1 989 0.755 1000 0.0008 

20 2 3 987 0.709 995 0.0011 
 4 1 1000 0.771 1000 0.0007 
 2 4 979 0.715 989 0.0025 
 3 2 991 0.708 995 0.0021 

30 2 5 1000 0.712 1000 0.0009 
 4 3 988 0.669 985 0.0077 
 3 5 965 0.644 979 0.0093 
 4 3 987 0.602 991 0.0024 

40 2 5 992 0.635 986 0.0079 
 6 3 967 0.587 979 0.0065 
 4 4 1000 0.651 991 0.0017 
 3 4 1000 0.541 990 0.0030 

50 4 6 979 0.469 985 0.0061 
 5 3 987 0.521 965 0.0085 
 5 5 975 0.465 988 0.0035 
 5 2 985 0.498 988 0.0054 

75 4 6 986 0.503 975 0.0078 
 6 3 967 0.479 968 0.0085 
 5 6 965 0.478 979 0.0099 
 3 5 996 0.455 992 0.0015 

100 4 7 978 0.427 968 0.0058 
 6 4 967 0.445 965 0.0065 
 7 7 951 0.401 959 0.0072 

 

 

Table 5:  Results of the hypotheses testing with model (9) and CCR model 
   Testing the ranks of methods  Testing the number of efficient units 

n  i  o  Number of accepting 1H  sr  Number of accepting 1H  p val. 

 2 1 991 0.908 1000 0.0001 
10 1 2 985 0.901 999 0.0009 

 2 2 999 0.925 1000 0.0001 
 1 3 991 0.907 1000 0.0002 
 3 1 995 0.796 993 0.0017 

20 2 3 992 0.778 995 0.0009 
 4 1 995 0.800 1000 0.0005 
 2 4 981 0.726 992 0.0021 
 3 2 1000 0.715 995 0.0021 

30 2 5 1000 0.719 999 0.0007 
 4 3 990 0.695 988 0.0062 
 3 5 972 0.652 979 0.0065 
 4 3 991 0.632 993 0.0019 

40 2 5 993 0.642 987 0.0045 
 6 3 978 0.601 980 0.0095 
 4 4 991 0.629 992 0.0018 
 3 4 995 0.528 991 0.0029 

50 4 6 978 0.495 986 0.0055 
 5 3 986 0.525 969 0.0088 
 5 5 986 0.521 983 0.0058 
 5 2 981 0.491 992 0.0045 

75 4 6 987 0.500 979 0.0088 
 6 3 969 0.465 951 0.0098 
 5 6 969 0.472 961 0.0094 
 3 5 991 0.451 987 0.0054 

100 4 7 979 0.438 975 0.0062 
 6 4 969 0.432 969 0.0069 
 7 7 961 0.415 959 0.0091 
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Table 6:  Results of the hypotheses testing with model (8) and Toloo [61] model 
 

   Testing the ranks of methods  Testing the number of efficient units 

n  i  o  Number of accepting 1H  sr  Number of accepting 1H  p val. 

 2 1 992 0.908 150 0.301 
10 1 2 991 0.901 105 0.295 

 2 2 1000 0.945 120 0.247 
 1 3 989 0.907 130 0.245 
 3 1 991 0.796 165 0.294 

20 2 3 990 0.778 165 0.325 
 4 1 991 0.800 155 0.312 
 2 4 1000 0.826 140 0.275 
 3 2 995 0.715 165 0.295 

30 2 5 988 0.719 175 0.289 
 4 3 990 0.695 190 0.255 
 3 5 988 0.652 140 0.250 
 4 3 985 0.632 185 0.175 

40 2 5 1000 0.692 190 0.198 
 6 3 979 0.601 178 0.164 
 4 4 987 0.629 155 0.155 
 3 4 985 0.528 200 0.115 

50 4 6 979 0.495 185 0.125 
 5 3 988 0.525 175 0.145 
 5 5 991 0.521 160 0.115 
 5 2 985 0.491 219 0.105 

75 4 6 989 0.500 241 0.101 
 6 3 975 0.465 226 0.092 
 5 6 968 0.472 247 0.085 
 3 5 965 0.451 310 0.040 

100 4 7 978 0.438 305 0.021 
 6 4 961 0.432 295 0.055 
 7 7 975 0.415 292 0.069 

 
 

Table 7:  Results of the hypotheses testing with model (9) and Toloo [61] model 
 

   Testing the ranks of methods  Testing the number of efficient units 

n  i  o  Number of accepting 1H  sr  Number of accepting 1H  p val. 

 2 1 989 0.908 155 0.278 
10 1 2 988 0.901 159 0.288 

 2 2 977 0.925 161 0.285 
 1 3 1000 0.927 158 0.282 
 3 1 990 0.796 201 0.220 

20 2 3 991 0.778 185 0.235 
 4 1 985 0.800 165 0.208 
 2 4 991 0.726 159 0.208 
 3 2 1000 0.775 185 0.185 

30 2 5 989 0.719 195 0.191 
 4 3 992 0.695 200 0.141 
 3 5 978 0.652 245 0.148 
 4 3 981 0.632 212 0.132 

40 2 5 986 0.642 209 0.125 
 6 3 986 0.601 241 0.114 
 4 4 978 0.629 299 0.103 
 3 4 983 0.528 269 0.060 

50 4 6 982 0.495 252 0.065 
 5 3 981 0.525 225 0.090 
 5 5 969 0.521 272 0.099 
 5 2 989 0.491 261 0.032 

75 4 6 981 0.500 285 0.021 
 6 3 979 0.465 295 0.015 
 5 6 955 0.472 300 0.012 
 3 5 969 0.451 285 0.019 

100 4 7 971 0.438 351 0.021 
 6 4 969 0.432 380 0.036 
 7 7 980 0.415 365 0.014 
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Table 4 and Table 5 show that there is a high correlation 
in the same direction between the efficiency scores of 
DMUs assigned by proposed models and the aggressive 
cross efficiency CCR model in more than 95.1% of the 
cases and reaches 100% of the case for n =20, i = 4, and 
o =1; n =30, i = 2, and o =5; n =40, i = 4, and o =4; n 
=50, i = 3, and o =4 for proposed model (8) and n =30, i 
= 3, and o =2 and n =30, i = 2, and o =5 for proposed 
model (9). Similarly, Table 6 and Table 7 show that there 
is a high correlation in the same direction between the 
efficiency scores of DMUs assigned by proposed models 
and the Toloo [61] model in more than 95.5% of the 
cases and reaches 100% of the case for n =10, i = 2, and 
o =2; n =20, i = 2, and o =4; n =40, i = 2, and o =5 for 
proposed model (8) and n =10, i = 1, and o =3; n =30, i 
= 3, and o =2 for proposed model (9). 
 
On the other hand,  the number of efficient units for the 
proposed models are less than that of the basic CCR in 
more than 95.9% of the cases and reaches 100% of the 
case for n =10, i = 2, and o =1; n =10, i = 1, and o =2; n 
=10, i = 2, and o =2; n =20, i = 3, and o =1; n =20, i = 4, 
and o =1; n =30, i = 2, and o =5 for proposed model 8, 
and n =10, i = 1, and o =1; n =10, i = 2, and o =1; n =10, 
i = 1, and o =3; n =20, i = 4, and o =1 for proposed 
model (9) according to Table 4 and Table 5, respectively. 
Similarly, Table 6 and Table 7 show the discrimination 
power comparison between proposed models and Toloo 
[61] model. Toloo [61] model is better than the proposed 
models in terms of the reducing the number of efficient 
units. Although the proposed models are developed to 
eliminate multiple optimal solutions at input-output 
weights and therefore to obtain consistent ranks of 
DMUs, Toloo [61] model is designed to determine the 
most efficient unit. However, it is observed that as the 
sample size increases, difference number of efficient unit 
between proposed models and Toloo [61] model 
significantly decreases. 

 
All results of the simulation show that there is 
statistically a significant correlation and hence a 
similarity between the ranks obtained by the proposed 
models and aggressive cross efficiency and Toloo [61] 
model for each case. In addition, in almost all cases it is 
observed that the number of efficient units are 
significantly less than the basic CCR model.  

 
7. CONCLUSION 

 
DEA has previously been used for the selection of 
technologies. In this study, two proposed model have 
been applied to robot selection problem. Since the 
optimal input-output weights obtained by classical DEA 
are usually not unique, the cross efficiency scores 
depending on these weights may not be unique either. 
The purpose of this study is to remove the question of 
multiple optimal weights and to provide ranking the 
industrial robots. As a result, two models as named model 
(8) and model (9) are proposed for the second stage of the 
cross efficiency evaluation. Provided that the classical 
DEA efficiencies are preserved, by taking into account 
the quantities of input and output values (their greatness 
or smallness), the model (8) chooses the weights with an 
approximation containing the input-outputs components 
efficiency evaluation from the optimal weights set 

obtained by classical DEA. Similarly, provided that the 
classical DEA efficiencies are preserved, by minimizing 
the variation of input-output weights the model (9) 
chooses the weights from the optimal weights set 
obtained by classical DEA. The results show that there is 
a high correlation in the same direction between the 
efficiency scores of DMUs assigned by proposed models 
and the aggressive cross efficiency CCR model. 
Additionally, the number of efficient units for the 
proposed models are statistically significantly less than 
that of the basic CCR model. An important result indicate 
that recently proposed by the Toloo [61] model is better 
than the proposed models in terms of the reducing the 
number of efficient units. At the same time, there is a 
high correlation in the same direction between the 
efficiency scores of DMUs assigned by proposed models 
and the Toloo [61] model. 
 
Finally, the results of a well-known literature robot 
selection example and a comprehensive simulation 
experiment indicate that proposed models are useful for 
the ranking and discrimination power problems in the 
DEA. 
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