Journal of the Faculty of Engineering and Architecture of Gazi University 35:1 (2020) 323-335

Investigation of cold extrusion process by coupled thermo-mechanical finite element analysis

Mehmet Okan Görtan^{1*}, Osman Selim Türkbaş², Korhan Babacan Yılmaz¹, Bora Yıldırım¹ ¹Hacettepe University, Department of Mechanical Engineering, Cankaya/Ankara, 06800, Turkey ²Gazi University, Department of Mechanical Engineering, Maltepe/Ankara, 06570, Turkey

Highlights:

- Cold extrusion process of C4C steel
- Coupled thermomechanical finite element analysis

Keywords:

- · Cold extrusion process
- Finite element analysis

Article Info:

Received: 03.10.2018 Accepted: 31.08.2019

DOI:

10.17341/gazimmfd.466975

Acknowledgement:

This work was supported by the BAP Coordination Unit of Hacettepe University under the FDS-2016-11003 project. For the support during the experiments, we thank to Dr.-Ing. Dipl.-Wirtsch.-Ing. Peter Groche who is the Director of the Institute for Production Engineering and Forming Machinesin Darmstadt Technical University..

Correspondence:

Author: Mehmet Okan Görtan e-mail: okangortan@hacettepe.edu.tr phone: +90 312 297 6207

Purpose: The purpose of this study is to examine the effect of heat transfer coefficient between die and workpiece on the thermal and mechanical properties of the extrusion process by using finite element analysis.

Theory and Methods:

In this study a low carbon C4C (1.0303) steel was used. The specimens that prepared from C4C steel are formed using a one-step cold extrusion process. In order to prevent the abrasion, the specimens are firstly sandblasted and then coated with a commercial lubricant Beruforge 170D. During the experiments, the process forces and the movement of the press ram were recorded and the results of these experiments are given together with the numerical results that obtained from finite element analysis.

Results:

The most attractive results of this study is given in this section and itemized below.

- In low speed forming, high temperatures occur in the center of the workpiece, whereas for high speed forming, high temperatures occur near the surface of the workpiece.
- The increment on the forming speed results in higher temperature distributions on the workpiece.
- The heat transfer coefficient between die and workpiece has no effect on the process forces.

Conclusion:

- At low speed forming, the heat transfer coefficient between die and workpiece has a significant effect on the temperatures that occur within the workpiece material.
- As the manufacturing speed increases, the forming time decreases and therefore, the effect of the heat transfer coefficient between die and workpiece decreases.
- During the numerical analysis of cold forward rod extrusion process, heat transfer coefficient between die and workpiece has no effect on the process force results.

Journal of the Faculty of Engineering and Architecture of Gazi University 35:1 (2020) 323-335

Soğuk ekstrüzyon prosesinin termo-mekanik bağlı sonlu elemanlar analizi ile incelenmesi

Mehmet Okan Görtan¹*¹⁰, Osman Selim Türkbaş²¹⁰, Korhan Babacan Yılmaz¹¹⁰, Bora Yıldırım¹¹⁰ ¹Hacettepe Üniversitesi, Makina Mühendisliği Bölümü, Çankaya/Ankara, 06800, Türkiye ²Gazi Üniversitesi, Makina Mühendisliği Bölümü, Maltepe/Ankara, 06570, Türkiye

ÖNEÇIKANLAR

- C4C çeliğinin deneysel soğuk ekstrüzyon prosesi
- Termo-mekanik bağlı sonlu elemanlar analizi

Makale Bilgileri	ÖZET
Araștırma Makalesi	Endüstride farklı parçaların imalatında kullanılan soğuk ileri ekstrüzyon prosesi, Müller vd. [1] ile Klocke
Geliş: 03.10.2018	[2] tarafından gösterildiği gibi hammaddenin atık oluşmadan tamamen kullanılma, pekleşme nedeniyle
Kabul: 31.08.2019	malzeme mekanik dayanımındaki iyileşme ve dar toleranslarla imalat kabiliyeti özellikleri ile öne
	çıkmaktadır. Ekstrüzyon işlemine oda sıcaklığında başlanmasına rağmen iş parçası sıcaklıkları Groche vd.
DOI:	[3] tarafından belirtildiği gibi 200°C'ı bulabilmekte ve kalıp ile iş parçası arasındaki temas normal
10.17341/gazimmfd.466975 Anahtar Kelimeler: Soğuk ekstrüzyon prosesi, sonlu elemanlar analizi, termo-mekanik analiz, ısı transferi katsayısı	gerilmeleri yine Groche vd. [4] tarafından açıklandığı gibi 3,000 MPa'a kadar çıkabilmektedir Bu durum
	prosesin sonlu elemanlar analizlerinde sıcaklık etkilerinin de incelenmesinin zorunlu kılmaktadır. Termo-
	mekanik bağlı sonlu elemanlar analizlerinde iş parçası malzemesinin mekanik ve fiziksel özellikleri yanında
	kalıp ile olan ısı alışverişinin de önemli etkilerini olduğu bilinmektedir. Ancak bu ısı alışverişini modelleyen
	ısı transfer katsayısının büyüklüğü konusunda fikir ayrılıkları bulunmaktadır. Yapılan çalışmada soğuk
	ekstrüzyon proseslerinin termo-mekanik bağlı sonlu elemanlar analizlerinde kullanılan iş parçası ile kalıp
	arasındaki ısı transfer katsayısının, ekstrüzyon prosesinin termal ve mekanik özelliklerine etkisi
	incelenmiştir. Farklı transfer katsayıları ve şekillendirme hızları kullanılarak sayısal simülasyonlar yapılmış
	ve aradaki farklar tartısılmıştır. Yapılan simülasyonlar deneyler yaşıtaşıyla doğrulanmıştır.

Investigation of cold extrusion process by coupled thermo-mechanical finite element analysis

HIGHLIGHTS

- Experimental cold extrusion process of C4C steel
- Coupled thermo-mechanic finite element analysis

Article Info	ABSTRACT				
Research Article	As shown by Müller et al. [1] and Klocke [2], cold forward extrusion process which is widely used in the				
Received: 03.10.2018 Accepted: 31.08.2019	manufacturing of various parts in the industry is distinguished by its low material usage and improvesd mechanical strength due to strain hardening as well as manufacturing capabilities with narrow tolerances.				
DOI:	Although extrusion process starts at room temperature, as stated by Groche et al. [3], the temperature on the workpiece can reach up to 200°C and as reported by Groche et al. [4], the contact normal stress between die				
10.17341/gazimmfd.466975	and workpiece can reach up to 3.000 MPa. Therefore, it is necessary to examine the temperature eff while conducting finite element analysis. It is known that, besides mechanical and physical propertie				
Keywords:	workpiece material, heat transfer between sample and die is also of high importance. However, there is no				
Cold extrusion process, finite element analysis, thermo-mechanical analysis, heat transfer coefficient	consensus about the magnitude of this heat transfer coefficient. This study examines the effect of the heat transfer coefficient between die and workpiece on the thermal and mechanical properties of the extrusion process using coupled thermo-mechanical finite element analysis. Finite element simulations are conducted using various heat transfer coefficients and forming speeds and differences in the results are discussed. Simulation results are verified through experiments.				

^{*}Sorumlu Yazar/Corresponding Author: okangortan@hacettepe.edu.tr, turkbas@gazi.edu.tr, korhanb.yilmaz@hacettepe.edu.tr, boray@hacettepe.edu.tr / Tel: +90 312 297 6207

1. GİRİŞ (INTRODUCTION)

Ekstrüzyon DIN 8583-6 standardına göre, çubuk veya sac şeklindeki metal bir iş parçasının bir kalıp ve zımba vasıtasıyla kesiti küçültülen, yanal yönde uzatılan veya kap şeklinde geriye doğru akıtılan bir parçanın imalatı için kullanılan yöntem olarak tanımlanmaktadır. Farklı ekstrüzyon çeşitleri arasında özellikle soğuk ileri ekstrüzyon, firesiz hammadde kullanımı, malzeme dayanımındaki pekleşmeye dayalı iyileşme ve talaşlı imalat seviyelerine yakın toleranslarla imalat kabiliyeti özellikleri ile endüstriyel uygulamalar açısından öne çıkmaktadır [1]. Aynı zamanda seri imalata uygunluğu nedeniyle soğuk ekstrüzyon otomotiv parçaları ve cıvata imalatında sıklıkla kullanılmaktadır [2]. Ancak özellikle çelik uygulamalarında, bu imalat yöntemine oda sıcaklığında başlansa bile iş parçası sıcaklıkları 200°C'ı bulabilmekte [3] ve kalıp ile iş parçası arasındaki temas normal gerilmeleri 3000 MPa'a ulaşabilmektedir [4]. Şekillendirilecek malzemeler ve proses için aşırı sayılabilecek bu koşullar, ekstrüzyon prosesinin incelenmesi ve tasarımında geçtiğimiz on yıl içerisinde analitik yöntemler yerine daha sıklıkla sonlu elemanlar analizlerinin kullanılmasına yol açmıştır. Ancak sonlu elemanlar analizi sonuclarının doğruluğuna, sınır kosullarına ek olarak kullanılan iş malzemesinin mekanik özellikleri ve kalıp ile iş parçası arasında tribolojik kosulların önemli etkisi vardır [5]. özelliklerin modellenmesi genel Tribolojik olarak ekstrüzyon prosesinin gerceklestiği kosullara uygun bir sürtünme katsayısının belirlenmesi ve bu katsayının kullanılan program içerisine uyarlanması seklinde gerçekleşmektedir [6]. İş parçasının mekanik özelliklerin sonlu elemanlar analizlerine uyarlanması amacıyla birçok model türetilmiştir. Bu modeller malzemenin özelliklerini sadece gerinmeye bağlı olarak gösterebildikleri gibi gerinme, gerinme hızı ve sıcaklığa bağlı özellikleri gösteren modeller de bulunmaktadır [7]. Buna ek olarak son yıllarda malzemelerin mikroyapısındaki tanecik yönelimlerinin şekillendirme sırasındaki malzeme davranışına etkilerini gösterebilen modeller de türetilmiştir [8, 9]. Bu modeller ile metalik malzemelerin kristal yapısındaki tanecik yönelimlerini ve bu yönelimlerin mekanik özelliklere ve şekillendirme sınırlarına etkileri incelenebilmektedir. Böylece özellikle sac malzemelerin üretilmesi sırasında sıcak veya soğuk haddeleme işleminde oluşan kristal yönelimlerinin anizotropi davranışları ve şekillendirme sınır diyagramlarına etkisi belirlenebilmekte ve sonlu elemanlar analizlerinde kullanılabilmektedir [10-12]. Ancak yine bahsedilen özelliklerden dolayı bu modellerin kullanımı günümüze kadar sac malzemeler ile sınırlı kalmıştır.

Soğuk ekstrüzyon prosesi sırasında iş parçasında sıcaklığın artmasının iki nedeni vardır. Bunlardan ilki malzeme içerisindeki deformasyon sonucu açığa çıkan enerji; ikincisi ise iş parçası ve kalıp arasında oluşan sürtünmedir [6]. Bu iki etkinin iş parçası malzemesinin sıcaklığında ve buna bağlı olarak mekanik özelliklerinde değişimlere yol açtığı bilinmesine rağmen sonlu elemanlar analizlerinde bu değişimlerin etkilerinin incelenmesi açısından henüz bir fikir birliği bulunmamaktadır. Güncel çalışmalarda ekstrüzyon prosesi incelenirken farklı çalışmalarda sadece mekanik analizlerin kullanıldığı görülmektedir [13, 14]. Bu çalışmalar ekstrüzyon prosesi sırasında artan sıcaklık etkilerini göz ardı ederek sürtünme katsayısındaki değişimlerin proses kuvvetleri ve malzeme akışına etkileri üzerine yoğunlaşmıştır. Buna karşın yine aynı dönemde yapılan başka çalışmalarda termo-mekanik bağlı sonlu elemanlar analizleri uygulanmıştır [15-17]. Termo-mekanik bağlı analizlerde şekillendirme sırasındaki deformasyona ve sürtünmeye bağlı olarak sıcaklıklardaki artış göz önünde bulundurulmaktadır. Böylece sıcaklık değişiminin malzeme dayanımına ve buna bağlı olarak malzeme akışına, temas normal gerilmelerine etkileri incelenebilmektedir.

Soğuk ekstrüzyon gibi iş parçasının neredeyse tamamen kalıp ve zımba tarafından sarıldığı proseslerde şekillendirilen bölgedeki sıcaklık değişimi, izotropik malzeme özellikleri, kalıbı da içeren deformasyon bölgesinde adyabatik durum ve sıcaklık dağılımının sabit düzenli olduğu kabulü ile Eşitlik 1'de gösterildiği şekilde analitik olarak hesaplanabilir [18]:

$$\Delta T = \left[\frac{\alpha \int_0^{\varepsilon} \overline{\sigma} d\overline{\varepsilon}}{\rho \cdot c}\right] + \left[\frac{\beta \cdot \mu \cdot U \cdot P \cdot A \cdot t}{\rho \cdot C \cdot V}\right] - \left[\frac{h \cdot (T_{parça} - T_{kallp}) \cdot A \cdot t}{\rho \cdot C \cdot V}\right]$$
(1)

Burada T sıcaklık değerini [°K], $\bar{\sigma}$ iş parçasının eşdeğer akma dayanımını [MPa], $\bar{\varepsilon}$ eşdeğer logaritmik gerinimi, μ Coulomb sürtünme katsayısını, U kalıp ile iş parçası arasındaki göreli hareketin hızını [mm/s], P temas normal gerilmesini [MPa], A_{temas} temas alanını [mm²], t zamanı [s], ρ yopunluğu [kg/m³], *h* iş parçası ile kalıp arasındaki ısı transfer katsayısını [W/m²K], C iş parçasının özgül ısısını [J/kgK], V iş parçasının şekillendirilen kısmının hacmini $[mm^3]$, α deformasyon energisinin ne oranda isiya dönüştüğünü gösteren katsayıyı ve β da sürtünme enerjisinin oranda 151ya dönüştüğünü gösteren ne katsavivi belirtmektedir. Buradaki α ve β katsayılarının şekillendirme prosesinden bağımsız olarak yaklaşık 0,98 değerinde olduğu bildirilmiştir [18, 19]. Eşitlik 1'de bulunan ilk parantez içerisindeki kısım plastik deformasyon sonucu oluşan sıcaklık artışını modellemektedir. İkinci parantez ise sürtünme katsayısı, temas normal gerilmesi, temas alanı ve zamana bağlı olan artışını göstermektedir. Son parantez ise sıcaklığı artan iş parçasından kalıba olan ısı transferi katsayısı, sıcaklık farkı, temas alanı ve zamana bağlı olan sıcaklık düşüşünü ön görmektedir. Plastik deformasyon sonucu olan artış zamana bağlı değilken sürtünmeye bağlı artış ve kalıp malzemesine transfer sonucu oluşan azalış zamana bağlı olarak gerçekleşmektedir. Sıcaklıktaki değişimleri analitik olarak ön görebilen bu denklemdeki yoğunluk ve özgül ısı gibi malzemeye bağlı termofiziksel özellikler farklı sıcaklıklar için kolayca belirlenebilmektedir [20]. Eşitlik 1 ile plastik deformasyon halinde iş parçalarındaki ısı değişimi yaklaşık olarak hesaplanabilir. Ancak plastik şekil verme işlemleri sırasında hem deformasyon hem de sürtünme kuvvetleri homojen olarak gerçekleşmemektedir. Bu nedenle bu proseslerdeki termal

olayların analizinde analitik formüllerin kullanılması uygun görülmemektedir. Sonlu elemanlar analizleri proses sırasındaki değişimleri daha doğru olarak modelleyebilmektedir ve bu nedenle son dönemde analizlerde standart uygulama haline gelmiştir.

Plastik şekil verme işlemlerinde iş parçası ile kalıp arasındaki 1sı alışverişi kompleks bir durumdadır. Şekillendirme prosesleri sırasında iş parçası ve kalıp ara yüzeyleri lokal olarak incelendiğinde metallerin direkt olarak temas ettikleri bölgelerde 1s1 iletimi olduğu kabul edilir. İki farklı metalin arasına yağlayıcıların girmesi halinde ise ısı transferi taşınım aracılığıyla gerçekleşir. Son olarak bu metallerin arasında temas ve yağlayıcı olmaması halinde ise 1s1 transferinin 1şınım ile gerçekleştiği kabul edilir. Sonuç olarak ısı transferinin üç mekanizması olan iletim, taşınım ve ışıma eş zamanlı olarak gerçekleşmektedir. Bu üç durumun ayrı ayrı ölçülmesi teknik olarak mümkün görülmemektedir. Bu nedenle şekillendirme prosesleri için iş parçası ile kalıp arasındaki ısı alışverişini tanımlayan ısı transferi katsayısı (h) türetilmiştir [18]. Bu katsayı her bir ısı transferi mekanizmasını içinde barındırmaktadır. Isı transferinin tek bir katsayı ile tanımlanması kolaylık sağlamaktadır ancak yine de şekillendirme proseslerindeki uc durumlarda bu katsavının belirlenmesi zordur. Avrıca daha önceki çalışmalarda da belirtildiği gibi ısı transferi katsavı, temas halindeki malzemelerin tipi vanında sıcaklık. temas normal gerilmeleri ve kullanılan vağlavıcıva bağlı olarak da değişmektedir [21-23]. Bu çalışmalarda belli bir sıcaklığa kadar ısıtılmış sac malzemeler sıcaklık sensörleriyle donatılmış düz kalıplar arasında preslenmiş ve bu sırada kalıplardaki sıcaklık değişimleri kaydedilmiştir. Yapılan ölçümler değerlendirilerek sıcak sac ile kalıp arasında oluşan ısı transferi katsayısı hesaplanmıştır. Her çalışmanın ortak bulgusu temas normal gerilmelerinin artması ve yağlayıcı kullanılması halinde ısı transferi katsayısının arttığıdır. Bu durum temas normal gerilmelerindeki ile yüzeylerindeki artış parça pürüzlülüklerin deforme olması ve gerçek temas alanının artması ile açıklanmaktadır. Yağlayıcı kullanılması durumunda ise bu ek maddeler üzerinden iş parçaları ile kalıp arasında ısı transferi gerçekleşmektedir. Aynı zamanda yapılan çalışmalarda belirtilen bir diğer durum ise yüksek sıcaklıklarda ısı transferinin de yavaşlamasıdır. Hesaplanan 1sı transferi katsayısı (h) değerleri 4.500 ile 19.000 W/m²K arasında değişmektedir. Ancak kullanılan sıcaklık sensörlerinin mekanik dayanımlarındaki kısıtlar nedeniyle önceki çalışmalarda temas normal gerilmeleri 90 MPa ile sınırlı kalmıştır [21]. Bu değerler daha çok preste sertleştirme prosesi için geçerli aralığı tanımlamaktadır [24]. Buna karşı ekstrüzyon prosesi sırasında gerçekleşen temas normal gerilmelerinin bu değerin çok üzerinde olduğu da bilinmektedir. Bu yüksek gerilmelerden ötürü proses sırasında ölçümler mümkün olamamaktadır. Sonuç olarak ekstrüzyon prosesinin termo-mekanik bağlı sonlu elemanlar analizleri incelendiği çalışmalarda ısı transfer katsayısı için 3.000 ile 10.000 W/m²K arasında kabuller yapılmıştır [15-17]. Bu değerler düşük temas normal gerilme halindeki değerlerin bile altındadır ve birbirleri arasında çok farklılık

göstermektedir Aynı grup tarafından aynı alüminyum alaşımında yapılan çalışmalarda bile farklı değerlerin alındığı görülmektedir [15, 16]. Ekstrüzyon prosesinin termo-mekanik modellenmesi sırasında kullanılacak ısı transferi katsayısının değeri ve bu değerdeki değişmelerin etkisi üzerine bir çalışma olmamakla birlikte bu konuda bir fikir birliği de yoktur. Buna karşın, aynı şekilde yüksek temas normal gerilmeleri nedeniyle ölçümlerin yapılamadığı sıcak haddeleme prosesi için on yıllar öncesinde sonlu elemanlar analizleri ile parametrik çalışmalar yapılmış ve ısı transfer katsayısının sıcak haddeleme üzerine etkileri irdelenmiştir [25].

Yukarıda sayılan nedenlerden ötürü güncel çalışmanın amacı soğuk ekstrüzyon proseslerinin termo-mekanik bağlı sonlu elemanlar analizlerinde kullanılan iş parçası ile kalıp arasındaki ısı transfer katsayısının (*h*), ekstrüzyon prosesinin termal ve mekanik özelliklerine etkisinin incelenmesidir. Bu amaç doğrultusunda ilk olarak farklı hızlarda soğuk ekstrüzyon denemeleri yapılacak ve bu denemeler sırasında proses kuvvetleri ölçülecektir. Sonrasında aynı proses farklı ısı transfer katsayıları kullanılarak termo-mekanik bağlı olarak modellenecek ve bu farklı katsayıların proses üzerindeki etkileri ve yapılan deneyleri ne oranda modelleyebildiği incelenecektir. Bahsi geçen modellerin oluşturulabilmesi için kullanılan iş parçası malzemesinin mekanik özeliklerinin ve proses için geçerli olan sürtünme katsayısının deneyler vasıtasıyla belirlenecektir.

2. DENEYSEL YÖNTEM (EXPERIMENTAL METHOD)

Yapılan calısmada düsük karbonlu C4C (1.0303) celiği kullanılmıştır. İlk olarak bu malzemeden imal edilen iş parçaları tek adımlı soğuk ekstrüzyon işlemi ile şekillendirilmiştir. İncelenen proseste 14,5 m çapında ve 40 mm uzunluğundaki numuneler tek adımda 12 mm çapa indirilmiştir. Prosesin kalıp açısı 30°'dir. Ekstrüzyon sırasında oluşan teorik plastik gerinme 0,38 olarak hesaplanmıştır. Soğuk ekstrüzyon deneyleri Darmstadt Teknik Üniversitesi'nde bulunan servo tahrikli bir mekanik preste, 3 farklı hızda gerçekleştirilmiştir. Bu farklı hızlar pres koçunun dakikada 5, 15 ve 30 vuruşuna karşılık gelmektedir. Şekillendirme işlemi dakikada 5 vuruşta 2 saniye, 15 vuruşta 0,6 saniye ve 30 vuruşta 0,3 saniyede tamamlanmaktadır. Deneyler öncesinde tüm numuneler ilk olarak kumlanmış ve sonrasında sabun bazlı MoS2 içeren ticari bir yağlayıcı olan Beruforge 170D ile kaplanmıştır. Deneyler sırasında proses kuvvetleri ve pres koçunun hareketi kaydedilmiştir. Kullanılan ekstrüzyon kalıbı, ölçüleri ve üretilen parça örneği Şekil 1'de gösterilmiştir. Deney sonuçları, sonlu elemanlar analizi sonuçları ile birlikte verilecektir.

Çalışmada ikinci olarak kullanılan düşük karbonlu çelik iş parçası malzemesinin mekanik özellikleri belirlenmiştir. Bu özelliklerin sonraki aşamalarda sonlu elamanlar modeli içerisinde de tanımlanması gerekmektedir. Güncel çalışmalarda malzemelerin kristal yapısının göz önünde bulundurulduğu modeller de kullanılmıştır. Ancak bu modeller genel olarak parçaların anizotropi ve şekillendirme

Şekil 1. Deneylerde kullanılan ekstrüzyon sistemi (sol), kalıp geometrisi (orta) ve üretilen parça (sağ) (Extrusion system used in experiment (left), die geometry (middle) and produced part (right))

sınırlarının ön görülmesinde başarılı olmaktadır ve bu nedenle de sac malzemelerde kullanıma daha uygundur. Sayılan nedenlerden ötürü mekanik özellik tanımlanması işi için, malzemelerin akma dayanımını gerinme, gerinme hızı ve sıcaklığa bağlı olarak doğru olarak gösterebildiği için Johnson-Cook malzeme modeli seçilmiştir [7]. Bu model Eşitlik 2'deki denklemi kullanmaktadır:

$$\sigma = (A + B\varepsilon^{n}) \cdot \left(1 + C \ln\left(\frac{\dot{\varepsilon}}{\dot{\varepsilon}_{0}}\right)\right) \cdot \left(1 - \left(\frac{T - T_{0}}{T_{m} - T_{0}}\right)^{m}\right)$$
(2)

Burada σ eşdeğer akma gerilmesini, A referans akma dayanımını, B pekleşme etkisini, n pekleşme üstelini, ε gerinme değerini, C gerinme hızı duyarlılığını, $\dot{\varepsilon}$ gerinme hızını, $\dot{\varepsilon}_0$ referans gerinme hızını, T sıcaklık, T_0 oda sıcaklığı ve T_m malzemenin ergime sıcaklığını, m termal yumuşama katsayısını belirtmektedir.

Çekme ve basma testlerinin sonuçlarının malzemenin mekanik özelliklerini modellemede birlikte kullanılmasının, ekstrüzyon gibi masif şekillendirme proseslerinin sonlu analizlerinde daha doğru sonuçlar verdiği daha önceki çalışmalarda bildirilmiştir [26]. Bu nedenle ilk olarak çekme testleri ile malzemenin akma ve çekme dayanımı bulunduktan sonra basma testleri vasıtasıyla da bu değerlerin sıcaklık ve gerinme hızı ile değişimi belirlenmiştir. Basma testlerinde numunelerde sürtünme nedeniyle oluşan fiçi şekli oluşumunu engellemek için MoS2 yağlayıcısı kullanılmıştır. Bu yağlayıcı, test edilmesi planlanan kontak normal gerilimleri ve sıcaklıklar için sürtünme katsayısını oldukça düşürerek şekillendirmeyi kolaylaştırmaktadır. Numunelerin başlangıç çapı 6 mm ve yüksekliği 9 mm'dir. Testler sırasında numuneler yarı yükseklikleri olan 4,5 mm'ye kadar preslenmiştir. Test edilen numune örneği Şekil 2'de gösterilmiştir.

Basma testleri 3 farklı sıcaklık (25°C, 75°C ve 125°C) ve 3 farklı gerinme hızında (0,01 s⁻¹; 0,1 s⁻¹ ve 1 s⁻¹) gerçekleştirilmiştir. Daha sonrasında aynı basma testleri sonlu elemanlar ortamında modellenmiştir. Oda sıcaklığında yapılan testlerde önceden türetilen akma eğrisi kullanılmış ve simulasyon sonuçlarını test sonuçlarına uydurmak için malzeme parametreleri optimize edilmiştir. Bu şekilde türetilen Johnson-Cook malzeme parametreleri Tablo 1'de gösterilmiştir.

Şekil 2. Basma testi numunesi (sol) ve test edilmiş numune (sağ) (Compression test sample (left) and tested sample(right))

 Tablo 1. Türetilen Johnson-Cook malzeme modeli

 parametreleri (Derived Johnson-Cook material model parameters)

Parametre	Değer (C4C)
A – Akma dayanımı [MPa]	424,88
B – Pekleşme etkisi [MPa]	91,67
n – Pekleşme katsayısı	0,198
C – Gerinme hızı duyarlılığı	0,0124
$\dot{\boldsymbol{\varepsilon}}_{0}$ – Referans gerinme hızı [s ⁻¹]	0,01
Τ ₀ – Oda sıcaklığı [°K]	298
T _m − Ergime sıcaklığı [°K]	1803
m – Termal yumuşama katsavısı	0,83

Tablo 1'de verilen malzeme modeli parametreleri ile oluşturulan sonuçlar ve deney sonuçları Şekil 3'te karşılaştırılmıştır. Şekilde uygulanan testlerin plastik bölgesine yer verilmiştir. Burada farklı gerinme hızları ve sıcaklıklarda uygulanan basma testlerinin sonuçları sürekli çizgilerle, aynı deneyin Tablo 1'de verilen Johnson-Cook malzeme modeli parametreleri ile tekrarlanan sonlu elemanlar analizleri sonuçları kesikli çizgilerle gösterilmiştir. Yapılan karşılaştırmalarda deney ve sonlu elemanlar analizi sonuçlarının trend olarak birbirlerine uydukları gözlemlenmiştir. Değer olarak da aralarında belirgin bir örtüşme vardır. En yüksek fark 175°C'da gerçekleştirilen çalışmalarda görülmüştür. Burada deney ve sonlu elemanlar analizleri sonuçları arasındaki farkın standart sapması 0,2106 kN olarak hesaplanmıştır. Bu değer ölçülen ve hesaplanan kuvvetler arasında %0,709'luk bir göstermektedir. fark olduğunu Diğer bütün karşılaştırmalarda standart sapma değerleri ve buna bağlı olarak yüzde farklar daha düşüktür. Bu sonuçlar ışığında türetilen Johnson-Cook malzeme modeli parametrelerin yeteri kadar doğru olduğu sonucuna varılmıştır.

Şekil 3. Basma testlerinde farklı gerinme hızları (üst) ve farklı sıcaklıklarda (alt) elde edilen kuvvet değerlerinin sonlu elemanlar analizi sonuçları ile karşılaştırılması (Comparison of force values obtained from upset tests using different strain rates (upper) and temperatures (lower) with finite element analysis results)

Yapılan çalışmada son olarak kalıp ile iş parçası malzemesi arasındaki sürtünme katsayısı deneysel olarak belirlenmiştir. Sürtünme katsayısı belirlenmesi için Darmstadt Teknik Üniversitesi / Almanya bünyesinde bulunan Kayma-Basma Testi (KBT) cihazı kullanılmıştır. Bu testte incelenecek malzemeden hazırlanan numuneler özel bir şekle sahip olan bir pres koçu altında daha önceden belirlenmiş bir kuvvet altında preslenir ve sonrasında kuvvet sabit tutularak numune altındaki tabla kaydırılır. Tabla ve pres koçundaki kuvvetler karşılaştırılarak sürtünme katsayısı türetilir [3, 4]. Bu test şematik olarak Şekil 4'te gösterilmiştir.

Yapılacak sonlu elemanlar analizlerinde iş parçası sıcaklıklarının oda sıcaklığının üzerine çıkması beklenmektedir. Bu nedenden ötürü KBT'ler 50°C, 75°C ve 100°C sıcaklıklarında gerçekleştirilmiştir. Ayrıca testler sırasında Coulomb sürtünme katsayısının temas normal gerilmelerine bağlı değişimini belirlemek için de 1161,0 MPa, 1274,0 MPa, 1410,0 MPa ve 1578,2 MPa olmak üzere 4 farklı basınç altında da tekrarlanmıştır. Uygulana testlerin hepsinde 15 mm çapında ve 10 mm yüksekliğinde numuneler kullanılmıştır. Bu numuneler ilk olarak üzerlerindeki yüzey pürüzlülüğünü artırmak amacıyla R190 büyüklüğünde parçacıklarla kumlanmıştır. Sonrasında üzerlerine yağlayıcı olarak da MoS2 içeren sabun bazlı Beruforge 170D uygulanmıştır. Sıcaklık ve baskı kuvvetine bağlı olarak elde edilen sürtünme katsayıları Şekil 5'te gösterilmiştir. Sürtünme katsayısı dağılımları incelendiği zaman bu değerlerin 0.047 ile 0.025 arasında değistiği gözlemlenmistir. Yapılan ölcümlerin ortalama değeri 0,035 olarak belirlendiği için yapılan çalışmada sürtünme katsayısının bu değerde sabit olduğu kabul edilmistir.

3. EKSTRÜZYON SONLU ELEMANLAR MODELİ (FINITE ELEMENT MODEL OF EXTRUSION)

Sonlu elemanlar modeli oluşturulacak Şekil 1'de gösterilen geometri ilk olarak DS Solidworks (2017) programı kullanılarak üç boyutlu katı olarak modellenmistir. Sonrasında ANSYS Workbench LS-Dyna (2018) ve LS-Prepost (2018) programları kullanılarak sonlu elemanlar modeli olusturulmustur. Cözüme hazır olan sonlu elemanlar modeli ANSYS Mechanical APDL Solver (2018) programi kullanılarak cözülmüstür. Olusturulan sonlu elemanlar modeli 8 düğüm noktalı üç boyutlu prizmatik elemanlar kullanılarak modellenmiştir. Analizler sırasında kullanılan sonlu elemanlar modeli 35676 düğüm noktası ve 29810 eleman içermektedir. Sonlu elemanlar yöntemi kullanılarak yapılacak çözümün süresini optimize etmek ve zaman adımını belirlemek amacı ile bir yakınsaklık analizi yapılmış ve bu analiz sonucunda ileri çubuk ekstrüzyonu yapılacak numunenin uygun eleman boyutu 0,25 mm olarak belirlenmiştir. Ayrıca çözüm süresinin kısaltılması amacı ile numune ve kalıp 360 derece olarak modellenmek yerine eksenel ve düzlemsel simetriler kullanılarak 45 derece olarak (1/8 olarak) modellenmiştir. Sonlu elemanlar yöntemi için kullanılacak örgü modeli Şekil 6'da gösterilmiştir. Bu modelde eleman boyutu 0,25 mm olarak belirlenmiş numunenin orta ekseninin radyal ve teğetsel yönde hareketi tamamen kısıtlanmıştır. Buna ek olarak 1/8'lik simetrinin tanımlanabilmesi için tüm modelin yan yüzeylerinin radyal yönde hareketi sınırlanmıştır. Numunenin kalıp içerisinde ekstrüzyon yönündeki eksenel hareketi zamana bağlı

Görtan ve ark. / Journal of the Faculty of Engineering and Architecture of Gazi University 35:1 (2020) 323-335

Sekil 4. Kayma-Basma testi (sol) ve test edilmiş numune (sağ) (Slip-Compression test (left) and tested sample (right))

değişmektedir. Bu değişken hızlar numunenin üst yüzeyine sınır koşulu olarak tanımlanmıştır. Böylece pres koçunun numuneyi kalıp içerisine bastırması modellenmiştir. Yapılan deneysel çalışmalarda dakikada 5, 15 ve 30 parça imalatına karşılık gelen 3 farklı hız kullanılmıştır. Pres koçunun hareketi deney sırasında kaydedilmiş ve bu hareketlerden hızlar türetilmiştir. Bu hızlar sonlu elemanlar modellerinde aşağıda verilen Eşitlik 3, Eşitlik 4 ve Eşitlik 5 vasıtasıyla tanımlanmıştır:

Şekil 5. Kayma-Basma-Testi sonuçları (Sliding-Compression-Test results)

 $V_5 = -15,7875 t^2 + 22,396 t + 21,752$ (3)

 $V_{15} = -429,54 t^2 + 202,86 t + 65,186$ (4)

 $V_{30} = -3396,9 t^2 + 802,04 t + 130,83$ (5)

Sonlu elemanlar modeli oluşturulurken LS-Prepost (2018) programı içerisinde iş parçası olarak kullanılan C4C (1.0303) çelik ile kalıp malzemesi arasında *"FORMING_SURFACE_TO_SURFACE"* kontak tipi kullanılmış ve iş parçası ile kalıp arasındaki ısı transfer kaysayısı, *h*, statik ve dinamik sürtünme katsayıları bu kontak tipi içerisinde tanımlanmıştır. Analiz sırasında ısı transferinin sadece iş parçası ve kalıp arasında olduğu kabul edilmiştir. Devamında, model içerisinde çözücü tipi olarak birleşik yapısal termal analiz seçilmiş ve tasarlanan modelin mekanik ve termal kısımları aynı anda çözülmüştür. Bu termo-mekanik bağlı analiz sırasında hem iş parçası hem de kalıp için 25°C'lik sıcaklık başlangıç koşulu olarak tanımlanmıştır. İş parçası hem analizlerde hem de denemeler sırasında büyük oranda kalıp tarafından sarıldığı ve teknik olarak kapalı bir hazne içerisinde bulunduğu için iş parçasının alt yüzeyinde herhangi bir ısı transferi olmadığı ve termal olarak izole olduğu kabul edilmiştir. Buna ek olarak kalıp geometrisinin dış yüzeyinden çevreye ısı transferinin olmadığı kabulü yapılmıştır.

Sekil 6. Oluşturulan sonlu elemanlar modeli (Constituted finite element model)

İş parçası olarak kullanılan C4C (1.0303) çeliğinin mekanik özellikleri bir önceki bölümde açıklanan Johnson-Cook malzeme modeli ile tanımlanmıştır. Ayrıca kurulan modelde literatür taramasına uygun olarak deformasyon ve sürtünme enerjisinin %98'inin 1s1 enerjisine dönüştüğü kabulü yapılmıştır [18, 19]. Kalıp malzemesi ise 1s1 ileten rijit yapı kabulü ile modellenmiştir. İş parçası olarak kullanılan C4C (1.0303) çeliğinin mekanik ve fiziksel özellikleri ise Tablo 2'de özetlenmiştir. Kalıp malzemesinin özkütle, özgül 1s1 ve 1s1 iletkenlik değerlerinin iş parçası ile aynı olduğu kabul edilmiştir. Buna ek olarak kalıp ile iş parçası arasındaki temas yüzeysel olarak tanımlanmış ve deneysel çalışmalarla belirlendiği gibi sürtünmenin Coulomb yasası ile belirlendiği ve sürtünme katsayısının da 0,035 olduğu kabul edilmiştir.

4. SONUÇLAR VE TARTIŞMALAR (RESULTS AND DISCUSSIONS)

Soğuk ekstrüzyon ile şekillendirme sırasında iş parçası ile kalıp malzemesi arasındaki ısı transferi katsayısının proses üzerindeki etkisinin incelenmesi amacıyla pres koçu hızı ve transfer katsayısının değiştirildiği 12 adet sonlu elemanlar analizi yapılmıştır. Bu farklı durumlar için iş parçası içerisinde oluşan sıcaklık dağılımı incelenmiştir. Soğuk ekstrüzyon prosesinde iş parçası malzemesindeki yüksek dayanım nedeniyle göreli olarak yüksek kuvvetlere ihtiyaç duyulması sonucunda kalıp içerisinde radyal yönde yüksek gerilmeler oluşmaktadır. Buna ek olarak iş parçası tamamen kalıp ve pres koçu tarafından sarılmaktadır. Bu nedenlerden dolayı kalıp üzerinde bir delik açılarak buradan iş parçası üzerindeki sıcaklıkları ölçmek mümkün olmamaktadır. Sonuç olarak yapılan çalışmada, haddeleme işlerinde olduğu gibi proses kuvvetleri karşılaştırılarak sonlu elemanlar analizlerinin dolaylı olarak doğrulanması kararlaştırılmıştır [25].

Soğuk ekstrüzyon prosesi sonrasında iş parçası ve kalıp kesitlerinde oluşan sıcaklık dağılımları ilk incelenen simülasyon sonucudur. Şekillendirme işleminin bittiği andaki sıcaklık dağılımları Şekil 7'de; iş parçasının deforme edildiği şekillendirme bölgesinin altındaki radyal yöndeki bir eksendeki dağılımlar Şekil 8'de; iş parçası ile kalıp arasındaki temas yüzeyinde oluşan sıcaklıklar ise Şekil 9'da gösterilmiştir.

Metal şekillendirme proseslerinde Eşitlik 1'de gösterildiği gibi iş parçasındaki sıcaklık artışı iki farklı nedenden oluşmaktadır. Bunlardan ilki deformasyon ısısı ikincisi ise sürtünme ısısıdır. Oluşan ısı, büyük oranda iş parçası ile kalıp arasındaki temas sonucu kalıba aktarılır. Sonuç olarak hem iş parçası hem de kalıptaki sıcaklıklar artar. Şekil 7'de incelenen ekstrüzyon prosesinin kesitindeki sıcaklık dağılımında da görüleceği gibi 3 farklı şekillendirme hızı ve 4 farklı ısı transferi katsayısı için de iş parçasındaki en yüksek sıcaklıklar deformasyon bölgesinin bitişinde oluşmaktadır. Gözlemlenen bir diğer durum ise düşük hızlı şekillendirme halinde yüksek sıcaklıkların iş parçasının merkez kısmında; yüksek hızlı şekillendirmede ise yüzeye yakın bölgelerde oluşmasıdır.

Dağılımlardaki bu değişiklik Şekil 8 ve Şekil 9'daki değerlendirme eksenleri üzerindeki sıcaklıklar incelenince daha belirgin olarak ortaya çıkmaktadır. İş parçasının radyal eksenindeki sıcaklıklara bakıldığında düşük hızlarda orta bölgelerde sıcaklıkların en yüksek seviyelere çıktığı ve iş parçası ile kalıp arasındaki temas yüzeyine yaklaşıldığında sıcaklıkların düştüğü gözlemlenmiştir. Bu durum soğuk ekstrüzyonla şekillendirme sırasında oluşan ısı probleminin zamana bağlı karakterinden kaynaklanmaktadır. İncelenen bu ilk durum için şekillendirme yaklaşık 2 saniye sürmektedir. Buna bağlı olarak diğer şekillendirme hızları ile karşılaştırılınca ilk olarak iş parçası malzemesinin kalıp üzerindeki kayma hızı düşmektedir. Böylece sürtünme ısı girdisi azalmaktadır. Ayrıca şekillendirme süresi arttığı için iş parçasından kalıba olan ısı transferi daha yüksek olmaktadır. Hem sürtünme ısısının göreli olarak düşük olması hem de kalıba ısı transferinin fazla olması nedeniyle kalıba yakın bölgelerde merkeze kıyasla daha düşük sıcaklıklar gözlemlenmektedir. Göze çarpan bir diğer durum ise farklı 1sı transferi katsayısı durumlarında oluşan en yüksek sıcaklıklardaki farklardır. Kalıp ile iş parçası arasındaki 1s1 transferi katsavısı 2.000 W/m²K değerinde iken gözlemlenen en yüksek sıcaklık 105,4°C iken bu değer 100.000 W/m²K'lik 1s1 transferi katsay1s1 durumunda 94.0°C'ye kadar düsmektedir. Düsük imalat hızı halinde karsılasılan bir diğer durum ise özellikle yüzeyde gerçeklesen sıcaklık düsüslerinin yüksek transfer katsayıları icin daha belirgin olmasıdır. 2.000 W/m²K'lik ısı transferi katsayısı değerinde iş parçası yüzeyinde gözlemlenen en yüksek sıcaklık 98,9°C iken bu değer 100.000 W/m²K'lik ısı transferi katsayısı durumunda 70,4°C'ye kadar düşmektedir.

0,6 saniyede tamamlanan dakikada 15 parçalık imalat hızına denk gelen ikinci durumda ise sıcaklık dağılımlarında önemli değişmeler gözlemlenmektedir. Bu imalat hızlarında ilk olarak ısı transfer katsayısından bağımsız olarak iş parçası merkezindeki sıcaklıklar 117,1°C'de sabit bulunmaktadır. Buna karşın iş parçasının kalıba temas ettiği noktalarda ısı transfer katsayısındaki değişimlere bağlı olarak sıcaklıklardaki dağılım trendlerinde değişim gözlemlenmektedir. İlk olarak belirtilmelidir ki bu imalat hızında iş parçası ile kalıp arasındaki göreli hareketin hızı arttığı için sürtünme ısısı da artmaktadır. Aynı zamanda imalat kısa sürede tamamlandığı için iş parçasından kalıba olan ısı transferi de kısıtlı olmaktadır. 2.000 W/m²K'lik ısı transferi katsayısı halinde iş parçasının yüzey sıcaklığı 133,2°C ile merkez sıcaklığında fazla iken 100.000 W/m2K'lik 1s1 transferi katsay1s1 durumunda ise bu değer 113,1°C ile iş parçasının diğer bölgelerine göre daha düşüktür.

Tablo 2. İş parçasının mekanik ve fiziksel özellikleri (Mechanical and physical properties of workpiece material)

Özkütle	Kayma Modülü	Elastik Modülü	Poisson	Özgül	Isı	Isıl İletkenlik
(kg/m^3)	(GPa)	(GPa)	Oranı	(J/kg°C)		(W/m°C)
7870	80,80	210	0,3	447		72,69

Şekil 7 Farklı imalat hızları ve farklı ısı transfer katsayılarında (a) 2,000 W/m² K (b) 20,000 W/m²K (c) 50,000 W/m²K (d) 100,000 W/m²K iş parçası üzerinde oluşan sıcaklık dağılımı

(Temperature distribution on the workpiece for different manufacturing speeds and different heat transfer coefficients (a) $2.000 \text{ W/m}^2 \text{ K}$ (b) $20.000 \text{ W/m}^2 \text{ K}$ (c) $50.000 \text{ W/m}^2 \text{ K}$ (d) $100.000 \text{ W/m}^2 \text{ K}$)

Şekil 8. Dakikada (a) 5 parça, (b) 15 parça ve (c) 30 parça imalat hızları ve farklı ısı transfer katsayılarında iş parçasında kritik bir kesitte oluşan sıcaklık dağılımı (Temperature distribution at the critical section on the workpiece for different manufacturing speeds per minute (a) 5 pieces (b) 15 pieces (c) 30 pieces and different heat transfer coefficients)

0,3 saniyede tamamlanan dakikada 30 parçalık imalat hızına denk gelen üçüncü durum, orta hızdaki imalatla benzerlikler göstermektedir. Bu durumda da ısı transfer katsayısından bağımsız olarak iş parçası merkezindeki sıcaklıklar 114,3°C'de sabit bulunmaktadır. Ancak iş parçası yüzeyine yaklaşılınca incelenen her ısı transferi katsayısı için sıcaklıklar artmaktadır. Ancak oluşan sıcaklıklar arasındaki fark sınırlı kalmaktadır. 2.000 W/m²K'lik ısı transferi katsayısı durumunda iş parçası yüzeyinde gözlemlenen en yüksek sıcaklık 161,2°C iken bu değer 100.000 W/m²K'lik ısı transferi katsayısı durumunda 149,0°C olarak gözlemlenmiştir. Ek olarak özellikle Şekil 9 incelendiğinde sıcaklıklardaki değişimlerin sadece Şekil 8'de incelenen kritik kesitte farklılık gösterdiği gözlemlenmiştir. Deformasyon bölgesinin altındaki bu kritik bölge dışında tüm temas yüzeyindeki sıcaklık dağılımı incelenen her hız ve ısı transferi katsayısı için birbirine yakın değerler almaktadır.

Şekil 9. Dakikada a) 5 parça b) 15 parça ve c) 30 parça imalat hızları ve farklı ısı transfer katsayılarında iş parçasında ve kalıp arasındaki yüzeyde oluşan sıcaklık dağılımı – Kesikli çizgiler Şekil 8'de değerlendirme yapılan ekseni göstermektedir (Temperature distribution at the surface between the workpiece and mold for different manufacturing speeds per minute (a) 5 pieces (b) 15 pieces (c) 30 pieces and different heat transfer coefficients – Dotted lines represent the evaluation path in Figure 8)

İncelenen bir diğer konu da imalat hızı ve ısı transferi kuvvetlerindeki katsayısına bağlı olarak proses değişimlerdir. Sıcak haddeleme üzerine daha önce yapılan çalışmaların ana amacı da bu incelemeler olmuştur [25]. Deneyler sırasında kaydedilen ve sonlu elemanı analizi sonucu olan proses kuvveti dağılımları Şekil 10'da gösterilmiştir. Gri sürekli çizgiler ile gösterilen deney sonuçları incelendiğinde normal bir soğuk ekstrüzyon kuvvet dağılımının yapılan incelemelerde de gözlemlendiği belirlenmiştir. Bu proses sırasında iş parçasının kalıp ile ilk teması sırasında sürtünmedeki tutma-bırakma etkisi nedeniyle proses kuvvetleri ilk olarak normalden daha yüksek bir değere çıkar ve sonrasında tutma-bırakma etkisinin geçmesi ile kararlı durum bölgesine geçer. Proses sonrasında da hem pres koçunun hızındaki yavaşlamaya bağlı olarak deformasyon hızındaki azalış hem de iş parçasındaki ısınma nedeniyle kuvvetlerde sınırlı bir düşüş daha gerçekleşir. Yapılan deneylerden elde edilen proses dağılımlarında bu üç farklı bölge de gözlemlenmiştir. Değerlendirmeyi kolaylaştırmak amacıyla kararlı durum bölgesi incelenecektir. Bu bölgede dakikada 5 parçalık imalat hızında 75,5 kN; dakikada 15 parçalık imalat hızında 78 kN ve dakikada 30 parçalık imalat hızında 80 kN'luk kuvvetler oluşmaktadır. İmalat hızlarındaki artışa bağlı olarak proses kuvvetlerinde de artış gözlenmesi beklenen bir durumdur. İmalat hızı arttıkça iş parçası malzemesi daha yüksek deformasyon hızlarında sekillendirilmekte ve bu durumda malzemenin davanımı da artmaktadır. Aynı zamanda iş parçasındaki sıcaklık da artmaktadır. Bu durum genel olarak malzemenin akma davanımını düşürmektedir. Ancak yapılan sonlu elemanlar analizlerinde belirlendiği gibi imalat hızındaki artışa bağlı olarak gerçekleşen sıcaklık artışı iş parçasının kalıp ile temas ettiği bölge ile sınırlı kalmaktadır. Ayrıca ulaşılan en yüksek sıcaklıklar arasındaki farklar da ihmal edilebilecek seviyelerdedir.

Soğuk ekstrüzyon prosesinin yine Şekil 10'da gösterilen sonlu elemanlar analizi sonuçları incelendiği zaman iş parçası ile kalıp arasındaki ısı transferi katsayısının proses kuvvetlerine bir etkisinin olmadığı gözlemlenmiştir. Bu durum ısı transferi katsayısına bağlı olarak iş parçasında oluşan sıcaklık farklarının sadece kısıtlı bir bölgede gerçekleşmesi ve oluşan sıcaklık farkının da önemsiz seviyede olması ile açıklanabilir. Soğuk ekstrüzyon prosesi genel olarak milisaniyeler ile ölçülen kısa sürelerde tamamlandığı için iş parçası ile şekillendirme kalıbı arasındaki ısı transferi katsayısının etkisi sınırlı olmaktadır.

Sonlu elemanlar analizlerinde dikkati çeken bir diğer nokta ise incelenen her durum için ön görülen kuvvetlerin ölçülen değerlerin üzerinde olmasıdır. İncelenen ilk imalat hızı için arada %8'lik bir fark varken dakikada 15 ve 30 parçalık imalat hızlarında bu fark %9 ve %10'a çıkmaktadır. Aradaki sapmaların birden fazla nedenden kaynaklandığı düşünülmektedir. İlk olarak kullanılan malzeme modeli her ne kadar gerçek malzeme özelliklerini yansıtsa da arada %0,707'ye varan farklar bulunmaktadır. İkinci olarak uygulanan simülasyonlarda sürtünme katsayısının sabit olduğu kabul edilmiştir.

Şekil 10. Dakikada a) 5 parça b) 15 parça ve c) 30 parça imalat hızları ile ölçülen ve simülasyonu yapılan proses kuvvetleri

(Process forces for different manufacturing speeds per minute (a) 5 pieces (b) 15 pieces (c) 30 pieces and simulation)

Ancak yapılan KBT'lerde incelenen proses penceresi içerisinde sürtünme kuvvetlerinde az da olsa değişimlerin olacağı belirlenmiştir. Ayrıca iş parçasının modellenmesi sırasında özgül ısı ve ısıl iletkenlik değerleri ile deformasyon ve sürtünme enerjisinin hangi oranda ısıya dönüştüğünü belirleyen katsayılar da literatürden alınmıştır. Literatür değerlerinin gerçeği olabildiğince doğru yansıttığı bilinmekle birlikte kullanılan malzemelerde bu değerlerden ufak sapmalar olabileceği de açıktır. Bahsedilen bu değerlerin hepsindeki hataların düşük oranda olduğu beklenmektedir. Özellikle malzeme mekanik özelliklerinin modellenmesindeki hata %1 değerinin altında belirlenmiştir. Ancak her bir değişkendeki hatalar toplandığında yapılan çalışmada proses kuvvetlerinde görülen sapmalar oluşabilmektedir. Genel olarak metal şekillendirme proseslerinin sonlu elemanlar analizlerinde bu mertebedeki hatalar kabul edilebilir seviyededir [27].

5. SİMGELER (SYMBOLS)

ΔT	: Şekillendirilen bölgedeki sıcaklık değişimi [°K]
α	: Plastik deformasyonun ısıya dönüşüm katsayısı
ε	: Gerinim
$\bar{\sigma}$: İş parçasının eşdeğer akma dayanımı
$\overline{\mathcal{E}}$: Eşdeğer logaritmik gerinim
ρ	: yoğunluk [kg/m³]
С	: İş parçasının özgül ısısı [J/kgK]
β	: Sürtünmenin ısıya dönüşüm katsayısı
μ	: Coulomb sürtünme katsayısı
U	: Kalıp ile iş parçası arasındaki göreli hareketin hız
[mm/s]	
Ρ	: Temas normal gerilmesi [MPa]
A_{temas}	: Temas alanı [mm ²]
t	: Zaman [s]
V	: İş parçasının şekillendirilen kısmının hacmi [mm ³]
h	: İş parçası ile kalıp arasındaki ısı transfer kaysayıs
$[W/m^2K]$	[]
T _{parça}	: İş parçasının sıcaklığı [°K]
T_{kalip}	: Kalıbın sıcaklığı [°K]
Α	: Referans akma dayanımı [MPa]
В	: Pekleşme etkisi [MPa]
п	: Pekleşme üsteli
С	: Gerinme hızı duyarlılığı
Ė	: Gerinme hızı
$\dot{\varepsilon}_0$: Referens gerinme hızı
Т	: Sıcaklık [°K]
T_0	: Oda sıcaklığı [°K]
T_m	: Malzemenin ergime sıcaklığı [°K]
т	: Termal yumuşama katsayısı
6. SON	UÇLAR (CONCLUSIONS)

Sonuçları sunulan bu çalışmada soğuk ileri ekstrüzyon prosesinde iş parçası ile şekillendirme kalıbı arasındaki ısı transfer katsayısının iş parçası içerisindeki sıcaklık dağılımına ve proses kuvvetlerine etkisi sonlu elemanlar analizleri vasıtasıyla incelenmiştir. Elde edilen proses kuvvetleri deneyler ile doğrulanmıştır. Oluşturulan sonlu elemanlar modellerinde kullanılan düşük karbonlu C4C (1.0303) çeliğinin mekanik özellikleri, parametreleri çekme ve basma testleri vasıtasıyla belirlenen Johnson-Cook malzeme modeli vasıtasıyla tanımlanmıştır. Ayrıca iş parçası ile kalıp arasındaki sürtünme katsayısı Kayma-Basma-Testleri vasıtasıyla belirlenmiştir. Oluşturulan modeldeki pres koçu hızları deneylerin yapıldığı presteki hızlar ile aynı olacak şekilde ayarlanmıştır. Isi transferi katsayıları değiştirilerek koşturulan simülasyonlarda aşağıdaki sonuçlar elde edilmiştir:

- Düşük imalat hızlarında iş parçası ile kalıp arasında etkiyen ısı transferi katsayısının, iş parçası malzemesi içerisinde oluşan sıcaklıklara belirgin bir etkisi vardır.
- Düşük imalat hızlarında ısı transferi katsayısı artırıldığı zaman iş parçası içerisindeki sıcaklıklar belirgin bir şekilde düşmektedir. Örneğin, Şekil 8 incelendiğinde dakikada 5 parça için ısı transfer katsayısı, h, 2.000 W/m²K değerinden 100.000 W/m²K değerine çıkartıldığında aynı değerlendirme ekseni üzerindeki son sıcaklığın 86°C'den 66°C'ye düştüğü gözlenmiştir, yani aynı değerlendirme ekseni üzerindeki son sıcaklık %23.2 azalmıştır.
- İmalat hızları artırıldığı zaman şekillendirme süresi düştüğü için 1sı transfer katsayısının parça içerisindeki sıcaklıklara etkisi de azalmaktadır.
- İleri soğuk ekstrüzyon prosesleri genel olarak yüksek hızlarda gerçekleştirildiği için ısı transfer katsayısının sonlu elemanlar analizleri sonuçlarına etkisinin sınırlı olduğu belirlenmiştir.
- Çalışma içerisinde incelenen 3 farklı imalat hızı için de incelenen ısı transfer katsayılarının proses kuvvetlerine etkisinin olmadığı belirlenmiştir. Bunun nedeni bu katsayıların iş parçasının sıcaklığına etkisinin genel olarak küçük bir bölge ile sınırlı kalmasıdır.
- Bundan sonraki çalışmalarda soğuk ekstrüzyon prosesi sırasında iş parçalarında oluşan sıcaklıkların deneyler sırasında ölçülmesi ve bu ölçümlerin sonlu elemanlar analizlerinin termal kısmının da doğrulanmasında kullanılması hedeflenmektedir.

TEŞEKKÜR (ACKNOWLEDGEMENT)

Bu çalışma Hacettepe Üniversitesi BAP Koordinasyon Birimi tarafından FDS-2016-11003 projesi kapsamında desteklenmiştir. Deneylerdeki desteği için Darmstadt Teknik Üniversitesi, İmalat Teknolojileri ve Şekillendirme Makineleri Enstitüsü Direktörü Prof. Dr.-Ing. Dipl.-Wirtsch.-Ing. Peter Groche'ye teşekkür ederiz.

KAYNAKLAR (REFERENCES)

- 1. Müller, C., Jahn, A. ve Groche, P., Lubrication of Cold Forging Tools with Single Layer Lubricants, Proceedings of 46th International Cold Forging Group Plenary Meeting, Paris – Fransa, 15-18 Eylül 2013.
- 2. Klocke, F., Manufacturing Processes 4 Forming, 1. Basım, Springer, Heidelberg, Almanya, 2013.
- **3.** Groche, P., Müller, C. ve Jahn, A., Effects of the Tool Lubrication in Cold Forging, Tribology Letters, 53 (3), 599-605, 2014.
- Groche, P., Zang, S., Kramer, P., Müller, C., Rezanov, V., Influence of a heat treatment prior to cold forging operations on the performance of lubricants, Tribology International, 92, 67-71, 2015.
- İmece, Y., Erdem, O., Tuç, B. "MOS2 ve grafit kaplamaların farklı ortam şartlarında tribolojik özelliklerinin araştırılması, Journal of the Faculty of Engineering and Architecture of Gazi University, 33(3), 995-1012, 2018, https:// doi.or. /10.17341 /gazimmfd. 416401

- Tiernan, P., Hillery, M.T., Draganescu, B., Gheorghe, M., Modelling of cold extrusion with experimental verification, Journal of Materials Processing Technology, 168 (2), 360-366, 2005.
- Dixit, U.S., Joshi, S.N., Davim, J.P., Incorporation of material behavior in modeling of metal forming and machining processes: A review, Materials & Design, 32 (7), 3655-3670, 2011.
- 8. Galan-Lopez, J. Kestens, L.A.I., Optimization of Crystallographic Texture for Sheet-forming Applications Using Taylor-based Models, Metallurgical and Materials Transactions A, 49A, 5745-5762, 2018.
- Perlovich, Y., Isaenkova, M., Dobrokhotov, P., Zhuk, D., Rubanov, A., Modeling of Crystallographic Texture Formation in Hot-rolled Sheets of Ferritic Steel, in 15th International School-Conference "New materials – Materials of innovative energy: development, characterization methods and application", KnE Materials, 199–208, 2017, DOI 10.18502/kms.v4i1.2144.
- 10. Hu, P., Liu, Y., Zhu, Y., Ying, L., Crystal plasticity extended models based on thermal mechanism and damage functions: Application to multiscale modeling of aluminum alloy tensile behavior, International Journal of Plasticity 86, 1-25, 2016.
- **11.** Adzima, F., Balan, T., Manach, P.Y., Bonnet, N., Tabourot, L., Crystal plasticity and phenomenological approaches for the simulation of deformation behavior in thin copper alloy sheets, International Journal of Plasticity 94, 171-191, 2017.
- **12.** Kim, J.H., Lee, M.-G., Kang, J.-H., Oh, C.-S., Barlat, F., Crystal plasticity finite element analysis of ferritic stainless steel for sheet formability prediction, International Journal of Plasticity 93, 26-45, 2017.
- **13.** Jayaseelan, V., Kalaichelvan, K., Vijay ananth, S., Lubrication effect on friction factor of AA6063 in Forward Extrusion Process, Procedia Engineering, 97, 166-171, 2014.
- 14. Farhoumand, A. ve Ebrahimi, R., Experimental investigation and numerical simulation of plastic flow behavior during forward-backward-radial extrusion process, Prog. Nat. Sci.: Materials International, 26 (6), 650-656, 2016.
- **15.** Güley, V., Güzel, A., Jaeger, A., Ben Khalifa, N., Tekkaya, A.E., Misiolek, W.Z., Effect of die design on the welding quality during solid state recycling of AA6060 chips by hot extrusion, Materials Science and Engineering A , 574, 163-175, 2013.
- **16.** Haase, M. ve Tekkaya, A.E., Cold extrusion of hot extruded aluminum chips, Journal of Materials Processing Technology, 217, 356-367, 2015.
- 17. Matsumoto, R., Hayashi, K., Utsunomiya, H., Experimental and numerical analysis of friction in high aspect ratio combined forward-backward extrusion with retreat and advance pulse ram motion on a servo press, Journal of Materials Processing Technology, 214 (4), 936-944, 2014.
- **18.** Hosford, W.F. ve Caddell, R.M., Metal Forming Mechanics and Metallurgy, 4. Basım, Cambridge University Press, New York, A.B.D., 2014.

- 19. Schafstall, H., Verbesserung der Simulationsgenauigkeit ausgewahlter Massivumformverfahren durch eine adaptive Reibwertvorgabe, Schaker Verlag, Aachen, 1999.
- Karwa, R., Heat and Mass Transfer, 1. Basım, Springer Science+Business Media, Singapur, 2017.
- **21.** Malinowski, Z., Lenard, J.G., Davies, M.E., A study of the heat-transfer coefficient as a function of temperature and pressure, Journal of Materials Processing Technology, 41 (2), 125-142, 1994.
- 22. Chang, Y., Tang, X., Zhao, K., Hu, P., Wu, Y., Investigation of the factors influencing the interfacial heat transfer coefficient in hot stamping, Journal of Materials Processing Technology, 228, 25-33, 2016.
- Liu, X., Ji, K., El Fakir, O., Fang, H., Gharbi, M.M., Wang, L., Determination of the interfacial heat transfer coefficient for a hot aluminum stamping process,

Journal of Materials Processing Technology, 247, 158-170, 2017.

- 24. Merklein, M. Wieland, M., Lechner, M., Bruschi, S., Hot stamping of boron steel sheets with tailored properties: A review, Journal of Materials Processing Technology, 228, 11-24, 2016.
- **25.** Pietrzyk, M. ve Lenard, J.G., A Study of Thermal-Mechanical Modeling of Hot Flat Rolling, Journal of Material Shaping Technology, 7 (2), 117-126, 1989.
- **26.** Maenz, T., Ermittlung von Werkstoffdaten zur Berechnung großer plastischer Verformungen mittels Finite-Elemente-Methoden, IMW-Institutsmittelung, 37, 57-64, 2012.
- 27. Görtan, M.O., Forming of Severe Plastic Deformed Wires by Cold Extrusion, Proceedings of 46th International Cold Forging Group Plenary Meeting, Paris – Fransa, 15-18 Eylül 2013.