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Abstract— Autonomous vehicles are tools that make decisions and take decisions by perceiving their environment. 

Today, autonomous vehicles are also used in traffic in some countries. Various types of cameras, laser radars (LIDAR), 

sonar distance sensors, etc. are used for environmental detection in autonomous vehicles. After the environment is 

perceived, the collected data is taught to the vehicle with the help of machine learning methods and the vehicle reaches 

the target by following the traffic rules. At the point of traffic rules, the biggest task belongs to image-based systems. 

However, ideal traffic conditions and environmental conditions are not always provided. It is important to identify 

situations that may present a danger to autonomous vehicles. When the literature is examined, no visual data set or a 

scientific study with dangerous labeling has been found. In this study, it is aimed to design a data collection and labeling 

system to overcome this gap in the literature. In the system designed for the purpose, a system which automatically creates 

a video label from the physiological data of the driver (EEG ve EMG) and the inertia change data during human driving 

is designed. For this reason, firstly, the sensor signals were collected by experiments. In the time and frequency field, 

attributes were extracted by using the non-overlapping sliding window with 0.33 sec length. The input variables in the 

data set were reduced by PCA and classified by DT, RF and K-NN algorithms. According to the preliminary study 

findings, the K-NN method was the most successful algorithm among the algorithms tested with 0.922 accuracy.  
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Otonom Araçların Görsel Eğitimi için EEG, EMG ve IMU 

ile Etiketleme Sistemi 

 

Özet— Otonom araçlar, çevrelerini algılayarak kararlar alan ve bu kararlar ile hareket eden araçlardır. Günümüzde 

otonom araçlar bazı ülkelerde trafikte de kullanılmaktadır. Otonom araçlarda çevre algılama için çeşitli kameralar, lazer 

radarlar (LIDAR), sonar sensörler vb. pek çok sensör kullanılmaktadır. Çevre algılandıktan sonra toplanan veri makine 

öğrenmesi yöntemleri yardımıyla araca öğretilmekte ve araç trafik kurallarına uyarak hedefe ulaşmaktadır. Trafik 

kuralları noktasında en büyük görev görüntü tabanlı sistemlere düşmektedir. Ancak ideal trafik koşulları ve çevre şartları 

her zaman sağlanamamaktadır. Bu nedenle otonom araçlar için tehlike oluşturabilecek durumların tespiti önem arz 

etmektedir. Literatür incelendiğinde tehlikeli durumların etiketli bulunduğu görsel bir veri seti veya ilgili bir bilimsel 

çalışmaya rastlanmamıştır. Bu çalışmada literatürdeki açığı gidermek için bir veri toplama ve etiketleme sistemi 

tasarlanması amaçlanmıştır. Amaç doğrultusunda tasarlanan sistemde insan sürüşü esnasında sürücünün fizyolojik verisi 

(EEG ve EMG) ve eylemsizlik değişim verilerinden otomatik olarak video etiketi oluşturan bir sistem tasarlanmıştır. 

Bunun için öncelikle deneyler ile sensör sinyalleri toplanmıştır. Toplanan sinyallerden 0.33 sn uzunluğunda üst üste 

binmeyen kayan pencere kullanılarak zaman ve frekans alanında öznitelikler çıkarılmıştır. Elde edilen veri setindeki giriş 

değişkenleri Temel Bileşen Analizi (PCA) ile indirgenmiş ve Karar Ağacı (DT), Rastgele Ağaç (RF) ve K En Yakın 

Komşular (K-NN) algoritmaları ile sınıflandırma işlemine tutulmuştur. Bulgulara göre K-NN yönteminin 0.922 

doğrulukla tehlikeli, tehlikesiz durumları ayırt ederek denenen algoritmalar arasında en başarılı algoritma olduğu tespit 

edilmiştir.  
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1. INTRODUCTION  

Autonomous vehicles are tools that take decisions by 

sensing their environment and act with these decisions [1]. 

Many sensors like cameras, laser radars (LIDAR), sonar 

sensors, etc. are used for motion planning according to 

environmental conditions in autonomous vehicles.  [1], [2]. 

After sensing the environment, the collected data is taught 

to the vehicle with the help of artificial learning and the 

vehicle learns to reach the target by following the traffic 

rules. 

Autonomous vehicles learn to comply with the traffic rules 

the most important task falls to visual systems. Traffic 

signs are mostly recognized through the visual object and 

sign recognition. Because systems like LIDAR and GPS 

are very efficient in route planning and avoidance of 

obstacles however traffic signal perception, lane detection 

and infrastructure problems (bump, rail, pit, etc.) cannot be 

recognized very efficiently. Also, ideal traffic conditions 

and environmental conditions cannot be provided all the 

time and all the places. According to researches, most car 

accidents are caused by human factor[4]–[6]. Although 

many research institutions and vehicle manufacturers 

recently have focused on the commercialization of 

autonomous driving systems, the aforementioned 

situations are a major problem in terms of 

commercialization and dissemination.  

In addition, the decision-making mechanisms of 

autonomous instruments in critical situations in terms of 

legal and ethical rules have been examined in various 

studies. [7]–[10]. The ethical decision-making of artificial 

intelligence in its hazard or critical situations is based on 

data taught to artificial intelligence. This process is based 

on the principle of introducing objects to artificial 

intelligence and giving priority to object-position 

relationships [11]–[15]. The priority recognition process 

that causes ethical debates is not simple enough to be 

reduced to an equation. 

When the studies on motion planning, safety, and 

reliability of autonomous vehicles are examined, main 

applications are obstacle avoidance-collision 

avoidance[16], [17], odometry [2], [18], [3], lane tracking 

[19], [20]. Today, many types of research on autonomous 

vehicle development and the data sets obtained as a result 

of these studies are shared as open source[21]–[23]. The 

most comprehensive data set consisting of LIDAR, IMU, 

GPS and camera (single and multiple) navigation data that 

can be used in autonomous vehicles is the KITTI data set 

prepared by Karlsruhe Institute of Technology [24], [25]. 

However, when these studies were examined, a data set 

with dangerous or critical conditions was not available.  

In this study, it is aimed to design a system that makes 

automatic labeling by taking advantage of the 

physiological data of the driver and the physical effects 

during driving in order to fill the gap in the literature.  In 

this context, a system for the simultaneous collection of 

Inertia Measurement Unit (IMU) Sensor, 

Electroencephalography (EEG), Electromyography 

(EMG) and driving video data has been established. Some 

of the videos collected with this system are monitored and 

the situations that may cause danger are marked in the time 

stream. The patterns in which the IMU, EEG and EMG 

signals formed at the marked time intervals occur are 

considered as dangerous state patterns. The patterns were 

converted into a standard labeling model with machine 

learning. With this model, it is aimed to provide 

convenience, labor saving and time-saving by making 

automatic labeling of dangerous situation zones in the 

videos. In the following parts of the article, the materials, 

designed system, experiments, findings, and conclusion are 

presented. 

2. MATERIAL AND METHOD  

System design and connections are given in Figure-1. The 

system basically consists of a computer, IMU, EEG, EMG 

sensors and one camera. The EMG and IMU sensors are 

combined with a microcontroller as shown in Figure-2 and 

connected to a wrist bandage by means of a patch for easy 

wear. The camera records 30 frames per second. 

Simultaneous recording is performed because the signals 

obtained for each frame will be examined. In the signal 

analysis, the sliding window length is 0.033 sec and the 

windows will be processed without overlapping. 

 
Figure 1. System Design  

The IMU sensor is a microelectromechanical device used 

to measure the 3-axis acceleration and the angular rotation 

of a moving object in space. MPU6050 sensor is used as an 

IMU sensor. The MPU6050 sensor is connected to the 

microcontroller via the Inter-Integrated Circuit (I2C) 

connection and 100 samples are taken per second. The 

maximum limit for this sensor was selected as 4G because 

it was observed that even the F1 vehicles, which could be 

considered the fastest road vehicles, reached a maximum 

of three times the gravity [26]. Only 3 axis acceleration 

data of the MPU6050 sensor were used in the study. The 

mean, standard deviation, maximum, minimum and the 
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Root Mean Square (RMS) values of these data were used 

as features. 

 
Figure 2. EMG and IMU Wrist Bandage  

EEG sensors have long been used in the medical field to 

invasively study neural activity in the brain. Conventional 

EEG devices are designed to take measurements from 

multiple points in the 10-20 placement method [27]. The 

EEG device to be used in this study is the MindWave 

Mobile device of Neurosky, which is designed as an easily 

wearable headset. It produces output as a single channel by 

measuring the potential difference between A1 and Fp1 in 

the 10-20 method. The MindWave device can be used to 

measure emotions such as attention, meditation, blinking 

and mental activity[28]. In addition, this device has been 

used to detect brain activity in many areas such as 

education[29], [30], human-machine interaction[31], [32] 

and robotics[33]. In this study, 512 samples are taken from 

the EEG sensor per second. Time and frequency domain 

data of EEG data were used for machine learning. Mean, 

standard deviation, maximum, minimum and RMS values 

were used as features in the time domain. The frequency 

range of the EEG signals is 0-100 Hz. reduction own 

internal totals were used as 5 separate attributes. The 

frequency domain data is automatically supplied by the 

device. However, in order to reduce the number of 

attributes, only the internal totals of main frequency bands 

which are delta (0-4 Hz), theta (4-7 Hz), alpha (8-12 Hz), 

beta (12-30 Hz) and gamma (30-100 Hz) are used as 5 

different features. 

EMG sensors are used to detect electrical field changes 

caused by muscle activity. The EMG sensor to be used in 

the study is the AD8232 module. This sensor generates 

signals about muscle activity with 3-point measurement 

and has been used in many studies [34]–[36]. The signal is 

received from the EMG sensor in the range of 10-1000Hz. 

The mean, standard deviation, maximum, minimum and 

RMS values were used as features in the time domain from 

the EMG sensor. In the frequency domain, only peak 

frequency and amplitude are used as features. 

2.1. Machine Learning  

The data set consists of 15 from the IMU sensor, 10 from 

the EEG sensor and 7 from the EMG sensor with a total of 

32 features which are mentioned in the previous section. 

These variables were reduced to 10 components by 

Principal Component Analysis (PCA)[37]. The method for 

machine learning is shown in Figure-3.  Accordingly, the 

data set with 10 features obtained after PCA was divided 

into 70% training and 30% test data. The training data was 

applied to the Decision Tree (DT), Random Forest (RF) 

and K Nearest Neighbors (K-NN) algorithms and the best 

performance metric based on the classification results were 

chosen as the label generation model. 

 
Figure 3. Machine Learning Flowchart 

The DT algorithm is an algorithm frequently used in 

statistical learning and data mining. DT is an algorithm 

used for both classification and regression in supervised 

learning with different decision rules than simple 

decision[38]. The decision tree forms a tree structure 

classification or regression models. It divides a dataset into 

smaller subgroups and is also incrementally developed. 
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Decision trees can use both categorical and numerical 

data[39]. The DT algorithm has three basic steps. The first 

step is placed as the first (root) node. In the first step, the 

most significant feature is placed as the first (root) node. In 

the second step, the data sets are divided into subsets 

according to this node. The partition operation must be 

made to contain the same value of data for a feature of each 

subset. In the third step, the first and second steps are 

repeated until the last (leaf) nodes in all branches are found.  

The RF algorithm is designed as a forest of many DTs. 

Each decision tree in the forest is formed by selecting the 

sample from the original data set with the bootstrap 

technique and selecting the random number of all variables 

in each decision node. The RF algorithm consists of four 

fundamental steps. First of all, randomly select n features 

from total m features. For the second step, among the n 

features, calculate the node d using the best split point. In 

the third step check whether the number of final (leaf) 

nodes reached to target if it is not, go to step one otherwise 

go to next step. For the last step build forest by repeating 

steps one to three for n (number of trees in the forest) times 

[40]–[42]. 

The K Nearest Neighbors (KNN) algorithm is a learning 

algorithm that works according to the values of the nearest 

k-neighbor. The KNN algorithm is a non-parametric 

method for classification and regression [57]. It was first 

applied to the classification of news articles [58].  When 

performing learning with the KNN algorithm, firstly the 

distance of each data to the other is calculated in the data 

set examined. This length calculation is done with 

Euclidian, Manhattan or Hamming distance function. Then 

for each data mean of nearest K neighbors is calculated.  

The K value is the only hyperparameter of the KNN 

algorithm. When deciding K value, If theK is too low, then 

the borders are going to be flickering and overfit situation 

occurs, whereas if the K value is too high, the separation 

borders going to be smoother and underfit situation occurs. 

The disadvantage of the KNN algorithm is the distance 

calculation process because it increases the processing load 

as the number of data increases. 

There are a number of model evaluation techniques but 

some of the most well-known are percentage split and 

cross-validation. In the evaluation processes, it is essential 

to use a train and a test data set. Percentage split is the most 

basic method. In this method, all the data are split as train 

and test by manually. Training data set are used for the 

learning process and the test data set is used for 

performance evaluation. However, evaluation results may 

not be reliable because of the reasons such as not having 

the same distribution when selecting the train and test data 

in the data set, uneven distribution of outliers and so on. 

Therefore, Cross Validation method has been developed. 

In this method, train and test data are integrated and turned 

into a single data set. All data are divided into K equal-

sized sub sets. The K value which is also called as fold 

number is determined by the user. Then, learning and 

testing are performed for each of the K sub-sets; here one 

of the subsets will be test, and the other will be train. As a 

result, performance metrics are obtained for each sub-set. 

The average of the performance metrics is considered as 

the performance metric of the K-Fold Cross-Validation. K-

Fold Cross Validation method is known to produce more 

reliable results than other methods. However, since 

learning and testing for each subset are performed 

separately for all subsets, the total time spent longer than 

the other methods[43]. 

The main criteria used for performance evaluation and 

model selection are called metrics. Classification 

performance metrics are obtained through Confusion 

Matrix which is shown in Figure-6 as outlined in Table-7. 

The TP value in a two-class Confusion Matrix is the 

number of predictions where the predicted value is 1 (true) 

when the actual value is also 1 (true). The TN value is the 

number of predictions where the predicted value is 0 (false) 

when the actual value is also 0 (false). The FP value is the 

number of predictions where the predicted value is 1 (true) 

when the actual value is 0 (false). The FN value is the 

number of predictions where the predicted value is 0 (false) 

when the actual value is 1 (true)[43], [44]. 

 
Figure 4. Confusion matrix 

 

Table 1. Performance metrics of classification 

Metric Equation 

Accuracy 𝐴 =
𝑇𝑁 + 𝑇𝑃

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Precision 𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall 𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1 Score 𝐹1 =
𝑃 + 𝑅

2
 

 

3. EXPERIMENTS AND RESULTS  

For the data collection, the experimental setup shown in 

Figure-5 was established. Five volunteers were asked to 

drive at least 15 minutes for the experiments and the data 

were recorded. By monitoring video and signals, 

deceleration, caution, danger, traffic light, pedestrian 

crossing, and intersections are labeled with a value of 1 

because they can be an example of dangerous situations. 

Other conditions are labeled 0. As a result, a total of 

147506 square images were obtained. However, it is 

exhausting to mark all of these frames manually. For this 

reason, a total of 300 frames (150 frames as danger and 150 

frames as safe.) were labeled. 210 of these data were used 

for testing and 90 for the test. Labels and corresponding 

attributes are applied to machine learning methods. Test 

classification performance of DT, RF and K-NN 

algorithms are given in Table-2. The confusion matrices of 
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the DT, RF, and K-NN algorithms are shown in Figure-3, 

Figure-4, and Figure-5 respectively. Examples of 

dangerous and safe conditions obtained during the 

experiments are presented in Figure-6 and Figure-7, 

respectively. 

Table 2. Comparison of classification performance  
Algorithm Accuracy Precision Recall F1 

DT 0.844 0.811 0.915 0.860 

RF 0.867 0.863 0.898 0.880 

K-NN 0.922 0.918 0.938 0.927 

 
Figure 5. Experimental setup  

 

Table 3.  Confusion matrix of DT 

 
Prediction 

Total 
1 0 

Actual 
1 43 10 53 

0 4 33 37 

Total 47 43 90 

 

Table 4. Confusion matrix of RF  

 
Prediction 

Total 
1 0 

Actual 
1 44 7 51 

0 5 34 39 

Total 49 41 90 

 

 

Tablo 5.Confusion matrix of K-NN 

 
Prediction 

Total 
1 0 

Actual 
1 45 4 49 

0 3 38 41 

Total 48 42 90 

 
Figure 6. Frame Labeled as Dangerous 

 
Figure 7. Frame labeled as safe 

 

4. CONCLUSION  

The aim of the study is to create an automatic labeling 

system with physiological data to prevent the loss of time 

and labor during manual labeling of dangerous situations 

in videos collected during autonomous vehicle use. In line 

with the objective, a system for the IMU, EEG, EMG, and 

driving video data were established simultaneously. Some 

of the videos collected with this system have been watched 

and potentially dangerous situations are marked in the time 

stream. Patterns in which IMU, EEG and EMG signals 

formed at specified time intervals occur were considered as 

dangerous state patterns. The system designed to fill the 

gap in the literature regarding the determination of 

situations that may be dangerous for autonomous vehicles 

has been implemented successfully. The input variables in 

the data set were reduced by PCA and classified by DT, RF 

and K-NN algorithms. According to the preliminary study 

findings, the K-NN method was the most successful 

algorithm among the algorithms tested with 0.922 

accuracy. With the designed system, it is important to carry 

out the labeling of dangerous situations successfully, as it 
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will also provide infrastructure for applications such as 

summarizing and driving rating systems from driving 

videos. With this model, convenience, labor saving and 

time-saving are provided by automatic labeling of danger 

areas in videos. We will try to reduce the physiological 

sensors used in future studies. 
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