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IN MEMORY OF RISTEARD TIMONEY

Abstract. Spectral disjointness confers a certain mutual independence on
pairs of Banach algebra elements. Necessary and sufficient for full spectral

disjointness of diagonal elements is that the structural idempotent is a holo-
morphic function of a block diagonal matrix, while a partial left-right spec-

tral disjointness is sufficient for membership of the double commutant. For

bounded linear Banach space operators with an invariant subspace, spectral
disjointness for the restriction and quotient operators implies both hyperin-

variance and reducing.

1. BLOK STRUCTURE

Our ”spectral disjointness” applies to pairs of operators defined on different
spaces, and we need a somewhat elaborate algebraic framework for them: accord-
ingly, we look at matrices with block structure.

If G is a ring, with identity I, then [7] an idempotent

Q = Q2 ∈ G

imposes a block structure on G:

G ∼=
(
A M
N B

)
where A and B are rings with identity in their own right, while M and N are

bimodules over A and B; there are also bilinear mappings

(m,n) 7→ m · n (M ×N → A) ; (m,n) 7→ n ·m (M ×N → B)

The structure is laid bare by formal multiplication of 2× 2 matrices. We can take

A = QGQ ; M = QG(I −Q) ; N = (I −Q)GQ ; B = (I −Q)G(I −Q)
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The identity I, the structural idempotent Q and a generic element T ∈ G are now
given by block matrices:

1.5 I =

(
1 0
0 1

)
; Q =

(
1 0
0 0

)
; T =

(
a m
n b

)
.

The commutant of the structural idempotent is the subring of block diagonals,

comm(Q) =

(
A O
O B

)
⊆ G

In the notation of (1.5),

1.7 QT = TQ⇐⇒ T =

(
a 0
0 b

)
.

More generally [13] there are upper and lower block triangles:

QT = QTQ⇐⇒ T =

(
a m
0 b

)
∈
(
A M
O B

)
TQ = QTQ⇐⇒ T =

(
a 0
n b

)
∈
(
A O
N B

)
2. INVERTIBILITY

An element T ∈ G is said to be invertible, written T ∈ G−1, if there is another
element T−1 ∈ G, for which

T−1T = I = TT−1

More generally if
T ′T = I

then we say that T ∈ G−1left is left invertible and T ′ ∈ G−1right is right invertible; we
observe

G−1 = G−1left ∩G
−1
right

that the invertible group is the intersection of the left and right invertible semi-
groups. In general it is quite a complicated business to express the invertibility
or otherwise of an element T ∈ G in terms of the contributing elements a ∈ A,
m ∈ M , n ∈ N and b ∈ B of (1.5); for the block diagonals of (1.7) it is however
rather simple:

2.4

(
a 0
0 b

)
∈ G−1left ⇐⇒ a ∈ A−1left & b ∈ B−1left

and

2.5

(
a 0
0 b

)
∈ G−1right ⇐⇒ a ∈ A−1right & b ∈ B−1right ,

and hence
T ∈ G−1 ⇐⇒ a ∈ A−1 & b ∈ B−1

For upper block triangles [6] something more subtle obtains:

2.7 a ∈ A−1left & b ∈ B−1left =⇒
(
a m
0 b

)
∈ G−1left =⇒ a ∈ A−1left

2.8 a ∈ A−1right & b ∈ B−1right =⇒
(
a m
0 b

)
∈ G−1right =⇒ b ∈ B−1right
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Also

2.9 T ∈ G−1left & a ∈ A−1right =⇒ b ∈ B−1left
and

2.10 T ∈ G−1right & b ∈ B−1left =⇒ a ∈ A−1right .

It follows, that of the three assertions

T ∈ G−1 ; a ∈ A−1 ; b ∈ B−1

any two imply the third.

3. SPECTRUM

If the rings G, A and B are complex linear algebras, then invertibility breeds
spectrum

3.1 σleftG (T ) = {λ ∈ C : T − λI 6∈ G−1left} ,

and

3.2 σrightG (T ) = {λ ∈ C : T − λI 6∈ G−1right} ,

and then

σG(T ) = σleftG (T ) ∪ σrightG (T )

with corresponding notation for σA(a) and σB(b). Thus, for a block diagonal T ∈ G,
we can rewrite (2.4) and (2.5) in the form

σleftG (T ) = σleftA (a) ∪ σleftB (b)

and

σrightG (T ) = σrightA (a) ∪ σrightB (b)

For upper block triangles T ∈ G, (2.7) and (2.8) take the form

σleftA (a) ⊆ σleftG (T ) ⊆ σleftA (a) ∪ σleftB (b)

and

σrightB (b) ⊆ σrightG (T ) ⊆ σrightB (b) ∪ σrightA (a)

Also (2.9) and (2.10) take the form

σleftB (b) ⊆ σleftG (T ) ∪ σrightA (a)

and

σrightA (a) ⊆ σrightG (T ) ∪ σleftB (b)

It follows that, of the three sets

σG(T ) ; σA(a) ; σB(b)

each is a subset of the union of the other two:

σG(T ) ⊆ σA(a) ∪ σB(b) ∪
(
σA(a) ∩ σB(b)

)
We can improve on this: by (2.7)-(2.10) we have ([6] Theorem 3.1, Theorem 3.2)

σA(a) ∪ σB(b) = σG(T ) ∪
(
σrightA (a) ∩ σleftB (b)

)
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4. SPECTRAL DISJOINTNESS

When the linear algebras G, A and B are complex Banach algebras, then the
spectral theory begins to bite. When the structural idempotent Q = Q2 ∈ G is
bounded, then it is necessary and sufficient, for spectral disjointness

4.1 σA(a) ∩ σB(b) = ∅ ,
that

4.2 Q ∈ Holo(T ) :

the structural idempotent is a holomorphic function of the generic T ∈ G of (1.5).
This of course means that there exists a holomorphic function f : U → C defined
on an open neighbourhood of the spectrum σG(T ) = σA(a) ∪ σB(b) for which

Q = f(T ) =
1

2πi

∮
σ(T )

f(z)(zI − T )−1dz

is given by the Cauchy integral formula. Inspecting the contour integral, which
winds +1 times round the spectrum of T , it is sufficient, and obviously necessary,
that Q lies in the closed subalgebra generated by all rational functions of T : this is
generated by the polynomials in T , together with all possible inverses (λI − T )−1.
To see why the disjointness (4.1) gives (4.2), it is sufficient to take the characteristic
function

f = χK with K = σA(a)

Conversely if Q = f(T ) then a = f(1) and b = f(0) and hence, by the spectral
mapping theorem,

σA(a) ∩ σB(b) ⊆ f−1(1) ∩ f−1(0) = ∅
Since the block diagonal T is in the commutant of the idempotent Q, it follows

that generally the idempotent Q is also in the commutant of the block diagonal T .
If however it turns out ([7] Theorem 1;[10]) that the idempotent Q is a holomorphic
function of T , then it follows that the idempotent is in the double commutant of
the block diagonal:

4.6 Q ∈ comm2(T ) .

In finite dimensions, in particular for matrices, it turns out [14] that everything in
the double commutant of T is a polynomial in T , and hence (4.6) and (4.2) are
equivalent. In general Banach algebras, as we shall see, (4.2) is strictly stronger
than (4.6). This whole argument extends [13] to upper and lower block triangles.

We might notice here another “spectral disjointness”: if for example f = p/q is
a rational function, with “relatively prime” polynomials p and q,

f =
p

q
∈ H = C(Ω) with Ω = Df = C \ q−1(0)

then necessary and sufficent for f(T ) to exist is

σH(f) ∩ σG(T ) = ∅
none of the poles q−1(0) of f can be in the spectrum of T . For example

f = z−1 =⇒ σH(f) = {0}
thus

0 6∈ σG(T )⇐⇒ T ∈ G−1
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5. PARTIAL SPECTRAL DISJOINTNESS

In Banach algebras we claim ([7] Theorem 2;[10]) that a weaker “left,right”
spectral disjointness is sufficient for the double commutant property :

5.1 σleftA (a) ∩ σrightB (b) = ∅

and

5.2 σrightA (a) ∩ σleftB (b) = ∅

are together sufficient for (4.6). Specifically we claim that (5.1) implies

La −Rb ∈ B(M)−1left

the generalized inner derivation La − Rb ∈ E = B(M) has a bounded left inverse.
This is the spectral mapping theorem in two variables. With no need of tensor
product theory

σleftE (La, Rb) ⊆ σleftE (La)× σleftE (Rb) ⊆ σleftA (a)× σrightB (b)

and then, since La and Rb commute, by the spectral mapping theorem

0 ∈ σleftE (La −Rb) =⇒ 0 ∈ σleftA (a)− σrightB (b)

and the spectral disjointness (5.1) excludes 0 from the right hand side. If the inner
derivation La−Rb has a bounded left inverse then it is also “bounded below”, and
hence in particular one-to-one: if m ∈M there is implication

am = mb =⇒ m = 0

This is one step on the way to the double commutivity (4.6). If instead (5.2) holds
then instead the generalized derivation Lb − Ra ∈ F = B(N) is left invertible and
hence also one-one. Now for arbitrary (c, u, v, d) ∈ A×M ×N ×B(

a 0
0 b

)(
c u
v d

)
−
(
c u
v d

)(
a 0
0 b

)
=

(
ac− ca au− ub
bv − va bd− db

)
It follows that if S =

(
c u
v d

)
commutes with T =

(
a 0
0 b

)
then c commutes

with a and d commutes with b, while

(La −Rb)u = 0 ∈M and (Lb −Ra)v = 0 ∈ N

The condition (5.1) therefore ensures that S is a lower block triangle, while (5.2)
makes it an upper block triangle, and together they put it in the commutant of Q,
givng the inclusion

comm(T ) ⊆ comm(Q)

which is equivalent to (4.6).
The condition (5.2) also says that La − Rb has a bounded right inverse in E =

B(M) and hence is onto:

M = aM +Mb

which confers a certain splitting ”left,right exactness” [9] on the pair (a, b). Dually
(5.1) says that also

N = bN +Na

Notice also [10] that left,right spectral disjointness makes block triangles “similar”
to their block diagonals.
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6. LINEAR OPERATORS

If the linear algebra G = L(X) is all the linear operators on a linear vector space
X, then an invariant subspace for T ∈ G is a subspace Y ⊆ X for which

6.1 T (Y ) ⊆ Y ⊆ X .

In the purely linear environment, this will confer block structure on the algebra
L(X). For Banach algebra structure we need a Banach space, and to look at
bounded operators T ∈ B(X); evidently we will only be interested in invariant
subspaces Y ⊆ X which are norm closed. It is now not clear that this confers
block structure on G = B(X): it is necessary that the invariant subspace is also
complemented. We can however still mount a similar discussion, courtesy of the
quotient:

X/Y = {[x]Y ≡ x+ Y : x ∈ X}
the set of cosets x+ Y , normed by the distance function:

‖[x]Y ‖ = dist(x, Y ) = inf{‖x− y‖ : y ∈ Y }

Now if (6.1) holds then the operator T ∈ G = L(X) has a restriction

TY ∈ L(Y )

and a quotient

T/Y ∈ L(X/Y )

defined by setting, for each y ∈ Y and each x ∈ X,

TY (y) = Ty ; T/Y ([x]Y ) = [Tx]Y

When T ∈ B(X) is bounded on a Banach space and Y ⊆ X is closed, then both
the restriction and the quotient are also bounded.

As in the block matrix situation the invertibility of T ∈ G = L(X), TY = a ∈
A = L(Y ) and T/Y = b ∈ B = L(X/Y ) are mutually constrained. In the purely
linear environment, necessary and sufficient for two-sided invertibility is that an
operator is both one-one and onto; for bounded operators on Banach space this
continues to be the case, courtesy of the ”Open Mapping Theorem”. To see the
mutual constraints observe [2] the implications

6.7 TY , T/Y one-one =⇒ T one-one =⇒ TY one-one ;

6.8 TY , T/Y onto =⇒ T onto =⇒ T/Y onto ;

6.9 T one-one , TY onto =⇒ T/Y one-one ;

6.10 T onto , T/Y one-one =⇒ TY onto .

To verify these implications, express non singularity properties of TY and T/Y
in terms of the whole space X:

TY one-one⇐⇒ T−1(0) ∩ Y ⊆ O ≡ {0}

TY onto⇐⇒ Y ⊆ T (Y )

T/Y one-one⇐⇒ T−1(Y ) ⊆ Y
T/Y onto⇐⇒ X ⊆ Y + T (X)
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7. SPECTRAL THEORY

The spectrum of T ∈ G is the same as always:

σ(T ) = {λ ∈ C : T − λI 6∈ G−1}
The point spectrum or eigenvalues of T ∈ G is

π(T ) = {λ ∈ C : (T − λI)−1(0) 6= {0}} ⊆ σleft(T )

The defect spectrum is in a sense dual to the point spectrum:

π′(T ) = {λ ∈ C : (T − λI)(X) 6= X} ⊆ σright(T )

Evidently
σ(T ) = π(T ) ∪ π′(T )

this is true both for G = L(X) and for G = B(X). From the implications (6.7)-
(6.10) it follows that

7.5 σ(T ) ⊆ σ(TY ) ∪ σ(T/Y ) ⊆ σ(T ) ∪ (σ(TY ) ∩ σ(T/Y )) .

It follows that disjointness

7.6 σ(TY ) ∩ σ(T/Y ) = ∅
implies equality

σ(T ) = σ(TY ) ∪ σ(T/Y )

We see (7.6), in the Banach space situation, as a significant property of the invariant
subspace T (Y ) ⊆ Y ⊆ X: when it holds we shall describe the subspace Y as
spectrally invariant.

Barnes ([1] Proposition 4) has an improvement (cf (3.11)) on the right hand side
of (7.5): by (6.7)-(6.10)

σ(TY ) ∪ σ(T/Y ) = σ(T ) ∪ (π′(TY ) ∩ π(T/Y ))

8. PARTIALLY HYPERINVARIANT SUBSPACES

When T ∈ G = B(X) is a bounded operator on a Banach space X then we
describe a subspace Y ⊆ X as an “invariant subspace” for T provided it is norm
closed and satisfies the inclusion (6.1). We describe it as hyperinvariant provided

8.1 comm(T )Y ⊆ Y :

this means that there is implication, for S ∈ G,

ST = TS =⇒ S(Y ) ⊆ Y ⊆ X
More generally we shall describe a subspace Y ⊆ X as comm-square invariant for
T ∈ G provided

8.3 comm2(T )Y ⊆ Y .

More generally still we will say that Y is holomorphically invariant for T when

8.4 Holo(T )Y ⊆ Y .

Evidently this is the same as inverse invariant, in the sense that if λ ∈ C there is
implication

T − λI ∈ G−1 =⇒ (T − λI)−1Y ⊆ Y
There is obvious implication

(8.1) =⇒ (8.3) =⇒ (8.4) =⇒ (6.1)
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It turns out [2] that none of these three implications is reversible; the counterexam-
ples can all be taken to be 2× 2 matrices of familiar operators such as the forward
and backward shift. It also turns out that a spectrally invariant subspace Y ⊆ X,
in the sense of (7.6), is hyperinvariant, in the sense (8.1), and also reducing: this
means that it has an invariant complement, in the sense of a closed subspace Z ⊆ X
for which

Y + Z = X , Y ∩ Z = O ≡ {0} , T (Z) ⊆ Z

In general ([2] Example 5) neither of hyperinvariant and reducing implies the other;
also ([2] Example 4) hyperinvariant and reducing do not together imply spectral
invariance (7.6).

9. BLOCK STRUCTURE for OPERATORS

Associated with an invariant subspace T (Y ) ⊆ Y ⊆ X for a linear operator
T ∈ L(X) we have a family of block triangular matrices of operators

TU =

(
TY U
0 T/Y

)
:

(
Y

X/Y

)
→
(

Y
X/Y

)
with

9.2 U ∈ L(X/Y, Y ) ;

in the bottom left hand corner we have (cf [2] (0.3))

9.3 KY TJY = T/YKY JY = KY JY TY = 0 ∈ L(Y,X/Y ) .

If f ∈ Holo(σ(TY ) ∪ σ(T/Y )) then, with

9.4 T ′U =

(
TY TY U − UT/Y
0 T/Y

)
, QU =

(
IY U
0 0/Y

)
,

we have 8

9.5 f(T ′U ) =

(
f(TY ) f(TY )U − Uf(T/Y )

0 f(T/Y )

)
,

and also ([13] Theorem 1) necessary and sufficient for spectral invariance (7.6) is
that

9.6 QU ∈ Holo(T ′U ) .

As in the block diagonal case, the weaker left,right disjointness conditions (5.1)
and (5.2) are ([13] Theorem 3) together sufficient for membership of the double
commutant:

9.7 QU ∈ comm2(T ′U ) .

This turns out ([2] Theorem 7) to be helpful towards a sort of converse [3] to
Lomonosov’s theorem.
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10. PRIMES and EUCLID

We observe [10] a curious analogy between the spectral theory of operators and
the prime factorization of integers: if we write

n = p
ν1(n)
1 p

ν2(n)
2 . . . p

νk(n)
k

for the prime factorization of n ∈ N ⊆ Z, with

p = (p1, p2, p3, . . .) = (2, 3, 5, 7, 11, 13, . . .)

for the usual sequence of prime numbers, then it is tempting to interpret

{pj : j ∈ N, νj(n) 6= 0} = $(n)

as some kind of “spectrum” of n ∈ N. For example

n = 1⇐⇒ $(n) = ∅

n ∈ 1 + N is a prime power if and only if $(n) is a singleton,

#$(n) = 1

and is square free if and only if every prime factor occurs with multiplicity one:

j ∈ N =⇒ νj(n) ≤ 1

If {m,n} ⊆ 1 + N then ([16] Corollary 4.1.3, Theorem 7.2.2)

10.7 $(mn) = $(m) ∪$(n) ,

and, by the Euclidean algorithm, spectral disjointness gives rise to a sort of “ex-
actness”:

$(m) ∩$(n) = ∅ =⇒ 1 ∈ Zm+ nZ

The background motivation, stimulated by Rosenthal-cubed [16], would be to try
and apply linear algebra intuitions to elementary number theory. In another di-
rection, Read [15], using essentially (10.7) as the definition, shows that all Banach
algebra primes “have closed range”.
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