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ABSTRACT. In this paper, we investgate the existence of three positive so-
lutions of a nonlinear fractional differential equations with multi-point and
multi-strip boundary conditions. The existence result is obtained by using the
Leggett-Williams fixed point theorem. An example is also given to illustrate
our main results.

1. INTRODUCTION

Differential equations with fractional derivative have been used to model prob-
lems in many fields of science and technology as the mathematical modeling of sys-
tems, processes in the fields of physics, chemistry, biology, economics, control the-
ory, signal and image processing, biophysics, blood flow phenomena, aerodynamics,
fitting of experimental data, finance, etc. (see[3], 11l 15} 16, 17, 211, 25] 26, 28] [3T], [36]
and the references therein).

Several definitions of fractional derivative have been presented to the litera-
ture, amongst are; Riemann-Liouville, Caputo and Grunwald-Letnikov definitions,
Atangana-Baleanu operator [4], Liouville-Caputo [22], Caputo-Fabrizio [9], the con-
formable derivative [18].

Many authors have studied the existence and the multiplicity of solutions of
fractional boundary value problems by different approaches. We refer the reader
to ([2, B, [6, 10, 12]). Furthmore, the research in numerical approximations and
analytical techniques for the solution of different boundary value problems for time-
fractional equation has attracted by (28], 34} B35l [37]).

Fractional-order multipoint or integral boundary value problems constitute a
very interesting and important class of problems. They have been research topics
from several authors ([11 [7, 3], 23] 29, B0}, 32 B33]). It is worth mentioning that,
in 2012, Cabada and Wang [8] investigate the existence of positive solutions of the
following nonlinear fractional differential equations with integral boundary value
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conditions:

{CD%N®+fwu@D 0, 0<t<1, (1.1)

u(0)=u"(0)=0, wu(l) :)\folu s)ds
where 2 < @ < 3,0 < XA < 2, “D® is the Caputo fractional derivative and f :
[0,1] x [0,00) — [0, 00) by using the Guo—Krasnoselskii fixed point theorem.
In 2014, Zhou and Jiang [38] studied the existence of positive solutions of the
following problem:

{ Dg u(t)+ f (¢, u())zo 0<t<l,
/' (0) = Bu () = 0, ' (1) + 37" o (i) = 0,
where « is a real number with 1 <a<2,0<5<1,0<v,<1,i=1,2,....,m—3,
0<E<m <2 <...<nm-3 <1, and Df, denotes the Caputo’s derlvatlve They
used the fixed point index theory and Kreln Rutman theorem.

In 2016, Guo et al.[T4] investigate the existence of at least three positive solutions
to the problem

{CDMuU+f@w@%w@D:Q 0<t<l,
u(0) =u"(0) =0, v (1) =372, nu;,
where 2 < a<3,7, >20,0<§ <&... <&-1 < <...<1(j=12,..) and
“Dg ', is the standard Caputo derivative. They applying the Avery-Peterson’s fixed
point theorem to obtain the existence of multiple positive solutions .

Motivated and inspired by the works mentioned above, we are concerned with
the existence of multiple positive solutions of the following nonlinear fractional
differential equations with multi-stip conditions

CDO+U()+h(t)f(tau(t)):07 tE(O,].),
u®(0)=0,i=2,.,n—1, (1.3)
' (0) = I b (), w (1) = 075 ay [

where CDS‘ ‘. is the Caputo fractional derivatlves, n—1 < a <n,n > 3is an integer.
Using the Leggett-Williams fixed point theorem, we provide sufficient conditions for
the existence of multiple (at least three) positive solutions for the above boundary
value problems.

In the remainder, we assume the following conditions:

(H )0—770<771<T]2 <’f}m2<1,aiZO,biZO,(iZl,...,m—Q),
0<>m 2h <1land 0 < S 2 a; (n; —ni—1) < 1, where m > 2 is an integer;

(1.2)

(Hz) f:]0,1] x [0,+00) — [0, +00) is continuous;

(H3) h:(0,1) = [0,400) is continuous, and h (t) does not identically vanish on
any subinterval of (0,1). Furthermore h satisfies 0 < fo t) dt < +oo.

2. PRELIMINARIES

For the reader’s convenience, we present some necessary definitions and relations
for fractional-order derivatives and integrals, which can be found in [22] 28].
Definition 2.1. The Riemann-Liouville fractional integral of order a > 0 for a
function f: (0,400) = R is defined as

1

B0 = 5 / (t— 9)° f (s) ds,
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provided the right side is pointwise defined on (0,400) where T'(-) is the Gamma
function.

Definition 2.2. For a function f : [0,+00) — R, the Caputo derivative of frac-
tional order « is defined as

1 ¢ a1
w1,
where [a] denotes the integer part of the real number «, provided the right side is

pointwise defined on (0, +00).

Lemma 2.1. Let a« > 0 and u € ACN [0,1]. Then the fractional differential
equation

Df(t) =

“Du(t) =0,
has a unique solution
w(t)=co+et+et’ +..+enatV g €eER,i=1,2,...,N,
where N is the smallest integer greater than or equal to «.
Remark 1. The following property (Dirichlet’s formula) of the fractional calculus
is well known ([26] p.57)
I"IFy (t) = IV Py (t), t€(0,1], y€ L(0,1), v+u>1,
which has the form
t s t
/0 (t—s)"" (/0 (s—)" Ly (r) dT) ds = W/O (t—s)" "1y (s)ds

Definition 2.3. Let E be a real Banach space. A nonempty convex closed set
K C FE is said to be a cone provided that

(i) au € K for allu € K and all a > 0, and

(ii) u,—u € K implies u = 0.

Definition 2.4. The map « is defined as a nonnegative continuous concave func-
tional on a cone K of a real Banach space E provided that o : K — [0,+00) is
continuous and

atz+ (1 -ty >ta(z)+ (1 —1t)a(y)
forallz,ye K and 0 <t < 1.

Let 0 < a < b be given and let o be a nonnegative continuous concave functional
on K. Define the convex sets P, and P (a,a,b) by

P.={zeK||z| <r}

and

P(a,a,b) = {zr € K |a<ale),|e] <b}.

Theorem 2.2. [19] Let A : P. — P. be a completely continuous operator and let
« be a nonnegative continuous concave functional on K such that « (x) < ||z|| for
all x € P,.. Suppose there exist 0 < a < b < d < ¢ such that
(Cy) {z € P(a,b,d) | a(x) > b} #0 and o (Ax) > a for x € P (a, b,d),
(Ca) ||Az|| < a for ||z|| < a, and

(C3) a(Ax) > b for x € P (a,b,c) with || Ax| > d.
Then A has at least three fized points x1, o and x3 in P, such that



TRIPLE POSITIVE SOLUTIONS FOR A FRACTIONAL BVP 99

lz1ll < a, b < a(ze), and ||z3|| > a with a (z3) < b.
Lemma 2.3. Fory € C[0,1], the following boundary value problem

D u(t) +y(t) =0, te(0,1),
u(0)=0,i=2,..,n—1, (2.1)
w (0) = 0 b’ (), w(1) = 0 P as [ u(s)ds

N1

has the unique solution

1 ! a—1
u(t) =co+ et — F(oz)/o (t—s)"""y(s)ds, (2.2)

fr=9ly(ds S Ra [ =9 = f (e —9)] y (s) ds

(127 e =) T () (120 e = i) T+ 1)
(1- S =) S ) (- )" 2y (5) ds
(1= 27 e = min)) (1= 0% 0) Do — 1)
by (= 5)* "y (s)ds
(1-xrPe)r-1

+

)

C1 = —

(2.3)

Proof. In view of Definition 2.I] and Lemma [2.I} it is clear that equation [2.1] is
equivalent to the integral form

1 K a—1

u(t) = —=—— t—s s)ds+co+ it + ...+ cpqt" !
0 =77 | 4= @ ds et ot
where cg, c1, ...,cp,—1 € R are arbitrary constants.

Next, using the initial conditions: u() (0) =0, i =2,....,n — 1, we get

co=c3=..=cp_1=0,
that is,
u(t) = ! /t (t—9)* 'y (s)ds + co + cat. (2.4)
I'() Jo
So we get
u' (t) = 1/t (t—s)* "2y (s)ds +c. (2.5)
I'(ae—1) Jo

By « (0) = 32777 b/ (1;), we obtain

Z?;Q bi [y (mi— $)* 2y (s) ds.
(1 -y bi) [(a—1)

Cl1 = —
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Integrating the equation 2:4] from n;_1 to n; for 0 <m—y <m; <1, i=1,...,m —2
and using Remark [1] we get

i 1 i s 1 i i
/ u(t)dt = 77/ </ (577—)0‘* y (1) d’r) derCO/ derCl/ sds
Ni—1 r (a) Ni—1 0 i

i—1 MNi—1

[ (e ([ re)]
+Co/nmld5+cl/i18ds

7 i

1 i 1 Ni—1 o
:_F(O(—Fl)/ (77_8> y(S)dS-Fm/O (’177;71—8) y(s)ds

)

+co (i —ni-1) + 01%
Then, by the condition u (1) = 37" a; 7;7:4 u (s) ds, we get
1 1 o1 m=—2 i
F(a)/o (1—13s) y(s)ds+co+c =— F(a—i—l ;%/0 y(s)ds
m—2 _—
F(a+1 az/(; (Mi-1—5)"y (s)ds

+ co Z a; (i —ni—1) +a Z ai%
i=1 i=1

Which implies
Jo L=9)y(s)ds S Pa [y (=) = J T (i1 — 5) ]y (s) ds
(1= 202 a0 = mie) ) T () @—Zﬁf%m—mqﬂFw+U
(1- Xm0l ) S0 b i = )y () ds
(1-Zr e - ) (1= b) Tla—1)

Co —

+

O

Remark 2. i) Assume that (Hy) hold. Then, for y € C([0,1]) and y(t) > 0 by
and (2-6), we obtain v’ (t) <0 and

1 ¢
") = - t—s)*? d 0. 2.7
W)= gy | =9 s < (27)
it) If we assume that (Hy) hold, we have
m—2 m—2
0< Z az i 772 1 < a’L — Ni— 1 <1.
i=1 i=1

Lemma 2.4. Let (Hy) satisfied. If y(t) € C0,1] satisfying y (t) > 0, then the
function u of satisfies u (t) > 0.
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Proof. From Remark [2| u (¢) is concave and non-increasing on [0, 1]. Then

[nax u (t) =u(0), Orgtigl u(t) =u(l). (2.8)

From the concavity of u , we have

wlm) _wlm) o ulnen) | ulm) o w() 29)
m 72 i1 Mi 1
and
Ni 1
[ s = 5 =) () +u i), (210)

where 2 (7; —m;—1) (u (1;) +u (n;—1)) is the area of the trapezoid under the curve
u (t) from t = 77i—1 tot = for i = 1,2,...,m — 2. Multiplying both sides of
the inequality with a; and combining conditions (2.9), (2.10) and u (1) =

S azfm ds we get
1 m—2
u(l) > 5 Zl a; (i — mi—1) (w (n;) +u(Ni-1))

3
|
N

vV
DN | =
i

ai (i —ni—1) (i (1) +ni—1u (1))

3
N

= a; (7712 *771‘2—1)@6(1)'
1

1
2

i

If u(1l) <0, we get
Z _nz 1

This contradicts the fact that y ;- 11 ai (n? —n?_;) < 1. Thenu (1) > 0. Therefore,
we get u (t) > 0 for ¢ € [0,1]. The proof is complete. O

Lemma 2.5. Let (Hy) hold. Ify € C([0,1]) and y > 0, then the unique solution
u of the problem satisfies

min w (t) > v||ull,
min (1) > 7]

where

m—2

N = Zi:l ai (i —ni—1) (2 =i —ni—1)

- m—2 .
2_21 1 Qg (771 _771 1)

Proof. From Remark [2| u is concave and nonincreasing on [0, 1]. This implies that

(2.11)

Jul =@, i ) =)
and
u (@) <)+ L0 g )

w(0)(1—t) <u(1)(1—t) +u(t)—u(l). (2.12)
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By integrating the both sides of the inequality (2.12) from ¢ = n;_; to t = n;, we
have

u(O)/m (l—t)dtgu(l)/m (1—t)dt—|—/m u(t)dt—u(l)/m dt

i—1 Mi—1 i—1 MNi—1

and by the condition u (1) = 327" a; f:il u (s) ds, we get

1- 227;_12 a; (M — ni—1)
St as (= miea =5 (2 —n2.y))

u(0) <wu(l)

1+

2 S 2 4, (02 — n?
S U(l) [ — Zz:l a ( 7 771—1) ] )
Yo Cai (i —mim1) (2= (i +mie1))
Thus )
i (i —mic1) (2 —mi —mi
min U(t) > Zz:l a (nm_g 1)( n Ui 1)U(0)
te(0.1] 2-> 1 (7722 - 771‘2—1)

O

Let E = C([0,1]) be a Banach space of all continuous real functions on [0, 1]
equipped with the norm ||u|| = max,¢[o,1) [u (t)| for u € E, and define

K = {u € E | uis nonnegative concave and nonincreasing on [0,1]}.

It is obvious that K is a cone.
Define the operator A : E — E as follows:

e (=9 h(s) f (s,uls)) ds
(1-2r e =) T (@)

X [ =) = T (i1 = )] B (s) f (s, u(s)) ds
(1= @ =) ) D+ 1)

(1- S ) S [ = ) 2R (s) £ (5, (s) ds

(1= e —mi) (1= S5 0) Ta - 1)

CSEb S = 9) 0 (s) [ (s,u(s)) ds

(1-2m0) T a-1)

=8 h(s) £ (s,u(s)) ds
I () '

Au (t)

+

(2.13)

Then w is a solution of the boundary value problem (|1.3)) if and only if it is a fixed
point of the operator A.

Lemma 2.6. Assume that (Hy) — (Hs) hold. Then the operator A : E — FE is
completely continuous.

Proof. Let v € K, then Au (t) > 0, (Au)' (t) < 0 and (Au)"” () < 0,0 <t < 1,
consequently, A : K — K. In view of continuity of h (t) and f (¢,u), we get A is
continuous.
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Take N C K be bounded, that is, there exists a positive constant [ for any u € N,

such that [Jul| <. Let L = max¢(o,1),uefo,y) f (t,u) + 1, then, for any u € N, we
have

Jo (1= R (s) f (s,u(s))ds
(1 - 221_12 ai (n; — 771’—1)) [ (a)
(1= S0 ) S b i = )" ) £ (s, (5)) ds

Au (t) <

" (1= e —mi) (1= 205 0) Ta - 1)
-1 fol h(s)ds
T (S e - ) D)

L (1o E et ) ST [ b (5 ds

(1= e —mien)) (1= X070 ) D@ = 1)

Hence, A (N) is uniformly bounded. Now, we will prove that A (N) is equicontin-
uous. For each u € N, 0 <1 <7y <1, we have

|(Au) (r2) — (Au) (71)]

T2+ a)

SO S = 9) () f (ssu(s))ds [ (ra—s)" T h(s) f (s u(s)) ds
(1= ) Ta—1) I'(

T —

_22712 b; fo “(ni—s) 2y s) f(s,u(s))ds foﬁ (11 — s)o‘f1 h(s) f(s,u(s))ds
(

SR

(1-20) Ta—1) I (a)

Xy = 5) T h(s) £ (s, u(s)) ds

- (1-2m%0) M-
o (2= 5)" " h(s) f(s,uls))ds [ (r =) h(s) f (s,u(s))ds

I' () I (a)
_ Sb " (= 5)* T h(s) f (s u(s)) ds
B (1= b) T (a1

T2 *7'1)

+

(r2 — 1)
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S [ =97 = =9 0 (9) £ sy (s) ds
.

I'(a)
+_L?wg—$W*h@xﬂsu@»ds
[ (a)
7LZ b70‘ fOL (s)d (2_7_1)

(1 — oy bi) I(a—1)

Lfon h(s)ds ( a-1 a-1

T (a) Ty =T ) + () (r9 —711)%"
i 1 bing ~* Jo b foT1 h(s)ds 1 41
L To — T T. —T
) @Zif@an< T )

'«

Therefore, A (N) is equicontinuous. Applying the Arzela -Ascoli theorem, we con-
clude that A is a completely continuous operator. The proof is completed. [l

" h(s)ds
+7f71 ( )) (7'2 - Tl)a_1> .

3. MAIN RESULTS

In this section, we discuss the existence of triple positive solutions of the Problem
(1.3). We define the nonnegative continuous concave functional on K by

a(u) = Join u (t).

It is obvious that, for each v € K, a(u) < |ju||. For convenience, we use the
following notation. Let

. Joh(s) ds S a7 A s
" @—Zﬁf@%—mqﬂFMY+@—Zﬁfww—m4DFW+D
(1 2 a%) S b2 [T R (s) ds
(1 — > ay (s — 771'—1)) (1 -y bi) [(a— 1)’
Jo M=9)"""h(s)ds S Pai[f) (0= 9)" = J) T (i1 — 9)7] h(s)ds
(1 - a (i - 771'71)) [ () (1 - ag (i - 771'71)) ['(a+1)
(1= S0 @ ) S b [ (= ) h(s) ds
(1-2r2 et —mn) (1= SE7b) Ta—1)
b S =) P h(s)ds  fy (1—5)*"h(s) ds
(1-250) T@—-1) [ ()

Theorem 3.1. Suppose that the conditions (Hy) — (H3) hold. In addition, assume
there exist non-negative numbers a, b and ¢ such that 0 < a < b < ye¢, and f (t,u)
satisfies the following growth conditions:

+

m =

+
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(H4) f(tau) < ﬁ: fO?” all (t7u) € [07 1} X [O,C],
(H5) f(tﬂu) S %) fOT all (t7u) € [07 1} X [O,CL],
(Ho) f(t,u)> L, for all (t,u) € [0,1] x [b, ]
Then the boundary value problems have at least three positive solutions uy, us

and us such that
luil] < a, b < a(uz), ||usll > a, with a (ug) < b.

Proof. From Lemma . the operator A : K — K is completely continuous. Now,
we prove that A : P. — P.. For u € P., we have || Au|| = Au (0). Then

Au(0) = Jo =) h(s) f(s,u(s))ds
(1- ZTEQ as (s m_o) (o)
S [ =9 = J (o1 = )] () S (s, u(s)) ds
(1 — > ag (i - 77i—1)> L(a+1)
(1= 207 0= ) SO0 b ) = )" 7 (5) F (s, (5)) ds
(1= S0 as =) (1= S22 0) P 1)
JohG) fsuDds N am® Jg" R () f (5, u(s)ds
T (1S a - )T (1- 2;’;% (s = i) ) T (e + 1)
(1= S0 ) SO b2 [ R (s) f (5, (s)) ds
(1= et =) (1- 20 bz-) D= 1)
< fol h(s)ds
M (1 - Z 712 a; (i — 771‘71)) I'(a)
Zl 1 am 1fo1 "h(s
(S ngHUE m-_o) P(a+1)
(1= 207 0 ) S b2 7
(1= 0 (= mie) (1 Py bi) Pla-1)

+

+

+

+

<ec.

Thus, ||Aul| < c¢. Consequently, A : P. — P..
In a completely analogous manner, the condition (Hs) implies that the condition
(C3) of Theorem [2.2] is satisfied for A.

Now, we show that condition (C4) of Theorem [2.2|is satisfied. Since « (%) = %
b, then {u € P(a7b, %) | a(u) > b} £0. fueP (a,b,g), then b < u(s) <
s €[0,1].

V

b
37



106 HABIB DJOURDEM, AND SLIMANE BENAICHA

By condition (Hg), we get
o ((Au) (1)) = min ((4u) (1)) = (Au) (1)
Sy (=9 h(s) £ (5, u(s)) ds
(1= e = i) T ()
X a [y =) = f T i — ) R (s) £ (s,u(s)) ds
(1= X ai (= o) T+ 1)
(1= 7 @ g ) S0 b i (= )2 B (s) f (5, (s)) d
O—ZE%NWWHD@—ZZ%ONwﬁ)
Xy = 9) T h(s) f(s,u(s)ds [y (1=9)" " h(s) f (s,u(s)) ds
(1-2m0) Ta—1) I (@)

b ( Sha- (s) ds
om (1 - E?:LQ ai (n; — 771’—1)) IN(Y
B i 20 [fol n; —s)" — Om_l (i1 — s)a] h(s)ds
(1 — Y ai (s - ﬁi—1)) ['(a+1)
(1- X7 0 ) S b i = )" R (s) ds
(1= asm—mien) (1- 2070 D@ —1)
by =) P h(s)ds [y (1= 5)" " h(s)ds
(1 - Z{fjbi) T(a—1) I (a)

+

>b.

Therefore, condition (C;) of Theorem is satisfied.
For the condition (C3) of the Theorem we can verify it easily under our
assumptions using Lemma [2.5] Here

: b
a(Au) = min (Au) (t) > 'y; =b

0<t<1
as long as if u € P («, b, c), with ||Au|| > %
Therefore, the condition (C3) of Theorem is satisfied. By Theorem there

exist three positive solutions w1, us and us such that ||u1|| < a, b < o (us (t)) and
lus|| > a, with « (us (¢)) < b. O

4. EXAMPLE
Consider the boundary value problem
Dyfu(t) + (1—t) f (tu(t) =0, t€(0,1),
u” (0) =0, 11
u(O)—O1u(04)+002u(06)+005u(08) (4.1)
()—()OlfO ds+002f04 d5+04f s)ds
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where
e-%(%+3+1n(4u+3)),ogtgl,ogugza,
yU) = e 8 (2 +Inlb+ u—3),0<t<1, 3<u< ,
ftu) = (3 415425V —3), 0<t <1, 3<u<150
e™% (3 + 115+ 25VT47 + u — 150), 0 <t < 1, 3 < u < 150.

To show the problem has at least three positive solutions, we apply Theorem
B with « = 2.5, m =5, by = 0.1, by = 0.02, by = 0.05, a; = 0.01, az = 0.02,
asz = 04, m = 04, M2 = 06, n3 = 0.8.

Then, by direct calculations, we can obtain that

3 3 3
1-) b =083, 1-Y a;(ni—ni—1) =0912, 1— > a; (1] —n};) = 0.9412,
=1 i=1 =1

v =0.0310242 , M = 0.495731 ,m = 0.16194.
If we choose a = 3, b = 4 and ¢ = 160, we obtain

() < 312.166719 < ﬁ ~ 3227557, 0 <t <1, 0 < u < 160,
£ (t,u) < 5.896 < % ~6.052,0<t<1,0<u<3,

b
f(t,u) > 27.2652274 > — =~ 24.7005 0 < ¢t <1, 4 < u < 128.931608.
m

Thus by Theorem the problem (|1.3) has at least three positive solutions w1, us
and ug satisfying

luil]l <3, 4 <a(uz(t)), and ||lus|| > 3, with a (us (1)) < 4.

5. CONCLUSION

In this paper, some results on the existence and multiplicity of solutions for
a nonlinear higher order fractional differential equation involving the left Caputo
fractional derivative with both multi-point and multi-strip boundary conditions
are obtained. Under sufficient conditions, we have applied the Leggett-Williams
fixed point theorem to obtain the existence of at least three positive solutions. An
example is given to show the applicability of our results.

Acknowledgments. The author sincerely thanks the editor and reviewers for their
valuable suggestions and useful comments to improve the manuscript.
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