

Conference Proceeding of 2th International Conference on Mathematical Advences and Applications (ICOMAA-2019).

A Convergence Result for a Three-Step Iterative Algorithm

ISSN: 2651-544X

http://dergipark.gov.tr/cpost

Harun Polat¹, Faik Gürsoy^{2,*}

- ¹ Department of Mathematics, Faculty of Science and Arts, Muş Alparslan University, Muş, Turkey, ORCID:0000-0003-3955-9197
- Department of Mathematics, Faculty of Science and Arts, Adiyaman University, Adiyaman, Turkey, ORCID:0000-0002-7118-9088

Abstract: We prove under some mild conditions that iterative algorithm (1.7) of [1] converges strongly to the fixed point of a member in the class of weak contraction mappings.

Keywords: Fixed point, Iterative algorithm, Strong convergence.

1 Introduction

Let C be a nonempty closed convex subset of a Banach space X and $T:C\to C$ a mapping. An element x in C is said to be a fixed point of T if Tx=x.

Iterative approximation of fixed points has become a useful tool for solving many problems which arise in various branches of science and engineering.

Recently, Karakaya et al. [1] introduced a three-step iterative algorithm as follows:

$$\begin{cases}
x_1 \in C, \\
x_{n+1} = Ty_n, \\
y_n = (1 - \alpha_n) z_n + \alpha_n Tz_n, \\
z_n = Tx_n, n \in \mathbb{N},
\end{cases} \tag{1}$$

where $\{\alpha_n\}_{n=1}^{\infty}$ is a real sequence in [0,1].

Definition 1. ([2]) Let (M,d) be a metric space. A mapping $T:M\to M$ is said to be weak-contraction if there exist $\delta\in[0,1)$ and $L\geq0$ such that

$$d\left(Tx,Ty\right)\leq\delta d\left(x,y\right)+Ld\left(y,Tx\right)$$
, for all $x,y\in M$.

Theorem 1. ([2]) Let (M,d) be a complete metric space and $T:M\to M$ a weak-contraction for which there exist $\delta\in[0,1)$ and $L_1\geq 0$ such that

$$d(Tx,Ty) \le \delta d(x,y) + L_1 d(x,Tx), \text{ for all } x,y \in M.$$
(2)

Then, T has a unique fixed point.

Karakaya et al. [1] showed that iterative algorithm (1) strongly converges to the fixed points of weak-contraction mappings. More precisely, they proved the following result.

Theorem 2. ([1]) Let C be a nonempty closed convex subset of a Banach space X and $T: C \to C$ a weak-contraction satisfying condition (2). Let $\{x_n\}_{n=1}^{\infty}$ be an iterative sequence generated by (1) with real sequence $\{\alpha_n\}_{n=1}^{\infty} \subseteq [0,1]$ satisfying $\sum_{n=1}^{\infty} \alpha_n = \infty$. Then, $\{x_n\}_{n=1}^{\infty}$ converges to a unique fixed point p^* of T.

2 Main result

Theorem 3. Let C be a nonempty closed convex subset of a Banach space X and $T:C\to C$ with $p^*=Tp^*$ a weak-contraction satisfying condition (2). Let $\{x_n\}_{n=1}^{\infty}$ be an iterative sequence generated by (1) with real sequence $\{\alpha_n\}_{n=1}^{\infty}\subseteq [0,1]$. Then, the sequence $\{x_n\}_{n=1}^{\infty}$ converges to a unique fixed point p^* of T.

20 © CPOST 2019

^{*} Corresponding Author E-mail: faikgursoy02@hotmail.com

Proof: The following inequality was obtained in ([1], Theorem 2.1):

$$||x_{n+1} - p^*|| \le ||x_1 - p^*|| \delta^{2n} \prod_{i=1}^n [1 - \alpha_i (1 - \delta)], \text{ for all } n \in \mathbb{N}.$$
 (3)

As $\delta \in [0,1)$ and $\{\alpha_n\}_{n=1}^{\infty} \subseteq [0,1]$ implies $1-\alpha_n \, (1-\delta) < 1$ for all $n \in \mathbb{N}$, so inequality (3) becomes

$$||x_{n+1} - p^*|| \le \delta^{2n} ||x_1 - p^*||, \text{ for all } n \in \mathbb{N}.$$
 (4)

Taking limit on both sides of inequality (4), we have $\lim_{n\to\infty} \|x_n - p^*\| = 0$.

3 Conclusion

Theorem 2 was proven under the condition $\sum_{n=1}^{\infty} \alpha_n = \infty$. In Theorem 3, we remove this condition. Therefore, Theorem 3 is an improvement of Theorem 2.

4 References

- 1] V. Karakaya, Y. Atalan, K. Doğan, N. El Houda Bouzara, Some fixed point results for a new three steps iteration process in Banach spaces, Fixed Point Theory, 18 (2017), 625-640.
- 2] V. Berinde, On the approximation of fixed points of weak contractive mappings, Carpathian J. Math., 19 (2003), 7-22.

© CPOST 2019 21