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Abstract: In the present paper, the Bitsadze-Samarskii type nonlocal boundary value problem with the integral condition for an
abstract elliptic differential equation in a Hilbert space is studied. Theorem on well-posedness of this problem in Holder spaces
with a weight is established. The nonlocal boundary value problem for multidimensional elliptic equations with the Dirichlet condi-
tion is studied. The first order of accuracy difference scheme for the approximate solution of the Bitsadze-Samarskii type nonlocal
boundary value problem is investigated. Theorem on well-posedness of this difference scheme in difference analogue of Hélder
spaces with a weight is established.
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1 Introduction

The simply nonlocal boundary value problem was presented and investigated for the first time by A.V. Bitsadze and A.A. Samarskii in the paper
[1] . Further in papers [2—13], the Bitsadze-Samarskii type nonlocal boundary value problem and its generalizations for various differential and
difference equations of elliptic equations were investigated by many scientists. Coercivity inequalities in Holder norms with a weight for the
solutions of an abstract differential equation of elliptic type were established for the first Sobolevskii in the paper [12]. Further, in papers [14—
25] coercive inequalities in Holder norms with a weight were obtained for the solutions of various local and nonlocal boundary-value problems
for differential and difference equations of elliptic type. In the present paper, we consider the Bitsadze-Samarskii type nonlocal boundary value
problem with the integral condition

— LU 4 Au(t) = f(1), 0 <t <1,

1
u(0) = ¢, u(l) = {P(A)U(A)d)\ +v

1

for the differential equation of elliptic type in a Hilbert space H with the self-adjoint positive definite operator A with a closed domain
D (A) C H. Here, let f (t) be a given abstract continuous function defined on [0, 1] with values in H, ¢, and 1) are elements of D (A) and
p (t) is a scalar continous function. A function u(t) is called a solution of problem (1) if the following conditions are satisfied:

i. u(t) is twice continuously differentiable on the segment [0, 1].

ii. The element u(t) belongs to D(A) forall ¢ € [0, 1], and the function Aw(¢) is continuous on the segment [0, 1] .

iii. u(t) satisfies the equation and nonlocal boundary conditions (1).
A solution of problem (1) defined in this manner will from now on be referred to as a solution of problem (1) in the space C ([0, 1], H) . Here,
C ([0,1], H) stands for the Banach space of all continuous functions ¢(t) defined on [0, 1] with values in H with the norm

= t .
lelogou,mm = gmax, lo()ln

We say that the problem (1) is well-posed in C' ([0, 1], H), if there exists the unique solution u(t) in C' ([0, 1], H) of problem (1) for any
f(t) € C([0,1], H) and the following coercivity inequality is satisfied:

HlAulloqo,m) < Me (Il + 14€1L, + 1491, ]

[0 P

where M. does not depend on f(¢) and ¢, ¥. Unfortunately, the problem (1) is ill-posed in the space C' ([0, 1], H).
In this paper, positive constants, which can differ in time (hence: not a subject of precision), will be indicated with M. On the other hand
M (e B;...) is used to focus on the fact that the constant depends only on «;/3;....
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Let us denote by C; ([0, 1], H), 0 < a < 1, the Banach spaces obtained by completion of the set of all smooth H —values functions ¢(t)
on [0, 1] in the norms

A-=)*t+7)" e t+7)—e®)la
o = + su .
lellce (o.11,m5) = Ielcqo,1,m) 0P s

We say that the problem (1) is well-posed in C@; ([0, 1], H), if there exists a unique solution u(¢) in C@; ([0, 1], H) of problem (1) for any
f(t) € C§; (10,1], H) and the following coercivity inequality is satisfied:

||“N||cg<1 o.17,m) T 14ullcg 0,17,y < M(6,@) [HA<PHH + 1AV g+ | f ||C[‘)’1([0,1},H)} :

We will study the problem (1) under the assumption:

1

[1oorar <1 @
0

In the present paper, the well-posedness of the nonlocal boundary value problem (1) in Cg; ([0, 1], H) spaces is established. The first order
of accuracy difference scheme for the approximate solution of this problem (1) is presented. The coercive inequalities for the solution of this
difference scheme in difference analogue of C@; ([0, 1], H) spaces are established. In applications, difference scheme for approximate nonlocal
boundary value problem for elliptic equation is investigated.

2 The Bitsadze-Samarskii type nonlocal boundary value problem

In this section, let B = Az, Then, it is clear that B is a self-adjoint positive definite operator and B > §I. The following lemmas will be
needed below.

Lemma 1. [8] The following estimates hold:

| B exp(—tB <t 0<a<l, ©)

)HH—>H
H(I a 6723)71“]{_)1{ <M “)

Lemma2. [17] Forany0 <t <t+ 7 < 1and0 < o < 1 one has the inequality

[

-
lexp(—tB) —exp (=(t +7)B)| gp < Mm~ ®)
Lemma 3. Let
1
D= Jp(A)(I _ 2By "1((~(1=NB _ ~(1+ By
0
Then, under the assumption (1), the operator I — D has an inverse
P=(I-D)"!
and the following estimate is satisfied:
1Pl < M (5). (©6)
It is clear that (see [17]) the boundary value problem for elliptic equation
2
~ ) ) = £(0), 0 < £ < 1, u(0) = g, u() = ws ™
has a unique solution
U(t) _ (I _ 6_23)_1 {(e—tB _ 6—(2—)&)3)()0 + (e—(l—t)B _ e—(l-‘rt)B)u(l) _ (e—(l—t)B _ e—(l-‘rt)B) (8)
! B B ! 5| B B
x(2B)7H [ (0T - 0B s o 28)7! | (7P 008 ps)as,
0 0
1
u(l) =P |4+ Jp(x)(l —e )T - eV ©
0
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1
—(ei(li/\)B _ e,(lJr)\)B) (2B)71 J(ef(lfs)B _ e(lJrS)B)f(S)dS} d\

(=)

1 A 1
-1 ef()\fs)B s)ds ef(sf)\)B s)ds — ef()\Jrs)B s)ds
+jp<x> (2B) (j f(s)d +l f(s)d j f(s)d ) dA],

where
-1

p(\) (I - 6_2B)71 (e—“—”B - e_(1+>‘)B) dA)

o)

Il
/N
~
|
O

Theorem 1. Suppose p, € D(A), f(t) € C; ([0,1], H) (0 < e < 1) . Then, for the solution u (t) of the boundary value problem (1) the
coercivity inequality

1
[|u” ”cgl o1, T 1A%l ce (0,11, < M(9) |:HA§0HH + APl y + ali=a) I f lleg, (0.1],5)

holds.

Proof: By [17], we had the following coercivity inequality

M)

llu” g (.11, ) + 1 Aull e 0.8 S ZT— ) )Ilfl\ca (0.1, + M) {[[Au(0)| 5 + [[Au(D)] 5 } (10)

for the solution of boundary value problem (7). Then the proof of Theorem 1 is based on coercivity inequality (10) and on the following estimate

[Av (Dl < a(M( ) ) Il e, (0,17,2) + M( () {lA@l g + 1A% [l } - 1)

Therefore, we will prove (11). First, applying formula (9), we can write
1
Au(1) = P (Jp(z\)([ _ 2By {(e_AB - e_(2_)‘)B) Agp + (I - e_AB) (1 - e—“—*)B)
0

A

x (1 - e*B) FO) + g (1 - e*2<1**>3) J (e*“*S)B (1 - 6*283)) (f(s) — F(\)ds
0

+§ (]_6—2,\3) I (e—(s—A)B ([_e—2<1_s)3)) ((s) —f()\))ds}d)\—i—Aw)
A

=J1+ Jo+ J3 + J4,

where
1
Ji=P (Jp()\)(l —e 2By L e NBy gpdn + A¢> ,
0
1
nep ( o0 =)0 (19 (1009 (1) mw) ,
0
) 1 A
Ja = 5 P[0T = 27 [ (Bem 070 (1= 20N (1 72 B) ) (1(5) - ()i
0 0
) 1 ) 1
1 __—2B\~ —(s=N)B (7 _ _—2(1-s)B _ _—2\B _
Ja = QPJp(/\)B (1-2®) J(e (r-e ) (1= ¢2B)) (£(s) ~ FA))dsd.
0 A
Let us estimate Ji, for k = 1, - -, 4, separately. First, we estimate J;. Using estimates (4), (5) and (6), we obtain

o Hef)\B B 67(27A)BHH_>H | Al g dX + ||Aw||H)

1
Wiz < 1Pl g_n (J|p()\)| H(17672B)_1
0
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1
< M(5) [jmm dX [ Al + |Aw|H] -
0

Thus, from condition (2) it follows that
11l < Mi(8) [l A@ll g + 1A% 5] -
Let us estimate Jo.

7]

H—H

1
—1
—2B
||J2||Hs||P||H%Hj|pm|H(z_e ) H
0 H—H

=8l =

A d.
H—H H H—H 1F

Further, using estimates (3), (5), (6) and the definition of the norm of the space C¢; ([0, 1], H), we get

1
2l < Ma(8)| IOV 4 o, 1£O]
0

Thus, from (2) it follows that
V2l < M2(6) If Dl cgo,1),m) < M2(9) [[fllog (0,17, 5) -
To estimate J3, we will put J3 = J3 1 + J3 2, where

Joa = PlpNI =Py 0| (Bem OB (1= eT2ONE) (1 7B ) (f(s) = (V) dsd,

Jso = P (Be_()‘_S)B (1 - 6—2(1—”3) (1 - e_2SB)) (f(s) — F(\))dsdA.

First, we will estimate J3 1. Applying estimates (3), (5), (6) and the definition of the norm of the space C( ([0, 1], H), we obtain

3 A 2
ds M6
Il < 316 1603 | e g Ml o < s 1 A g o
0 0 0

Second, we will estimate J3 2. For J3 2, using estimates (3), (5), (6) and the definition of the norm of the space C; ([0, 1], H), we get

1
2(1—X)%ds
||J3,2||HSM J‘p |J(A—S)(2(fA—S))LAa(1_ ) X Hf”C"‘([Ol]

1 51
()27 [_1p] 22”‘
o 1N\ dA Hf”cgl (0,1,H) < lp(A)] dA ||f||cfx ([0,1],H
1
3

Applying estimates for ||.J3.1|| g7 and ||J3 2| i, we get

1
M3 (6
sl < g% (1o a1 g 0.0
0
Using condition (2), we get
My
Il < 205 e, oum-

Let us estimate J4. We will put Jg = Jg 1 + J4 2, where

Jii = P (Be_(s_’\)B (1 - e‘Qﬂ_s)B) (1 - e—”B)) (f(s) — F(N)dsd,

Jia = P p(/\)% (1—6‘23)_1
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The estimates (3), (5), (6) and the definition of the norm of the space C; ([0, 1], H) give

|j (1—s)%ds

d\ o
3 (1—A)a s (s—)\)l_a (2_5_)\)“ H‘fHC(n([Ovl]’H)

W aaller < M(é)j 1PV
0

e dX 1 fll s, (10,11,21) -

O — il

[ 1o ds Ms(8)
. M(é)im (1=XN° 1 (s — A g, on,m < a(l-a)

Finally, we estimate Jy 2. For Jy 2, applying estimates (3), (5), (6) and the definition of the norm of the space C§; ([0, 1], H), we obtain

[p(N)
o A [ fllce, (jo,17,81) <

(1 Ja,2]l g < M()

M(8)2¢72
1

1
ey | P Al o

2

N —— =

Applying estimates for ||.J4,1|| g7 and || J4,2|| zr, we get

1
Mg (0
sl < 212 (1o a1 g, 0,00

0

So, from (2) it follows that
M~ ()

| Jallg < a(l—a) 1fllce, o,11, ) -

Combining estimates for ||J ||z, k = 1, - - -, 4, we obtain estimate (11). Theorem 1 is proved. O

Now, we consider the application of Theorem 1. B
Let € is the unit open cube in R™ {x = (z1, -, 2n) : 0 < 2 < 1,1 < k < n} with boundary S, Q@ = QU S.In [0, 1] x €, the Dirichlet-
Bitsadze-Samarskii type mixed boundary value problem for the multidimensional elliptic equation

n
—ug — Y (ar(@)ug, )z, = f(t,2),0<t <1, z = (z1,...,2n) €Q,
r=1

1
u(0,z) = p(x), u(l,z) = {p(A)u(A, 2)d\ + ¢ (z), © € Q, a2

u(t,.@) |3¢€S: 0733657 O Stgl

is considered. We will study the problem (12) under the assumption (2). The problem has an unique smooth solution (%, x) for the smooth
f(t,z) (t€(0,1),z € Q), ¢(r) and () functions, and ar(z) > a > 0 (z € Q) . We introduce the Hilbert space L2({2) of all square-
integrable functions f defined on €2, equipped with the norm

1 =1 - | 1#@FPder - do
J)Eﬁ

We can reduce the Dirichlet-Bitsadze-Samarskii type mixed boundary value problem (12) to the nonlocal boundary problem (1) in Hilbert

space H = Lo () with a self -adjoint positive definite operator A defined by (12) .

Theorem 2. The solution of the nonlocal boundary value problem (12) satisfies the coercivity inequality
lutelleg, (to.11,La@) + 1lleg, (o.0.mz @)
M (5)
S stz M les (on,L.@) +M @) (1@ vz + 114wz -

Here, the Sobolev space W22 (Q) is defined as the set of all functions f defined on Q such that f and all second order partial derivative
Sfunctions fr, . ,7 = 1,..nis both locally integrable in L (XY), equipped with the norm

1/2
n

15 Iz =l £ @ + J J S oo P diry - do

_r=1
e "
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The proof of Theorem 2 is based on Theorem 1, on the symmetry properties of the space operator A generated by the problem (12), and the
following theorem on the coercivity inequality for the solution of the elliptic differential problem in Lo (€2).

Theorem 3. For the solution of the elliptic differential problem

u(z) =0, z €S,
the following coercivity inequality holds [22]:
||UHW22(§) < MHWHLZ(E)'

3 The first order of accuracy difference scheme

The nonlocal boundary value problem (1) is associated with the corresponding first order of accuracy difference scheme

— L [up g1 — 2up + up—1] + Aug = @y,
@k:f(tk% tk:kT7 1§k§N_17 NT:17
N

ug =, uN = _Zlﬂ (t;) uj + .
j:

13)

A study of discreatization over time of the nonlocal boundary value problem also permits one to include general difference schemes in
applications, if the differential operator in space variables, A is replaced by the difference operators A;, that act in the Hilbert spaces H,
and are umformly self-adjoint positive definite in i for 0 < h < hg. It is known that for a self-adjoint positive definite operator A it follows
that B = 5 L(rA + VAA 4+ 72 A?) is self-adjoint positive definite and R = (I +7B) ! which defined on the whole space H is a bounded
operator. Here, I 1is the identity operator. We will study the problem (13) under the assumption:

i o (85)| 7 < 1. (14)

Now, let us give some lemmas and theorem that will be needed below.

Lemma 4. The estimates hold [17]

H RQN H < M(6),

H—H 15
IR s rr < M()(1+67) %, kr||BRF|| s s < M(6),k > 1,6 > 0, (15)
|B? (R’W Rk) b <M(5)(,§T)73+5,1 <k<k+r<NO0<af<l.

Lemma 5. Suppose A is the positive operator in Hilbert space H. Then, the following estimate holds [17]:

N-1

S H([ - R)ijluH_)H < M min (m(l) 1+7|In \|B\|H_>H\> (16)
=1

.

Lemma 3.3. The operator

-S> o(t)T (I— RzN)*l (RN*j _ RN+J‘)

Jj=1

has an inverse
-1

N
-1 . )
=S o) (1Y) (R - RMY)
j=1
and the following estimate is satisfied under the assumption (14)

1K s < M(3)T- (17
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Theorem 4. For any ¢, 1 < k < N — 1, the solution of the problem (13) exists and the following formula holds fork =1,---,N — 1,

b= = BN TR - RN o (RN RV uy
B (RN,,Q B RN+k) (I+7B)(2I +7B)~ Nz: (RNflfi _ RN71+%’) %‘T} (18)

N—
+(I+7B)(2I +7B)~ Z (RIE=IE— REHT) i,

uy = Kr ip(tj)T(I—RQN)71 {(Rf —RQN_j) o— (RN_j —RN+j>

N—-1
x(I+7tB)2I+7B)"" Y B™! (RN*H - RN*W) sm} +(I+7B)"'B7!
=1

N—-1

x(I +7B) ZRJ o+ Z R pir = 3 R gir | 4o
i=j+1 =1

fork = N.

Let F([0,1]_, H) be the linear space of the mesh functions ¢ = {gok}{v_l with values in the Hilbert space H. We denote by C([0, 1] ., H)

and C§1([0,1] ., H), 0 < a < 1, Banach spaces with the norms

™l oqo,ay, e = omax el g7 »

T (N =k)T)*((k +1)7)*
cg ([0.1], ,H) = [l ”C’([O,l]T,H) + 1Sk§:}r11r)§N_1 (rr)@ loktr = Prll g -

7]
Theorem 5. The solution of the difference problem (13) in C([0, 1], H) under the assumption (14) obeys the almost coercive inequality

{72 (g = 2 + e )3 loqo,mn + 1 {4 oo m (19)

i .
< M(9) {mlﬂ {ln o1+ In| B ”HHH}} " oo, ) T 11A®l g + Hf‘W’HH] :

Proof: By [17],

5

72 (g = 2k + e )3 loqomn + 1 HAw oo m (20)

. 1
< M) fwin {1n 214 1] B gl P17 Degonm + 146l + lux

was proved for the solution of the boundary value problem

— Ay [upgr — 2up + up—1] + Aup = ¢, 1 <E<S N —1,N7 =1,

21
ug = @, uN are given.
Using the estimates (15), (17), and the formula (18), we obtain
. 1
| Aun ([ < M(9) (mlﬂ {ln 1+ In| B ||H—>H|} ™ leqoay, m) + I1A¢lly + HAuN||H) (22)
for the solution of difference scheme (13). Applying formula (18) and A = B?R, we get
Auy = J1 + Ja,
where
N . .
o)) v - R*N)” (Rj _ RN ) Ap+ Ay |, (23)

Jj=1
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JQ—KTZ,O )r{ =) (RN + RN (14 7B) 24)

N-1
x(2I+7B)"'BY (RN‘Z - RN“) %-T) +(I+7mB)2I+7B)"'B
i=1
-1 N-1 N-1
X ZRJ Zcpﬂ'—i— Z R ]LpZT— Z Rjﬂcp T
=1 =] i=1
To this end, it suffices to show that
1l < M)l Aell g + [ AV 4] (25)
and
. 1
el < M@ min fin 21+ ) B il b o,y 20

The estimate (25) follows from formula (23) and estimates (15), (17). Using formula (24) and estimates (15), (16), and (17), we obtain

1l < el | 3210 (8] (==, A= 1)
j=1

XH(1+TB)(21+TB H N; (H (I — R)RN='~ 1HH_>H+“(I—R)RN+i_1‘)H_>H) II%IIH}

leemer s, (Slo- w2, o
i=1

N-1 N—-1
I-R Ri_j_l“ . H I-R Rj—i—i—lH ‘
+ ZL |- R) P (R o ledls

. 1
< M(8) min {ln = 1+ || B HH—)H’} " Hc([o,l]T,H).

So, from the last estimate and the estimate (16) it follows the estimate (26). Theorem 5 is proved. O

Theorem 6. The difference problem (13) is well posed in the Hélder spaces C31([0,1]., H) under the assumption (14) and the following
coercivity inequality holds:

7™ (g = 2un + e )3 Nl (o1 mn) + I {4 leg, 0,11, m) 27
1
SM((S) O[(liuﬁp HCétl(Ol] JH +HALP||H+HA1/J||H
Proof: By [17],
72 (upr = 2ur + e )1 g, qo,01,,m) + 1 AW Nl (o1, m) (28)
SM@Q(—W s, o). &) + M@l Al g+l Auy |l ]

was proved for the solution of difference scheme (21). Then the proof of (27) is based on (28) and on the estimate

1 ;
I A llir< M) =187 gy o an + M) 1Al -+ Aw ]

a1
Applying the triangle inequality, formulas (23), (24), and estimate (25), we get
I Aun | <[l J1 |z + I J2 <]l J2 [l7 +M )| Al g +I[AY]] ]

To this end, it suffices to show that

[ J2 < M(3) (29)

1 .
a(l —a) le™leg o,y -
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Applying formula (24), we get

N . A i1 A A
Jo =K p(t;) (I — R*N)~! {— (RN*J - RN“) 21— RS 72 (RNﬂ - RN“)
J=1 1

%

N-1

—1 . . . .
x(1-R*)  (ei—¢) + (= (BY 7 = rRVY))r 20 - m)* 3 (RN = RNV
i=j+1
1 i1 . L —1
x (1 - R2) (i — @j) + (I = R*N)yr2(1 = B2 S 2 (RH - RJ“) (1 - R2) (i — ;)
i=1
N—-1 _ . .
i=j+1
i1 , , 1 , .
x Y (R -RVYY) (1-R*) ;- (RN - RV )21 - R)?
() =)y ()
N-1 . . -1 Vit . L -1
x 3 PRV RV (1-RY) e+ (U= RN PU - RS (R R (1-RY) g
i=j+1 i=1
N-1 o L -1 4
+I RNy 21 -Rr? Y 7 (R"J - RJ“) (1 - R2) o0 =S J3,
i=j7+1 z=2
where
N
I3 =K p(ty) 7= RPN T (RN (1= R- R+ RY) + VY (14 R-F - R7)) g,
j=1
N .
B =K p(t))r(I - R*N)"' (I - R) (1 - RQN‘QJ)
j=1
i1 4
XS R (I=RY) I+ R (pi - ) = I3+ 5,
i=1
(5] il '
TN =K > p(t) (= RPN = Ry (1= RN SR (1= R (14 BT (0 - 95)
j=1 i=1
N .
BP=K. Y p(t)r(I-R*N)TN(1-R) (I - RQN—QJ)
i=[F]+1
i1 _
xS RTH(I-R) (4 R (o - 95),
1=1
4 _ al ,  p2Ny—1 5 Y = i—j (7 p2N—2i
T =K. > p(ty)r(I - RPN R)(I R ) S R (1 R )
j=1 i=j+1
X(I+R)71 (g&i — tpj) = ng,l + J24’2,
4] N |
Tt =K > o)t = RN U =R (1-RY) S R (1= RN U+ R (e - 9)
i=1 i=j+1
4,2 _ al ‘ 2N\ —1 25 = i—j 2N —2i —1, .
BP=K, > p(ty)rI-R*)"H(I-R) (I—R ) S R (I—R )(I+R) (i — 95) -
= i
Second, let us estimate J3* for any m = 2, - - -, 4, separately. We start with J22, using estimates (15), (17), and the definition of the norm of the

space Cy ([0, 1]+, H), we obtain
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N N

|, <6 )3 le ()7 s il < 3000 32 o @)1 197 e o

From (14) it follows that

HJQQHH < M3(9) H@THC& [0,1],,H)

Now, let us estimate JS’ ! Using the estimates (15), (17), and the definition of the norm of the space C§1([0,1]7, H), we obtain

4]
|3, < |KT||1LHH§1 XGRS (GRS b
" jz_zi HRJ]% (I B R2N72j) (= R)HH—>H H -R" H—H H(I+ R)71HH

e =il

T T
PRYeY . a . . 1— HLP HCO‘ 0,1]_,H) "
= GD (N =) & (G —i)r) $.([0,1],,H)
The sum
j—1
’
11—«
= (G —9)7)
is the lower Darboux integral sum for the integral
JT
ds
(7 =)'~
0
It follows that
- (5] 1o (1] 7
5 T
[ 2]l = v 1a((N—j) o e lleg, qo, -
G=
By the lower Darboux integral sum for the integral, it concludes that
g yoot L]
HJ2’ HHSM((S)M 1|P( )Tl g, 0.1, .a0) -
]:
For J23’2, applying (15), (17), and the definition of the norm of the space C; ([0, 1]+, H), we get
32 o e ()| 27 — )
|25, s > S magne
=(F+
j—1
T T
x 7l g
. . 11—« . . C 0,1]_,H
2 G g ir w7 s
The sum
j—1
’
N = T
S G- (N =it N)T)?
is the lower Darboux integral sum for the integral
JT
J' ds
] Gr—s)' 71— jr—s+ 1)
Since
Jr Jr
ds M
_ 10‘ S 1—7'0‘ _ oz(‘T)a7
0]7’ s) (NT—jr— s+ N71)° J O]T s) J
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it follows that
[0
g - 167 Nl |
(J7)* (N7 = j7)% algr) =@ Cs1(101], . H)

3,2
7
H2 H~

By the lower Darboux integral sum for the integral it follows that

M2zt X
HJSQHHSﬁ Z o ()| 7|l ”cw ([0,1],,

=l
. . 3,1 3,2
Applying estimates for HJ2 HH and HJ2 HH, we get
N
3

2], < a(l Z I es, 0.0y,

From (14) it follows that
3 M4( T
< A\
|2] <ot 19 o, -

Next, let us estimate Jg 1 Using estimates (15), (17), and the definition of the norm space C§1([0,1] ., H), we obtain

iz

] ’ . oc
, p(tj)| (N —J T .
HJQ HH < M(9) < (N —j)~ ) Z N (N—j— i+ N) ) e ”C’gl([o,l]T,H)'

= j+1

J

The sum

is the lower Darboux integral sum for the integral

Since
1 1

ds 1 ds
J in) QN —jr—s N J i ®

iT iT
(N7 —j1)*
~ a(NT— i)’
we have that
” o))
sz’ HHSM((S) < G ) 197l ce, o, . -
§=

By the lower Darboux integral sum for the integral, it follows that

4]
4, M(5)2%
2, < att—a) 2 P NI leg o,

Finally, let us estimate J§’2. Using estimates (15), (17), and the definition of the norm space Cf; ([0,1] ., H), we get

R S D Dy Py

5 < N A T ai—a 1? llcg (0], ,H
" j= (3] W =DTTUDT S (= 4)) (11,8 "
The sum
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-
S N1—
i=j+1 ((i=57)
is the lower Darboux integral sum for the integral

1

J' ds

) (s—jm)t

JT

Thus, we show that

P2 <M >~ )l
], <o 3

-
()% H HCO1 ([0,1].,H) "
i=[¥]+
By the lower Darboux integral sum for the integral, it follows that

4,2 201
HJQ’ HH < M)

=
. . 4,1 4,2
Applying estimates for HJ2 H and H Jy HH we get

4], < w0 (5=

N
a(lfa) 1foz>z D7 lle Hca [0,1]
From (14) it follows that

o ()| 7 [l Hca ([0,1],,H)

H)"
3], < 272 e oy oy, o
m=2---

4 we get the estimate (29). Theorem 6 is proved
Now, we consider the applications of Theorems 3.2- 3.3

Combining the estimates for || J3"|| ;.

The Bitsadze-Samarskii type nonlocal boundary value problem for the multidimensional elliptic equation (12) is considered. The
discretization of problem (12) is carried out in two steps. In the first step, let us define the grid sets
ﬁh:{ZL‘:ZL‘WL:(hl/rnjd ‘7hnmn)7m:(m1>"'

’mn)yogm’l" < Ny,
hy Nr =1, r=1

n}, Qp = ﬁhﬂQ,Sh :ﬁh n.s.
We introduce the Hilbert spaces Loj, = L2(€p,) and Wgh(ﬁh)of the grid functions " (z) = {p(h1m1,
equipped with the norms

|+
[l = 1"

-, hnmnp)} defined on ﬁh,
= e hp)Y/?
Lon(Ch) “0 v ‘ ! n)

Q)

1/2

Lan(Sn) - Z Z

hi-hn .
zeQ, T
To the differential operator A generated by the problem (12), we assign the difference operator A7 by the formula

(px rTry My

n
Apu" = =3 (ar(@)u" e m,

Ty
r=1

(30)
acting in the space of the grid functions u (z), satisfying the conditions uP =0forallz € S h- It is known that A7 is a self-adjoint positive
differential equations

definite operator in Lop (Qy,). With the help of A7, we arrive at the nonlocal boundary value problem for an infinite system of ordinary
— ) +Aiuh(t z) = fh(t z),0<t<1, zeQy,

~ (31
jp ht, z)dt + " (x), © € Q.
In the second step, (31) is replaced by the difference scheme (13), and we get the following difference scheme

uh(oa 23) = Soh (x)a

u2+1(w) 2“7@(@"‘“271(30)

Afup (z) = (),
op(z) = f" (tk, x), 2 €ty =kr,1<kE<N-—1, Nt =1
ug () = ¢"(z), 2 € U, (32)
N ~
ul(z) = 3 (L) rull(z) + 9" (@), @ € Q.
=
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Theorem 7. Let 7 and |h| be sufficiently small positive numbers. Under the assumption (14), the solution of the difference scheme (32) satisfies
the following almost coercivity estimate:

max Hsz (u’,;_H — ZuZ +u2_1) H + max HukH
1<k<N-1 Lap,  1<k<SN-1 w3,

1 h h h
< M) | lel,,, + e s, + 19"z ]
- ()[nf—klh\ 1g}§1§a§71 ok L2h+ v W22h+ v w2,

The proof of Theorem 3.4 is based on Theorem 3.2 on the estimate

min {ln%,l—k ’ln” BiHL%—w% } < MIn

o
T+ Al

on the symmetry properties of the difference operator A}, defined by (30) in Loy, and on the following theorem on the coercivity inequality for
the solution of the elliptic difference problem in Loy, .

Theorem 8. For the solution of the elliptic difference problem
Ajul (2) = W (2),x € Qp, (33)

u(z) =0,z €8,
the following coercivity inequality holds [22]:

h h
[y =M@ "1z

Theorem 9. 7 and |h| be sufficiently small positive numbers. Then under the assumption (14) the solution of the difference scheme (32)
satisfies the following coercivity stability estimate

N-1 N-1
—2( h ho ok h
| {T (uk+1 — 2uy; + uk—1) }1 e (0,11, ,L2n) + I {uk}l leg (0.1, w2,)

N-1
1

<0 [+, + 19 g, + e )

The proof of Theorem 9 is based on Theorem 6, on the symmetry properties of the difference operator A} defined by the formula (30), and
on Theorem 8 on the coercivity inequality for the solution of the elliptic difference equation (13) in Loy,

Cs1([0,1] Lan)

4 Conclusion

In this paper, the well-posedness of problem (1) in Hélder spaces with a weight is established. The coercivity inequality for the solution of the
nonlocal boundary value problem for elliptic equation is obtained. The first order of accuracy difference scheme for the approximate solution of
the Bitsadze-Samarskii type nonlocal boundary value problem with integral condition for elliptic equation is studied. Theorems on the almost
coercive stability estimates and coercive stability estimates for the solution of difference scheme for elliptic equations are proved.
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