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1. Introduction and Preliminaries

The Fibonacci numbers and their generalizations have many interesting properties and applications to almost every field of science and art
(for e.g, see [15]). Fibonacci numbers Fn are defined by the recurrence relation

{
F0 = 1,F1 = 1

Fn+1 = Fn +Fn−1, n≥ 1,

so, there exist many properties for Fibonacci numbers. In particular, there is a beautiful combinatorial identity to Fibonacci numbers [16]

Fn =
[ n−1

2 ]

∑
i=0

(
n− i−1

i

)
(1.1)

From (1.1), Falcon [17] introduced the incomplete Fibonacci numbers Fn(s), which are defined by

Fn(s) =
s

∑
j=0

(
n− j−1

j

)
, 0≤ s≤

[
n−1

2

]
; n = 0,1,2, ..,

On the other hand, many kinds of bf Fibonacci numbers generalizations have been presented in the literature, in particular, the k-Fibonacci
Numbers. For any positive real number k, the k-Fibonacci sequence, say (Fn,k)n∈N, is defined recurrently by [17]{

Fk,0 = 1,Fk,1 = k
Fk,n+1 = kFk,n +Fk,n−1, n≥ 1

In [16], the k-Fibonacci numbers were found by studying the recursive application of two geometrical transformations used in the four-triangle
longest-edge (4TLE) partition. These numbers have been studied in several works [16, 17].

Definition 1.1. For any positive real number k, the k-Lucas numbers, say {Lk,n}n∈N is defined recurrently by

Lk,n+1 = kLk,n +Lk,n−1 for n≥ 1,

with initial conditions Lk,0 = 2;Lk,1 = k.
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Definition 1.2. [12] For any positive real number k, the k-Pell numbers, say {Pk,n}n∈N is defined recurrently by

Pk,n+1 = 2Pk,n + kPk,n−1 for n≥ 1,

with initial conditions Pk,0 = 0;Pk,1 = 1.

Definition 1.3. For any positive real number k, the k-Pell Lucas numbers, say {Qk,n}n∈N is defined recurrently by

Qk,n+1 = 2Qk,n + kQk,n−1 for n≥ 1,

with initial conditions Qk,0 = 2;Qk,1 = 2.

Definition 1.4. [14] For any positive real number k, the k-Jacobsthal numbers, say (Jn,k)n∈N, is defined recurrently by{
Jk,0 = 0,Jk,1 = 1

Jk,n+1 = kJk,n +2Jk,n−1, n≥ 1 .

Definition 1.5. [13]For n ∈ N, the Jacobsthal polynomials, say (Jn(x))n∈N, is defined recurrently by{
J0(x) = 0,J1(x) = 1

Jn+1(x) = Jn(x)+2xJn−1(x), n≥ 1 .

Definition 1.6. For n ∈ N, the Tribonacci numbers, say (Tn)n∈N, is defined recurrently by{
T0 = 1,T1 = 1,T2 = 2

Tn+1 = Tn +Tn−1 +Tn−2, n≥ 2 .

The main purpose of this paper is to present some results involving the k-Fibonacci, k-Pell and k-Jacobsthal numbers at negative indices
using define a useful operator denoted by δp1 p2 . By making use of this operator, we can derive new results based on our previous ones
[5, 9, ?]. In order to determine the generating functions of the product of k-Fibonacci, k-Pell and k-Jacobsthal numbers with negative indices
and Jacobsthal polynomials.
In order to render the work self-contained, we give the necessary preliminaries tools and recall some defnitions and results.

Definition 1.7. [6] Let B and P be any two alphabets. We define Sn(B−P) by the following form

ΠpεP(1− pt)
ΠbεB(1−bt)

=
∞

∑
n=0

Sn(B−P)tn, (1.2)

with the condition Sn(B−P) = 0 for n < 0. [7]

Corollary 1.8. [7] Taking B = {0,0, ...,0} in (1.2) gives

Πp∈P(1− pt) =
∞

∑
n=0

Sn(−P)tn.

Equation (1.2) can be rewritten in the following form

∞

∑
n=0

Sn(B−P)tn =

(
∞

∑
n=0

Sn(B)tn

)
×

(
∞

∑
n=0

Sn(−P)tn

)
,

where

Sn(B−P) =
n

∑
j=0

Sn− j(−P)S j(B).

Definition 1.9. [10] Given a function f on Rn, the divided difference operator is defined as follows

∂pi pi+1( f ) =
f (p1, · · · , pi, pi+1, · · · pn)− f (p1, · · · pi−1, pi+1,pi, pi+2 · · · pn)

pi− pi+1
.

Definition 1.10. The symmetrizing operator δ k
e1e2

is defined by

δ
k
p1 p2

(g(p1)) =
pk

1g(p1)− pk
2g(p2)

p1− p2
for all k ∈ N.

Proposition 1.11. [?] Let P = {p1, p2} an alphabet, we define the operator δ k
p1 p2

as follows

δ
k
p1 p2

g(p1) = Sk−1(p1 + p2)g(p1)+ pk
2∂p1 p2 g (p1), for all k ∈ N.

Proposition 1.12. [5] The relations

1)Fk,−n = (−1)n+1Fk,n,

2)Pk,−n = (−1)n+1Pk,n

3)Lk,−n = (−1)nLk,n,

4)Qk,−n = (−1)nQk,n,

5)Jk,−n = (−1)n−12−nJk,n

hold for all n≥ 0.

Proposition 1.13. Let {Pn}n≥0 sequence is called symmetric when

Pn(−x) = (−1)nPn(x), n≥ 0.
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2. Theorem and Proof

The following Theorem is one of the key tools of the proof of our main result. It has been proved in [10]. For the completeness of the paper
we state its proof here.

Theorem 2.1. Given two alphabets P = {p1, p2} and B = {b1,b2,b3} , we have

∞

∑
n=0

Sn(B)∂p1 p2(pn+1
1 )tn =

S0(−B)− p1 p2S2(−B)t2− p1 p2S3(−B)(p1 + p2)t3(
∞

∑
n=0

Sn(−B)pn
1tn
)(

∞

∑
n=0

Sn(−B)pn
2tn
) . (2.1)

Proof. Let ∑
∞
n=0 Sn(B)tn and ∑

∞
n=0 Sn(−B)tn be two sequences such that

∞

∑
n=0

Sn(B)tn = 1
∞

∑
n=0

Sn(−B)tn
. On one hand, since g(p1)=

∞

∑
n=0

Sn(B)pn
1tn,

we have

δp1 p2 g(p1) = δp1 p2

(
∞

∑
n=0

Sn(B)pn
1tn

)

=

p1
∞

∑
n=0

Sn(B)pn
1tn− p2

∞

∑
n=0

Sn(B)pn
2tn

p1− p2

=
∞

∑
n=0

Sn(B)

(
pn+1

1 − pn+1
2

p1− p2

)
tn

=
∞

∑
n=0

Sn(B)∂p1 p2(pn+1
1 )tn

which is the right-hand side of (2.1). On the other part, since

g(p1) =
1

∞

∑
n=0

Sn(−B)pn
1tn

,

we have

δp1 p2 g(p1) =

p1 ∏
b∈B

(1−bp2)t− p2 ∏
b∈B

(1−bp1t)

(p1− p2)

(
∞

∑
n=0

Sn(−B)pn
1tn
)(

∞

∑
n=0

Sn(−B)pn
2tn
) .

Using the fact that :
∞

∑
n=0

Sn(−B)pn
1tn = ∏

b∈B
(1−bp1t), then

δp1 p2 g(p1) =

∞

∑
n =0

Sn(−B) p1 pn
2−p2 pn

1
p1−p2

tn(
∞

∑
n=0

Sn(−B)pn
1tn
)(

∞

∑
n=0

Sn(−B)pn
2tn
)

=
S0(−B)− p1 p2S2(−B)t2− p1 p2(p1 + p2)S3(−B)t3(

∞

∑
n =0

Sn(−B)pn
1tn
)(

∞

∑
n =0

Sn(−B)pn
2tn
) .

This completes the proof.

3. On the Generating Functions of Some Numbers and Polynomails

In this part, we derive the new generating functions of the products of some known numbers. For the applications of generating functions of
some known functions, we refer the reader to see the references [?, ?].
Remark 1: Replacing p2 by (−p2) and assuming that p1 p2 = 1, p1− p2 = k , S1(−B) = −1, S2(−B) = −1 and S3(−B) = −1 in the
relationship (2.1), we deduce the following theorems.

Theorem 3.1. The new generating function of product of k-Fibonacci numbers and Tribonacci numbers is given by

∞

∑
n =0

TnFk,ntn =
1− t2− kt3

1− kt− (k2 +3)t2− (k3 +4k)t3− (k2 +1)t4 + kt5− t6 . (3.1)

Theorem 3.2. The new generating function of product of k-Fibonacci numbers with negative indices and Tribonacci numbers is given by

∞

∑
n =0

TnFk,−ntn =
−1+ t2− kt3

1+ kt− (k2 +3)t2 +(k3 +4k)t3− (k2 +1)t4− kt5− t6 . (3.2)
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• Put k = 1 in the relationship (3.2) we have

∞

∑
n =0

TnF−ntn =
−1+ t2− t3

1+ t +4t2 +5t3−2t4− t5− t6 ,

which representing a new generating function of Fibonacci numbers at negative indices and Tribonacci numbers.

Setting b3 = 0 and replacing b2 by (−b2), p2 by (−p2) in the relationship (2.1), and assuming b1−b2 = p1− p2 = k; b1b2 = p1 p2 = 1; we
deduce the following theorems.

Theorem 3.3. For n ∈ N, the new generating function of the product of k-Fibonacci numbers at negative indices is given by

∞

∑
n=0

F2
k,−ntn =

1− t2

1− k2t−2(k2 +1)t2− k2t3 + t4 . (3.3)

Corollary 3.4. If k = 1 in the relationship (3.3) we get

∞

∑
n=0

F2
−ntn =

1− t2

1− t−4t2− t3 + t4 ,

which representing a new generating function of the product of Fibonacci numbers with negative indices.

Theorem 3.5. For n ∈ N, the new generating function of the product of k-Lucas numbers at negative indices is given by

∞

∑
n=0

L2
k,−ntn =

4−3k2t−4(k2 +1)t2− k2t3

1− k2t−2(k2 +1)t2− k2t3 + t4 . (3.4)

Proof. We have

∞

∑
n=0

L2
k,−ntn =

∞

∑
n=0

[(−1)n((2+ k2)Sn(b1 +[−b2])− kSn+1(b1 +[−b2]))

×(−1)n((2+ k2)Sn(p1 +[−p2])− kSn+1(p1 +[−p2]))]tn

= (2+ k2)2
∞

∑
n=0

(−1)2nSn(b1 +[−b2])Sn(p1 +[−p2])tn−

k(2+ k2)
∞

∑
n=0

(−1)2nSn+1(p1 +[−p2])Sn(b1 +[−b2])tn

−k(2+ k2)
∞

∑
n=0

(−1)2nSn+1(b1 +[−b2])Sn(p1 +[−p2])tn +

k2
∞

∑
n=0

(−1)2nSn+1(b1 +[−b2])Sn+1(p1 +[−p2])tn

= (2+ k2)2
∞

∑
n=0

Fk,ntn− k(2+ k2)

×[ k+(p1− p2)t
1− k(p1− p2)t− [(p1− p2)2 +2p1 p2 + k2 p1 p2]t2− k(p1− p2)p1 p2t3 + p2

1 p2
2t4 ]

−k(2+ k2)[
k+(b1−b2)t

1− k(b1−b2)t− [(b1−b2)2 +2b1b2 + k2
1b1b2]t2− k(b1−b2)b1b2t3 +b2

1b2
2t4 ]

+k2[
k(p1− p2)− [(p1− p2)

2 + p1 p2 + k2 p1 p2]t− k(p1− p2)p1 p2t2 + p2
1 p2

2t3

1− k(p1− p2)t− [(p1− p2)2 +2p1 p2 + k2 p1 p2]t2− k(p1− p2)p1 p2t3 + p2
1 p2

2t4 ].

Since

∞

∑
n=0

F2
k,ntn =

1− t2

1− k2t−2(k2 +1)t2− k2t3 + t4 ,

therefore

∞

∑
n=0

L2
k,−ntn =

4−3k2t−4(k2 +1)t2− k2t3

1− k2t−2(k2 +1)t2− k2t3 + t4 .

This completes the proof.

Theorem 3.6. For n ∈ N, the new generating function of the product of k-Pell Lucas numbers at negative indices is given by

∞

∑
n=0

Q2
k,−ntn =

4−12t−4(4k+ k2)t2−4k2t3

1+4t−2(k2 +4k)t2−4k2t3 + k4t4 . (3.5)
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Proof. We have

∞

∑
n=0

Q2
k,−ntn =

∞

∑
n=0

[(−1)n(Sn+1(b1 +[−b2])− (2+ k)Sn−1(b1 +[−b2]))

×(−1)n(Sn+1(p1 +[−p2])− (2+ k)Sn−1(p1 +[−p2]))]tn

=
∞

∑
n=0

(−1)2nSn+1(b1 +[−b2])Sn+1(p1 +[−p2])tn− (2+ k)
∞

∑
n=0

(−1)2nSn+1(b1 +[−b2])Sn−1(p1 +[−p2])tn

−(2+ k)
∞

∑
n=0

(−1)2nSn+1(p1 +[−p2])Sn−1(b1 +[−b2])tn +

(2+ k)2
∞

∑
n=0

(−1)2nSn−1(b1 +[−b2])Sn−1(p1 +[−p2])tn

= [
2(p1− p2)+ [k(p1− p2)

2 + kp1 p2 +4p1 p2]t +2kp1 p2(p1− p2)
2− k2 p2

1 p2
2t3

1−2(p1− p2)t− [k(p1− p2)2 +2kp1 p2 +4p1 p2]t2−2k(p1− p2)p1 p2t3 + k2 p2
1 p2

2t4 ]

−(2+ k)[
(k+4)t +2k(p1− p2)t2− k2 p1 p2t3

1−2(p1− p2)t− [k(p1− p2)2 +2kp1 p2 +4p1 p2]t2−2k(p1− p2)p1 p2t3 + k2 p2
1 p2

2t4 ]

−(2+ k)[
(k+4)t +2k(b1−b2)t2− k2b1b2t3

1−2(b1−b2)t− [k(b1−b2)2 +2kb1b2 +4b1b2]t2−2k(b1−b2)b1b2t3 + k2b2
1b2

2t4 ]

+(2+ k)2
∞

∑
n=0

P2
k,ntn.

Since

∞

∑
n=0

P2
k,ntntn =

t− k2t3

1+4t−2(k2 +4k)t2−4k2t3 + k4t4 ,

therefore

∞

∑
n=0

Q2
k,−ntn =

4−12t−4(4k+ k2)t2−4k2t3

1+4t−2(k2 +4k)t2−4k2t3 + k4t4 .

This completes the proof.

Remark 2: Replacing p2 by (−p2) and assuming that p1 p2 = 1, p1− p2 = x in the relationship (2.1), we deduce the following theorems

Theorem 3.7. The new generating function of both Fibonacci polynomials and symmetric functions in several variables as

∞

∑
n=0

Sn(b1 +b2 +b3)Fn(x)tn =
S0(−B)+S2(−B)t2 + xS3(−B)t3

3
∏
i=1

(
1− xbit−b2

i t2
) . (3.6)

Theorem 3.8. The new generating function of both symmetric Fibonacci polynomials and symmetric functions in several variables are
defined as

∞

∑
n=0

Sn(b1 +b2 +b3)Fn(−x)tn =
S0(−B)+S2(−B)t2− xS3(−B)t3

3
∏
i=1

(
1+ xbit−b2

i t2
) .

Proof. We have

∞

∑
n=0

Sn(b1 +b2 +b3)Fn(−x)tn =
∞

∑
n=0

Sn(b1 +b2 +b3)(−1)nFn(x)tn

=
∞

∑
n=0

Sn(b1 +b2 +b3)Fn(x)(−t)n

=
S0(−B)+S2(−B)t2− xS3(−B)t3

3
∏
i=1

(
1+ xbit−b2

i t2
) .

This completes the proof.

Remark 3: Replacing b2 by (−b2), p2 by (−p2) and assuming that b1b2 = p1 p2 = 2, b1−b2 = p1− p2 = k in the relationship (2.1), we
deduce the following theorems.

Theorem 3.9. For n ∈ N, the new generating function of product of k-Jcobsthal numbers is given by
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∞

∑
n =0

J2
k,ntn =

t +2kt2

1− k2t−4(k2 +1)t2−4kt3 +16t4 .

Theorem 3.10. For n ∈ N, the new generating function of the product of k-Jacobsthal numbers and k-Jacobsthal numbers with negative
indices is given

∞

∑
n=0

Jk,nJk,−ntn =
t
2 −

k
2 t2

1+ k2

2 t− (k2 +1)t2 + k
2 t3 + t4

. (3.7)

Corollary 3.11. If k = 1 in the relationship (3.7) we get

∞

∑
n=0

JnJ−ntn =
t
2 t + t2

2

1+ t
2 −2t2 + t3

2 + t4
,

which representing a new generating function of the product of Jacobsthal numbers and Jacobsthal numbers with negative indices.

Theorem 3.12. For n ∈ N, the new generating function of the product of k-Jacobsthal numbers at negative indices is given by

∞

∑
n=0

J2
k,−ntn =

t
4 +

k
8 t2

1− k2

4 t− (k2+1)
4 t2− k

16 t3 + t4

16

.

Proof. We have

∞

∑
n=0

J2
k,−ntn =

∞

∑
n=0

Jk,−nJk,−ntn

=
∞

∑
n=0

(−1)n−12−nJk,n(−1)n−12−nJk,ntn

=
∞

∑
n=0

(−1)2n−22−2nJ2
k,ntn

=
∞

∑
n=0

J2
k,n(

t
4
)n

=
t
4 +

k
8 t2

1− k2

4 t− (k2+1)
4 t2− k

16 t3 + t4

16

.

This completes the proof.

Theorem 3.13. [2]Given two alphabets P = {p1, p2} and B = {b1,b2,b3} , we have
∞

∑
n =0

Sn(b1 +b2 +b3)Sn−1(p1 + p2)tn =
−S1(−B)t− (p1 + p2)S2(−B)t2− ((p1 + p2)

2− p1 p2)S3(−B)t3(
∞

∑
n=0

Sn(−B)pn
1tn
)(

∞

∑
n=0

Sn(−B)pn
2tn
) . (3.8)

Remark 4: Replacing p2 by (−p2) and assuming that p1 p2 = k, p1− p2 = 2, S1(−B) = −1, S2(−B) = −1 and S3(−B) = −1 in the
relationship (3.8), we deduce the following theorems.

Theorem 3.14. For n ∈ N, the new generating function of product of k-Pell numbers and Tribonacci numbers as follows
∞

∑
n =0

TnPk,ntn =
t +2t2 +(4+ k)t3

1−2t− (3k+4)t2−8(k+1)t3− (k2 +4k)t4 +2k2t5− k3t6 . (3.9)

Theorem 3.15. For n ∈ N, the new generating function of product of k-Pell numbers with negative indices and Tribonacci numbers as
follows

∞

∑
n =0

TnPk,−ntn =
t−2t2 +(4+ k)t3

1+2t− (3k+4)t2 +8(k+1)t3− (k2 +4k)t4−2k2t5− k3t6 . (3.10)

Proof. We have

∞

∑
n =0

TnPk,−ntn =
∞

∑
n =0

Tn (−1)n+1Pk,ntn

= −
∞

∑
n =0

TnPk,n(−t)n

= −[ −t +2t2− (4+ k)t3

1+2t− (3k+4)t2 +8(k+1)t3− (k2 +4k)t4−2k2t5− k3t6 ]

=
t−2t2 +(4+ k)t3

1+2t− (3k+4)t2 +8(k+1)t3− (k2 +4k)t4−2k2t5− k3t6 .

This completes the proof.
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Remark 5: Replacing p2 by (−p2) and assuming that p1 p2 = 2, p1− p2 = k, in the relationship (3.8), we deduce the following theorems.

Theorem 3.16. For n ∈ N, the new generating function of both k-Jacobsthal numbers and symmetric functions in several variables as
∞

∑
n =0

Sn(b1 +b2 +b3)Jk,ntn =
−S1(−B)t− kS2(−B)t2− (k2 +2)S3(−B)t3

3
∏
i=1

(
1− kbit−2b2

i t2
) . (3.11)

Corollary 3.17. If k = 1 in the relationship (3.11) we get
∞

∑
n =0

Sn(b1 +b2 +b3)Jntn =
−S1(−B)t−S2(−B)t2−3S3(−B)t3

3
∏
i=1

(
1−bit−2b2

i t2
) .

which representing a new generating function of both Jacobsthal numbers and symmetric functions in several variables.

Theorem 3.18. For n ∈ N, the new generating function of both k-Jcobsthal numbers with negative indices and symmetric functions in
several variables as

∞

∑
n =0

Sn(b1 +b2 +b3)Jk,−ntn =

−S1(−B)
2 t + k

4 S2(−B)t2− (k2−2)
8 S3(−B)t3

3
∏
i=1

(
1+ k

2 bit−
b2

i
2 t2
) . (3.12)

Proof. We have

∞

∑
n =0

Sn(b1 +b2 +b3)Jk,−ntn =
∞

∑
n =0

Sn(b1 +b2 +b3)(−1)n−12−nJk,ntn

= −
∞

∑
n =0

Sn(b1 +b2 +b3)Jk,n(
−t
2
)n

= −[
S1(−B)

2 t− k
4 S2(−B)t2 +

(k2−2)
8 S3(−B)t3

3
∏
i=1

(
1+ k

2 bit−
b2

i
2 t2
) ]

=

−S1(−B)
2 t + k

4 S2(−B)t2− (k2−2)
8 S3(−B)t3

3
∏
i=1

(
1+ k

2 bit−
b2

i
2 t2
) .

This completes the proof.

• Put k = 1 in the relationship (3.12) we have

∞

∑
n =0

Sn(b1 +b2 +b3)J−ntn =

−S1(−B)
2 t + S2(−B)

4 t2− S3(−B)
8 t3

3
∏
i=1

(
1+ bi

2 t− b2
i

2 t2
) , (3.13)

which representing a new generating function of both Jacobsthal numbers at negative indices and symmetric functions in several
variables.

Remark 6: Replacing p2 by (−p2) and assuming that p1 p2 = 2x, p1− p2 = 1, in the relationship (3.8), we deduce the following theorems

Theorem 3.19. For n ∈ N, The new generating function of both Jacobsthal polynomials and symmetric functions in several variables as
∞

∑
n =0

Sn(b1 +b2 +b3)Jn(x)tn =
−S1(−B)t−S2(−B)t2− (1+2x)S3(−B)t3

3
∏
i=1

(
1−bit−2xb2

i t2
) . (3.14)

Theorem 3.20. For n ∈ N, The new generating function of both symmetric Jacobsthal polynomials and symmetric functions in several
variables as

∞

∑
n =0

Sn(b1 +b2 +b3)Jn(−x)tn =
S1(−B)t−S2(−B)t2 +(1+2x)S3(−B)t3

3
∏
i=1

(
1+bit−2xb2

i t2
) . (3.15)

Proof. We have

∞

∑
n =0

Sn(b1 +b2 +b3)Jn(−x)tn =
∞

∑
n =0

Sn(b1 +b2 +b3)(−1)nJ(x)tn

=
∞

∑
n =0

Sn(b1 +b2 +b3)J(x)(−t)n

=
S1(−B)t−S2(−B)t2 +(1+2x)S3(−B)t3

3
∏
i=1

(
1+bit−2xb2

i t2
) .

This completes the proof.
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4. Conclusion

In this work, a theorem has been proposed in order to determine the generating functions for the products of k-Fibonacci numbers, k-Pell
numbers, k-Jacobsthal numbers all with negative indices, the product of k-Fibonacci numbers and Tribonacci numbers, k-Jacobsthal numbers
and symmetric functions in several variables and product of Jacobsthal polynomials and symmetric functions in several variables. The
proposed theorem is based on the symmetric functions.The obtained results agree with the results obtained in some previous works.
Acknowledgements. The authors would like to thank the anonymous referees for their valuable comments and suggestions.
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