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Abstract

In this paper, we study the uniqueness problem of meromorphic functions sharing a set of small functions and proved that under certain
essential conditions P[ f ] = t p( f ) for some t such that tm = 1 (m is a positive number), where P[ f ] is a differential polynomial in f and
p(z) is a polynomial in z of degree at least one such that p(0) = 0. Our results generalizes the results due to Zhang and Lü, Banerjee and
Majumder, Bhoosnurmath and Kabur, and Charak and Lal.
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1. Introduction and main result

Let C denote the complex plane and let f (z) be a non-constant meromorphic function defined on C. We assume that the reader is familiar
with the standard definitions and notions used in the Nevanlinna value distribution theory, such as T (r, f ),m(r, f ),N(r, f )(see [5, 7, 10, 11]).
By S(r, f ) we denote any quantity satisfying the condition S(r, f ) = ◦(T (r, f )) as r→ ∞ possibly outside an exceptional set of finite linear
measure. A meromorphic function a(z) is called a small function with respect to f (z) if either a≡ ∞ or T (r,a) = S(r, f ). We denote by S( f )
the collection of all small functions with respect to f . Clearly C∪{∞} ∈ S( f ) and S( f ) is a field over the set of complex numbers. For
a ∈ C∪{∞} the quantities

δ (a, f ) = 1− limsup
r→∞

N(r, 1
f−a )

T (r, f )

and

Θ(a, f ) = 1− limsup
r→∞

N(r, 1
f−a )

T (r, f )

are respectively called the deficiency and ramification index of a for the function f .

In this paper, we also need the following definitions:

Definition 1.1. Let f (z) and g(z) be two nonconstant meromorphic functions and let a(z) ∈ S( f )∩ S(g). We write E(a, f ) = {z ∈ C :
f (z)−a(z) = 0}, where zeros of f (z)−a(z) are counted according to their multiplicities. Also by E(a, f ), we denote the zeros of f (z)−a(z),
where a zero is counted only once. We say that f and g share the function a(z) CM(counting multiplicity) if E(a, f ) = E(a,g). Further, if
E(a, f ) = E(a,g) we say that f and g share the function a(z) IM(ignoring multiplicity).

Definition 1.2. Let k be a nonnegative integer or infinity and a(z) ∈ S( f ). We denote by Ek(a, f ) the set of all zeros of f −a, where a zero
of multiplicity m is counted m times if m≤ k and k+1 times if m > k. If Ek(a, f ) = Ek(a,g), we say that f , g share the function a(z) with
weight k. We write f and g share (a,k) to mean that f and g share the function a(z) with weight k. Since Ek(a, f ) = Ek(a,g) implies that
El(a, f ) = El(a,g) for any integer l (0≤ l < k), if f , g share (a,k), then f , g share (a, l), (0≤ l < k). Moreover, we note that f and g share
the function a(z) IM (ignoring multilicity) or CM (counting multiplicity) if and only if f and g share (a,0) or (a,∞) respectively.
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Definition 1.3. Let f and g share 1 IM and let z0 be a zero of f −1 with multiplicity m and a zero of g−1 with multiplicity n. We denote by
N1)

E (r, 1
f−1 ) the counting function of the zeros of f −1 when m = n = 1. By N(2

E (r, 1
f−1 ) we denote the counting function of the zeros of f −1

when m = n ≥ 2 and by NL(r, 1
f−1 ) we denote the counting function of the zeros of f −1 when m > n ≥ 1; each point in these counting

functions is counted only once. Similarly, we can define the terms N1)
E (r, 1

g−1 ), N(2
E (r, 1

g−1 ) and NL(r, 1
g−1 ). In addition, we denote by

N f>k(r, 1
g−1 ) the reduced counting function of those zeros of f −1 and g−1 such that m > n = k and Ng>k(r, 1

f−1 ) is defined analogously.

Definition 1.4. Let n0 j,n1 j,n2 j, ...,nk j are nonnegative integers. The expression

M j[ f ] = ( f )n0 j ( f (1))n1 j ( f (2))n2 j ( f (k))nk j

is called a differential monomial generated by f of degree d(M j) =
k
∑

i=0
ni j and weight ΓM j =

k
∑

i=0
(i+1)ni j. Let a j ∈ S( f ) and a j 6≡ 0( j =

1,2, ..., t). The sum P[ f ] =
t
∑

j=1
a jM j[ f ] is called a differential polynomial generated by f of degree d(P) = max{d(M j) : 1 ≤ j ≤ t} and

weight ΓP = max{ΓM j : 1≤ j ≤ t}. The numbers dP = min{d(M j) : 1≤ j ≤ t} and k (the highest order of the derivative of f in P[ f ]) are
called respectively the lower degree and the order of P[ f ]. P[ f ] is said to be homogeneous differential polynomial of degree d if dP = dP = d.
P[ f ] is called a linear differential Polynomial generated by f if dP = 1. Otherwise, P[ f ] is called non-linear differential polynomial. Also,

we denote by Q the quantity Q = max1≤ j≤t
k
∑

i=0
i.ni j.

For the last few decades, the value sharing problems related to a meromorphic function f and its derivative f (k) have been a more widely stud-
ied subtopic among the researchers(see [6, 8, 9]) of the uniqueness theory of entire and meromorphic functions in the field of complex analysis.

In 2008, Zhang and Lü[13] proved the following result:

Theorem 1.5. Let k, n be positive integers, f be a nonconstant meromorphic function, and a(6≡ 0,∞) be a meromorphic function satisfying
T (r,a) = ◦(T (r, f )) as r→ ∞. If f n and f (k) share a IM and

(2k+6)Θ(∞, f )+4Θ(0, f )+2δ2+k(0, f )> 2k+12−n,

or f n and f (k) share a CM and

(k+3)Θ(∞, f )+2Θ(0, f )+δ2+k(0, f )> k+6−n,

then f n ≡ f (k).

Bhoosnurmath and Kabbur [3] considered the uniqueness of f and P[ f ], which is the more natural extention of f (k) and proved the following
result:

Theorem 1.6. Let f be a nonconstant meromorphic function and a(6≡ 0,∞) be a meromorphic function satisfying T (r,a) = ◦(T (r, f )) as
r→ ∞. Let P[ f ] be a nonconstant differential polynomial of f . If f and P[ f ] share a IM and

(2Q+6)Θ(∞, f )+(2+3d(P))δ (0, f )> 2Q+2d(P)+d(P)+7,

or if f and P[ f ] share a CM and

3Θ(∞, f )+(d(P)+1)δ (0, f )> 4,

then f ≡ P[ f ].

Banerjee and Majumder [2] considered the weighted sharing of values of f n and ( f m)(k) and proved the following result:

Theorem 1.7. Let f be a nonconstant meromorphic function, k,n,m∈N and l be a non-negative integer. Suppose a(6≡ 0,∞) is a meromorphic
function satisfying T (r,a) = ◦(T (r, f )) as r→ ∞ such that f n and ( f m)(k) share (a, l). If l ≥ 2 and

(k+3)Θ(∞, f )+(k+4)Θ(0, f )> 2k+7−n,

or l = 1 and

(k+
7
2
)Θ(∞, f )+(k+

9
2
)Θ(0, f )> 2k+8−n,

or l = 0 and

(2k+6)Θ(∞, f )+(2k+7)Θ(0, f )> 4k+13−n,

then f n ≡ ( f m)(k).

Motivated by such uniqueness investigation, Charak and Lal [4] considered the uniqueness of p( f ) and P[ f ] sharing (a, l), where p(z) is a
polynomial of degree n ≥ 1. They have shown by an example that in general this is not true, but under certain essential conditions they
proved the following result:
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Theorem 1.8. Let f be a nonconstant meromorphic function, a(6≡ 0,∞) be a meromorphic function satisfying T (r,a) = ◦(T (r, f )) as r→ ∞,
and p(z) be a polynomial of degree n≥ 1 with p(0) = 0. Let P[ f ] be a nonconstant differential polynomial of f . Suppose p( f ) and P[ f ]
share (a, l) with one of the following conditions:

(i) l ≥ 2 and

(Q+3)Θ(∞, f )+2nΘ(0, p( f ))+d(P)δ (0, f )> Q+3+2d(P)−d(P)+n,

(ii) l = 1 and

(Q+
7
2
)Θ(∞, f )+

5n
2

Θ(0, p( f ))+d(P)δ (0, f )> Q+
7
2
+2d(P)−d(P)+

3n
2
,

(iii) l = 0 and

(2Q+6)Θ(∞, f )+4nΘ(0, p( f ))+2d(P)δ (0, f )> 2Q+6+4d(P)−2d(P)+3n.

Then p( f )≡ P[ f ].

Regarding Theorems 1.1−1.4, it is natural to ask the following question:

Question 1.9. What will happen when the small function a(z) is replaced by a set of small functions
Sm = {a(z),a(z)ω, ...,a(z)ωm−1} in Theorems 1.1−1.4, where ω = cos 2π

m + isin 2π

m and m is a positive integer?

Now, we recall the following definition:

Definition 1.10. [8] Let S be a subset of S( f )∩S(g). We denote by E f (S) the set ∪a∈S{z : f (z)−a(z) = 0}, where each zero is counted
according to its multiplicity. If we do not count the multiplicity the set ∪a∈S{z : f (z)−a(z) = 0} is denoted by E f (S). Let k be a nonnegative
integer or infinity. We denote by E f (S,k) the set ∪a∈SEk(a, f ). Clearly E f (S) = E f (S,∞) and E f (S) = E f (S,0). If E f (S,k) = Eg(S,k) we
say that f , g share the set S with weight k and we write f , g share (S,k) to mean that f , g share the set S with weight k. Moreover, we note
that f and g share the set S IM (ignoring multilicity) or CM (counting multiplicity) if and only if f and g share (S,0) or (S,∞) respectively.

In this paper, we consider the weighted set sharing of p( f ) and P[ f ] and prove the following result:

Theorem 1.11. Let f be a nonconstant meromorphic function and p(z) be a polynomial in z of degree n (≥ 1) with p(0) = 0. Let
a(z) (6≡ 0,∞) be an element of S( f ). Let P[ f ] be a nonconstant differential polynomial of f as defined in Definition 1.4. Suppose that p( f )
and P[ f ] share (Sm, l) with one of the following conditions:

(i) l ≥ 2 and

(mQ+3)Θ(∞, f )+2nΘ(0, p( f ))+md(P)δ (0, f )> (mQ+3)+2md(P)−md(P)

−(m−2)n, (1.1)

(ii) l = 1 and

(mQ+
7
2
)Θ(∞, f )+

5n
2

Θ(0, p( f ))+d(P)δ (0, f )> mQ+
7
2
+(m+1)d(P)−md(P)

+(
5
2
−m)n, (1.2)

(iii) l = 0 and

(2mQ+6)Θ(∞, f )+4nΘ(0, p( f ))+2md(P)δ (0, f )> 2mQ+6+4md(P)−2md(P)

+(4−m)n. (1.3)

Then P[ f ] = t p( f ) for some t such that tm = 1.

2. Lemmas

In this section we state some lemmas which will be needed in the sequel.

Lemma 2.1. [3] Let f be a nonconstant meromorphic function and P[ f ] be a differential polynomial of f . Then

m

(
r,

P[ f ]

f d(P)

)
≤

(
d(P)−d(P)

)
m
(

r,
1
f

)
+S(r, f ), (2.1)

N

(
r,

P[ f ]

f d(P)

)
≤ (d(P)−d(P))N

(
r,

1
f

)
+Q

[
N(r, f )+N

(
r,

1
f

)]
+S(r, f ), (2.2)

N
(

r,
1

P[ f ]

)
≤ QN(r, f )+(d(P)−d(P))m

(
r,

1
f

)
+N

(
r,

1

f d(P)

)
+S(r, f ). (2.3)
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Lemma 2.2. [12] Let f and g be two nonconstant meromorphic functions. If f and g share (1,0), then

NL

(
r,

1
f −1

)
≤ N

(
r,

1
f

)
+N(r, f )+S(r), (2.4)

where S(r) = ◦(T (r)) as r→ ∞ with T (r) = max{T (r, f ),T (r,g)}.

Lemma 2.3. [1] Let f and g be two nonconstant meromorphic functions. If f and g share (1,1), then

2NL

(
r,

1
f −1

)
+2NL

(
r,

1
g−1

)
+N(2

E

(
r,

1
f −1

)
−N f>2

(
r,

1
g−1

)
≤ N

(
r,

1
g−1

)
−N

(
r,

1
g−1

)
(2.5)

3. Proof of the Main Theorem 1.11

Proof. Let p(z) = zn +an−1zn−1 + ...+a1z, where a1,a2, ...an−1 are constants. Let F1 =
p( f )

a and G1 =
P[ f ]

a . Set F = (F1)
m, G = (G1)

m.
Then F and G share (1, l) with the possible exception of the zeros and poles of a(z). Also we have

N(r,F) = N(r, f )+S(r, f ) and N(r,G) = N(r, f )+S(r, f )

We define

ψ =

(
F ′′

F ′
− 2F ′

F−1

)
−
(

G′′

G′
− 2G′

G−1

)
(3.1)

Suppose that ψ 6≡ 0. Then m(r,ψ) = S(r, f ).
By Second Fundamental Theorem of Nevanlinna, we have

T (r,F)+T (r,G) ≤ 2N(r, f )+N
(

r,
1
F

)
+N

(
r,

1
F−1

)
+N

(
r,

1
G

)
+N

(
r,

1
G−1

)
−N0

(
r,

1
F ′

)
−N0

(
r,

1
G′

)
+S(r, f ) (3.2)

Case 1: l ≥ 1. If z0 is a common simple 1-point of F and G, then substituting their Taylor series at z0 in ψ(z), we see that z0 is a zero of
ψ(z). Then we get

N1)
E

(
r,

1
F−1

)
≤ N

(
r,

1
ψ

)
+S(r, f )

≤ T (r,ψ)+S(r, f )

≤ N(r,ψ)+S(r, f )

≤ N(r, f )+N(2

(
r,

1
F

)
+N(2

(
r,

1
G

)
+NL

(
r,

1
F−1

)
+NL

(
r,

1
G−1

)
+N0

(
r,

1
F ′

)
+N0

(
r,

1
G′

)
+S(r, f ) (3.3)

Now,

N
(

r,
1

F−1

)
+N

(
r,

1
G−1

)
= N1)

E

(
r,

1
F−1

)
+N(2

E

(
r,

1
F−1

)
+NL

(
r,

1
F−1

)
+NL

(
r,

1
G−1

)
+N

(
r,

1
G−1

)
+S(r, f )

≤ N(r, f )+N(2

(
r,

1
F

)
+N(2

(
r,

1
G

)
+2NL

(
r,

1
F−1

)
+2NL

(
r,

1
G−1

)
+N(2

E

(
r,

1
F−1

)
+N

(
r,

1
G−1

)
+N0

(
r,

1
F ′

)
+N0

(
r,

1
G′

)
+S(r, f ) (3.4)

Subcase 1.1: l = 1.
We have,

NL

(
r,

1
F−1

)
≤ 1

2
N
(

r,
1
F ′
| F 6= 0

)
≤ 1

2
N(r,F)+

1
2

N
(

r,
1
F

)
(3.5)

where N
(
r, 1

F ′ | F 6= 0
)

denotes the zeros of F ′, which are not the zeros of F .
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Now, from (2.5) and (3.5), we get

2NL

(
r,

1
F−1

)
+2NL

(
r,

1
G−1

)
+N(2

E

(
r,

1
F−1

)
+N

(
r,

1
G−1

)
≤ N

(
r,

1
G−1

)
+NL

(
r,

1
F−1

)
+S(r, f )

≤ N
(

r,
1

G−1

)
+

1
2

N(r, f )+
1
2

N(r,
1
F
)+S(r, f ) (3.6)

From (3.4) and (3.6), we have

N
(

r,
1

F−1

)
+N

(
r,

1
G−1

)
≤ N(r, f )+N(2

(
r,

1
F

)
+N(2

(
r,

1
G

)
+

1
2

N (r, f )+
1
2

N
(

r,
1
F

)
+N

(
r,

1
G−1

)
+N0

(
r,

1
F ′

)
+N0

(
r,

1
G′

)
+S(r, f )

≤ N(r, f )+N(2

(
r,

1
F

)
+N(2

(
r,

1
G

)
+

1
2

N (r, f )+
1
2

N
(

r,
1
F

)
+T (r,G)+N0

(
r,

1
F ′

)
+N0

(
r,

1
G′

)
+S(r, f ) (3.7)

From (2.3), (3.2) and (3.7), we get

T (r,F)+T (r,G) ≤ 2N(r, f )+N
(

r,
1
F

)
+N

(
r,

1
G

)
+N(r, f )+N(2

(
r,

1
F

)
+N(2

(
r,

1
G

)
+

1
2

N(r, f )+
1
2

N
(

r,
1
F

)
+T (r,G)+S(r, f )

⇒ T (r,F) ≤ 7
2

N(r, f )+
5
2

N
(

r,
1
F

)
+N

(
r,

1
G

)
+S(r, f )

≤ 7
2

N(r, f )+
5
2

N
(

r,
1

p( f )

)
+mN

(
r,

1
P[ f ]

)
+S(r, f )

≤
(

mQ+
7
2

)
N(r, f )+

5
2

N
(

r,
1

p( f )

)
+m{d(P)−d(P)}T (r, f )

+d(P)N
(

r,
1
f

)
+S(r, f )

≤
[(

mQ+
7
2

)
{1−Θ(∞, f )}+ 5n

2
{1−Θ(0, p( f ))}

+d(P){1−δ (0, f )}
]
T (r, f )+m{d(P)−d(P)}T (r, f )+S(r, f )

Now,

mnT (r, f ) = T (r,F)+S(r, f )

≤
[(

mQ+
7
2

)
{1−Θ(∞, f )}+ 5n

2
{1−Θ(0, p( f ))}

+d(P){1−δ (0, f )}+m(d(P)−d(P))
]
T (r, f )+S(r, f )

⇒
[(

mQ+
7
2

)
Θ(∞, f )+

5n
2

Θ(0, p( f ))+d(P)δ (0, f )

−mQ− 7
2
− 5n

2
+mn− (m+1)d(P)+md(P)

]
T (r, f )≤ S(r, f )

i.e.,(
mQ+

7
2

)
Θ(∞, f )+

5n
2

Θ(0, p( f ))+d(P)δ (0, f )

≤ mQ+
7
2
+(m+1)d(P)−md(P)+

(
5
2
−m

)
n,

which contradict (1.2).
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Subcase 1.2: l ≥ 2.
In this case, we have,

2NL

(
r,

1
F−1

)
+2NL

(
r,

1
G−1

)
+N(2

E

(
r,

1
F−1

)
+N

(
r,

1
G−1

)
≤ N

(
r,

1
G−1

)
+S(r, f )

Therefore from (3.4), we obtain

N
(

r,
1

F−1

)
+N

(
r,

1
G−1

)
≤ N(r, f )+N(2

(
r,

1
F

)
+N(2

(
r,

1
G

)
+N

(
r,

1
G−1

)
+N0

(
r,

1
F ′

)
+N0

(
r,

1
G′

)
+S(r, f )

≤ N(r, f )+N(2

(
r,

1
F

)
+N(2

(
r,

1
G

)
+T (r,G)

+N0

(
r,

1
F ′

)
+N0

(
r,

1
G′

)
+S(r, f ) (3.8)

From (2.3), (3.2) and (3.8), we have

T (r,F) ≤ 3N(r, f )+N(2

(
r,

1
F

)
+N(2

(
r,

1
G

)
+N

(
r,

1
F

)
+N

(
r,

1
G

)
+S(r, f )

≤ 3N(r, f )+2N
(

r,
1

p( f )

)
+mN

(
r,

1
P[ f ]

)
+S(r, f )

≤ (mQ+3)N(r, f )+2N
(

r,
1

p( f )

)
+m{d(P)−d(P)}T (r, f )+

md(P)N
(

r,
1
f

)
+S(r, f )

≤ [(mQ+3){1−Θ(∞, f )}+2n{1−Θ(0, p( f ))}
+md(P){1−δ (0, f )}]T (r, f )+m(d(P)−d(P))T (r, f )+S(r, f )

Now

mnT (r, f ) = T (r,F)+S(r, f )

≤ [(mQ+3){1−Θ(∞, f )}+2n{1−Θ(0, p( f ))}
+md(p){1−δ (0, f )}+m(d(p)−d(p))]T (r, f )+S(r, f )

⇒
[
{(mQ+3)Θ(∞, f )+2nΘ(0, p( f ))+md(P)δ (0, f )}

−{(mQ+3)+2n−mn+2md(P)−md(P)}
]
T (r, f )≤ S(r, f )

i.e.,

(mQ+3)Θ(∞, f )+2nΘ(0, p( f ))+md(P)δ (0, f )≤ (mQ+3)+2md(P)−md(P)− (m−2)n,

which contradict (1.1).
Case 2: l = 0.
In this case, we have

N
(

r,
1

F−1

)
+N

(
r,

1
G−1

)
≤ N1)

E

(
r,

1
F−1

)
+N(2

E

(
r,

1
F−1

)
+NL

(
r,

1
F−1

)
+NL

(
r,

1
G−1

)
+N

(
r,

1
G−1

)
+S(r, f )

≤ N(r, f )+N(2

(
r,

1
F

)
+N(2

(
r,

1
G

)
+2NL

(
r,

1
F−1

)
+NL

(
r,

1
G−1

)
+N

(
r,

1
G−1

)
+N0

(
r,

1
F ′

)
+N0

(
r,

1
G′

)
+S(r, f ) (3.9)
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From (2.3), (2.4), (3.2) and (3.9), we obtain

T (r,F) ≤ 3N(r, f )+N(2

(
r,

1
F

)
+N(2

(
r,

1
G

)
+N

(
r,

1
F

)
+N

(
r,

1
G

)
+2NL

(
r,

1
F−1

)
+NL

(
r,

1
G−1

)
+S(r, f )

≤ 6N(r, f )+4N
(

r,
1
F

)
+2N

(
r,

1
G

)
+S(r, f )

≤ 6N(r, f )+4N
(

r,
1

p( f )

)
+2mN

(
r,

1
P[ f ]

)
+S(r, f )

≤
[
(2mQ+6){1−Θ(∞, f )}+4n{1−Θ(0, p( f ))}+2m{d(P)−d(P)}
+2md(P){1−δ (0, f )}

]
T (r, f )+S(r, f )

Now,

mnT (r,F) = T (r,F)+S(r, f )

≤
[
{(2mQ+6)Θ(∞, f )+4nΘ(0, p( f ))+2md(P)δ (0, f )}
+{2mQ+6+4n+2m(d(P)−d(P))+2md(P)}

]
T (r, f )+S(r, f )

⇒
[
{(2mQ+6)Θ(∞, f )+4nΘ(0, p( f ))+2md(P)δ (0, f )}

−{2mQ+6+4n−mn+4md(P)−2md(P)}
]
T (r, f )≤ S(r, f )

i.e.,

(2mQ+6)Θ(∞, f )+4nΘ(0, p( f ))+2md(P)δ (0, f )≤ 2mQ+6+4md(P)−2md(P)+(4−m)n

which contradict (1.3).

Therefore,

ψ ≡ 0, i.e.,
F ′′

F ′
− 2F ′

F−1
=

G′′

G′
− 2G′

G−1

Integrating, we get

1
F−1

=
C

G−1
+D, (3.10)

where C 6= 0 and D are constant.
We consider the following three cases.
Case I: D 6= 0,−1
Rewriting (3.10) as

G−1
C

=
F−1

D+1−DF

we have

N(r,G) = N
(

r,
1

F− (D+1)/D

)
By Second Fundamental Theorem of Nevanlinna, we have

mnT (r, f ) = T (r,F)+S(r, f )

≤ N(r,F)+N
(

r,
1
F

)
+N

(
r,

1
F− (D+1)/D

)
+S(r, f )

≤ N(r, f )+N
(

r,
1

p( f )

)
+N (r,G)+S(r, f )

≤ 2N(r, f )+N
(

r,
1

p( f )

)
+S(r, f )

≤
[
2{1−Θ(∞, f )}+n{1−Θ(0, p( f ))}

]
T (r, f )+S(r, f )

i.e.,
[
2Θ(∞, f )+nΘ(0, p( f ))+(m−1)n−2

]
T (r, f )≤ S(r, f )

which contradicts (1.1), (1.2), and (1.3).
Case II: D = 0
From (3.10), we obtain

G =CF− (C−1) (3.11)
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Therefore if C 6= 1, we have

N
(

r,
1
G

)
= N

(
r,

1
F− (C−1)/C

)
By the Second Fundamental Theorem of Nevanlinna, we have

mnT (r, f ) = T (r,F)+S(r, f )

≤ N(r,F)+N
(

r,
1
F

)
+N

(
r,

1
F− (C−1)/C

)
+S(r, f )

≤ N(r, f )+N
(

r,
1
F

)
+N

(
r,

1
G

)
+S(r, f )

≤ N(r, f )+N
(

r,
1

p( f )

)
+N

(
r,

1
P[ f ]

)
+S(r, f )

≤ (Q+1)N(r, f )+N
(

r,
1

p( f )

)
+{d(P)−d(P)}T (r, f )

+d(P)N
(

r,
1
f

)
+S(r, f )

≤
[
(Q+1){1−Θ(∞, f )}+n{1−Θ(0, p( f ))}+d(P){1−δ (0, f )}

]
T (r, f )

+{d(P)−d(P)}T (r, f )+S(r, f )

i.e.,[
(Q+1)Θ(∞, f )+nΘ(0, p( f ))+d(P)δ (0, f )

−{Q+1−n+mn+2d(P)−d(P)}
]
T (r, f )≤ S(r, f )

which contradicts (1.1), (1.2), and (1.3).

Therefore C = 1 and from (3.11), we have

F ≡ G, i.e., P[ f ] = t p( f ),

for some t such that tm = 1.

Case III: D =−1
From (3.10), we obtain

1
F−1

=
C

G−1
−1 (3.12)

Therefore if C 6=−1, then

N
(

r,
1
G

)
= N

(
r,

1
F− (C+1)/C

)
and proceeding as in Case II, we arrived at a contradiction.

Therefore for C =−1 and from (3.12), we obtain

FG = 1, i.e.,
(

p( f )
a

.
P[ f ]

a

)m
= 1

So

p( f )P[ f ]
a2 = t, i.e., p( f )P[ f ] = ta2

for some t such that tm = 1.

Then

N(r, f )+N
(

r,
1
f

)
= S(r, f )
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By using (2.1) and (2.2), we have

(n+d(P))T (r, f ) ≤ T

(
r,

ta2

f n+d(p)

)
+S(r, f )

≤ T

(
r,

p( f )
f n .

P[ f ]

f d(p)

)
+S(r, f )

≤ (n−1)T (r, f )+T

(
r,

P[ f ]

f d(p)

)
+S(r, f )

≤ (n−1)T (r, f )++{d(P)−d(P)}T (r, f )+S(r, f )

i.e.,(1+d(P))T (r, f ) ≤ S(r, f ),

which contradict (1.1), (1.2) and (1.3).

Remark 3.1. For m = 1 in Theorem 1.11, we get Theorem 1.8.

Corollary 3.2. Let f be a nonconstant meromorphic function and p(z) be a polynomial in z of degree n (≥ 1) with p(0) = 0. Let a(z) (6≡ 0,∞)
be an element of S( f ). Let P[ f ] be a nonconstant homogeneous differential polynomial in f of degree d as defined in Definition 1.4. Suppose
that p( f ) and P[ f ] share (Sm, l) with one of the following conditions:

(i) l ≥ 2 and

(Q+3)Θ(∞, f )+2nΘ(0, p( f ))+dδ (0, f )> Q+d +n+3,

(ii) l = 1 and

(Q+
7
2
)Θ(∞, f )+

5n
2

Θ(0, p( f ))+dδ (0, f )> Q+d +
3n
2

+
7
2
,

(iii) l = 0 and

(2Q+6)Θ(∞, f )+4nΘ(0, p( f ))+2dδ (0, f )> 2Q+2d +3n+6.

Then P[ f ] = t p( f ) for some t such that tm = 1.
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