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Abstract

In this paper, we prove the Mittag-Leffler-Hyers-Ulam stability of Cauchy fractional differential equations in the unit disk for the linear and
non-linear cases.
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1. Introduction

Fractional differential and integral equations can serve as excellent tools for description of mathematical modelling of systems. It also serves
as an excellent tool for description of hereditary properties of various materials and processes. For more details on fractional calculus theory,
one can see the monographs of Kilbas et al. [5], Miller and Ross [6]and Podlubny [7].
A classical problem in the theory of functional equations is that: Under what conditions there exists an additive mapping near an approximately
additive mapping? (for more details see [10]).The first answer to the question of Ulam was given by Hyers [1] in 1941 in the case of Banach
spaces: Let X1,X2 be two Banach spaces and ε > 0. Then for every mapping f : X1 −→ X2 satisfying ‖ f (x+ y)− f (x)− f (y)‖ ≤ ε for all
x,y ∈ X1, there exists a unique additive mapping g : X1 −→ X2 with the property ‖ f (x)−g(x)‖ ≤ ε, ∀x ∈ X1.
This type of stability is called Hyers-Ulam stability. In 1978, Th. M. Rassias [9] provided a remarkable generalization of the Hyers-Ulam
stability by considering variables on the right-hand side of the inequalities. Recently some authors ([2], [3], [4], [14], [15], [16], [17] and
[19]) extended the Ulam stability problem from an integer-order differential equation to a fractional-order differential equation. For more
results on Ulam type stability of fractional differential equations see [18, 11, 8, 13] and [12].
In this paper we present Mittag-Leffler-Hyers-Ulam stability and continue our study by imposing the Mittag-Leffler-Hyers-Ulam stability for
Cauchy fractional differential equations in complex domain.

2. Conclusion

In this section, we introduce notations, definitions and preliminary facts which are used throughout this paper.

Definition 2.1. The fractional derivative of order α is defined for a function f (z) by

Dα
z f (z) :=

1
Γ(1−α)

d
dz

∫ z

o

f (ζ )
(z−ζ )α

dζ , 0≤ α < 1,

where the function f (z) is analytic in simply-connected region of the complex z-plane C containing the origin and the multiplicity of
(z−ζ )−α is removed by requiring log(z−ζ ) to be real when (z−ζ )> 0.

Definition 2.2. The fractional integral of order α is defined for a function f (z) by

Iα
z f (z) :=

1
Γ(α)

∫ z

o

f (ζ )
(z−ζ )1−α

dζ , α > 0,

where the function f (z) is analytic in simply-connected region of the complex z-plane C containing the origin and the multiplicity of
(z−ζ )−α is removed by requiring log(z−ζ ) to be real when (z−ζ )> 0.

Email addresses: nasrineghbali@gmail.com;eghbali@uma.ac.ir; vida.kalvandi@yahoo.com



Konuralp Journal of Mathematics 265

Remark 2.3. From Definitions (2.1) and (2.2), we have

Dα
z zµ =

Γ(µ +1)
Γ(µ−α +1)

zµ−α ,µ >−1;0≤ α < 1

and

Iα
z zµ =

Γ(µ +1)
Γ(µ +α +1)

zµ+α ,µ >−1;α > 0.

We need the following preliminaries in the squeal:
Let U := {z ∈ C : |z| < 1} be the open unit disk in the complex plan C and H denotes the space of all analytic functions on U. Also for
a ∈ C and m ∈ N, let H[a,m] be the subspace of H consisting of functions of the form

f (z) = a+amzm +am+1Zm+1 + ..., z ∈U.

Let A be the class of functions f , analytic in U and normalized by the conditions f (0) = f ′(0)−1 = 0. A function f ∈ A is called univalent
and denoted by class S if it is one to one in U.

Lemma 2.4. [20]. Let the function f (z) be in the class S . Then

|Dα
z f (z)| ≤ r1−α Γ(1−α)

∫ 1
0

1+rt
(1−t)α (1−rt)3 dt

(r = |z|, z ∈U, 0 < α < 1).

Lemma 2.5. [20]. Let the function f (z) be in the class S . Then

|D1+α
z f (z)| ≤ r1−α Γ(1−α)(rF(2,1;1−α;r))′

(r = |z|, z ∈U\{0}, 0 < α < 1).

Lemma 2.6. [20]. Let the function f (z) be in the class S . Then

|Dα
z f (z)| ≤ r1−α

Γ(1−α)

∫ 1
0

1+rt
(1−t)α (1−rt)3 dt (r = |z|,z ∈U,0 < α < 1).

2.1. Mittag-Lefller-Hyers-Ulam stability for fractional problems

In this section, we shall study the Mittag-Lefller-Ulam-Hyers stability for two different types of fractional problems involving the differential
operator in definition 2.1. The first initial value problem is

Dα
z u(z) = ρ(z)u(z) (1)

(u(0) = 0,z ∈U,0 < α < 1)

where u(z),ρ(z) ∈ H[U,C] (the space of analytic function on the unit disk ).
While the second problem is

Dα
z u(z) = f (z,u(z)) (2)

(u(0) = 0,z ∈U,0 < α < 1)

where f : U×C−→ C is analytic in z ∈U.
And the third one id the form

D1+α
z u(z) = f (z,u(z)) (3)

(u(z0) = c,z0 ∈U\{0},0 < α < 1)

where f : U×C−→ C is analytic in z ∈U and u(z) ∈ H[U,C].

Definition 2.7. problem (1) has the Mittag-Leffler-Ulam-Hyers stability if there exists a positive constant K with the following property :
for every ε > 0,u ∈ H[U,C] if

|Dα
z u(z)−ρ(z)u(z)| ≤ εEq(zq)

then there exists some v ∈ H[U,C] satisfying Dα
z v(z) = ρ(z)v(z) with v(0) = 0 such that |u(z)− v(z)|< KεEq(zq).

Definition 2.8. problem (2) has the Mittag-Leffler-Ulam-Hyers stability if there exists a positive constant K with the following property :
for every ε > 0,u ∈ H[U,C] if

|Dα
z u(z)− f (z,u(z))| ≤ εEq(zq)

then there exists some v ∈ H[U,C] satisfying Dα
z v(z) = f (z,v(z)) with v(0) = 0 such that |u(z)− v(z)|< KεEq(zq).

Definition 2.9. problem (3) has the Mittag-Leffler-Ulam-Hyers stability if there exists a positive constant K with the following property :
for every ε > 0,u ∈ H[U,C] if

|D1+α
z u(z)− f (z,u(z))| ≤ εEq(zq)

then there exists some v ∈ H[U,C] satisfying D1+α
z v(z) = f (z,v(z)) with v(z0) = c, z0 ∈U\{0} such that |u(z)− v(z)|< KεEq(zq).
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Theorem 2.10. Let u ∈ A such that for all z ∈U we have max |u(z)| ≤ hα

2 , where

hα =
r1−α

Γ(1−α)

∫ 1

0

1+ rt
(1− t)α (1− rt)3 dt.

If max |ρ(z)|< 1, then problem (1) has the Mittag-Leffler-Ulam-Hyers stability.

Proof. For every ε > 0,u ∈ A, we let

|Dα
z u(z)−ρ(z)u(z)| ≤ εEq(zq)

with u(0) = 0. In view of Lemma 2.1 we obtain max |Dα
z u(z)|= hα . consequently, we have:

max |u(z)| ≤max |Dα
z u(z)−ρ(z)u(z)|+max |ρ(z)|max |u(z)| ≤ εEq(zq)+max |ρ(z)|max |u(z)|.

Hence we have impose that

max |u(z)| ≤
εEq(zq)

1−max |ρ(z)|
= KεEq(zq).

Obviously v(z) = 0 is a solution of the problem (1) yields |u(z)| ≤ KεEq(zq). Hence (1) has the Mittag-Leffler-Ulam-Hyers stability.

Theorem 2.11. Let u ∈ A such that for all z ∈U we have max |u(z)| ≤ hα

2 , where

hα = r1−α

Γ(1−α)

∫ 1
0

1+rt
(1−t)α (1−rt)3 dt.

If

max | f (z,u(z))| ≤M max |u(z)|, M ∈ (0,1),

then problem (2) has the Mittag-Leffler-Ulam-Hyers stability.

Proof. For every ε > 0 and u ∈ A, we let

|Dα
z u(z)− f (z,u(z))| ≤ εEq(zq)

with u(0) = 0. In view of Lemma 2.2 we obtain max |Dα
z u(z)|= hα . Therefore, we have:

max |u(z)| ≤max |Dα
z u(z)− f (z,u(z)|+max | f (z,u(z))|

≤ εEq(zq)+max | f (z,u(z))| ≤ εEq(zq)+M max | u(z)|

that is

max |u(z)| ≤ εEq(zq)
1−M = KεEq(zq).

Obviously v(z) = Iα
z f (z,v(z))|z=0 = 0 yields |v(z)| ≤ KεEq(zq). Hence problem (2) has the Mittag-Leffler-Ulam-Hyers stability.

Theorem 2.12. Let u ∈ A such that for all z ∈U we have max |u(z)| ≤ gα

2
, where

gα = r−α

Γ(1−α)
(rF(2,1;1−α;r))′

and

| f (z,u(z))− f (z,v(z))| ≤ L|u(z)− v(z)|.

If L ∈ (0,1), then problem (3) has the Mittag-Leffler-Ulam-Hyers stability.

Proof. Since f is a contraction mapping, then the Banach fixed point theorem implies that problem (3) has a unique solution. For every
ε > 0 and u ∈ A, we let

|D1+α
z u(z)− f (z,u(z))|< εEq(zα )

with u(z0) = c and z0 ∈U\{0}. In view of Lemma 2.3, we impose

max |D1+α
z u(z)|= gα

and consequently we have

max |u(z)− v(z)| ≤max |Dα
z (u(z)− v(z))|

≤ |Dα
z u(z)−Dα

z v(z)− f (z,u(z))+ f (z,v(z))|+max | f (z,u(z))− f (z,v(z))| ≤ εEq(zq)+Lmax |u(z)− v(z)|.

Hence we receive

max |u(z)− v(z)| ≤ εEq(zq)
1−L = KεEq(zq).

It is clear that v(z0) = c for some z0 ∈U\{0} yields

|u(z)− v(z)| ≤ KεEq(zq).

Thus problem (3) has the Mittag-Leffler-Hyers-Ulam stability.
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