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Abstract

In this note, we have estimated the order of magnitude of double Walsh—Fourier coefficients of functions of the class (A', A2)BV (p(n) 1
*,,[0,1%).
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1. Introduction

In 2000, Akhobadze [1] introduced the generalized Wiener class BV (p(n) 1 p, @), where 1 < p < oo . This class is further general-
ized to the class ABV(p(n) 1 p,®) in [5] and the order of magnitude of single Walsh—Fourier coefficients of functions of the class
ABV (p(n) 1 o, ,[0,1]) is estimated in [2]. Recently in [6], introducing the generalized Wiener class (A', A2)BV (p(n) 1 p, ¢,[0,27]%),
where 1 < p < oo, the order of magnitude of double Fourier coefficients of functions of the class (A!, A2)BV (p(n) 1 o0, @, [0,27)?) is estimated.
Here, we estimate the order of magnitude of double Walsh—Fourier coefficients of functions of the class (A', A2)BV (p(n) 1 o, ,[0,1]?).

2. Notation and definitions

In the sequel I=[0,1), Ng = {0,1,2,---}, L is a class of non-decreasing sequences A = {A,};_, of positive numbers such that ¥, %
diverges, and @(n) is a real sequence such that ¢(1) > 2 and @(n) — e as n — eo.

Consider function f on R¥. For k = 1 and I = [a, b], define Af? = f(I) = f(b) — f(a). For k=2, I = [a,b] and J = [c,d], define
Afrs) = FUXT) = f(1,d) = f(L.¢) = f(b,d) ~ f(a,d) = [(b,€) + f(a,c),

Definition 2.1. Given \ = (A!,A?), where A" = {A[}7_, €L, forr=1,2,1<p(n) T pasn— e and 1 < p < «, a measurable function
f defined on a rectangle R? := [a,b] X [c,d] is said to be of p(n) — \ —bounded variation (that is, f € ABV (p(n) 1 p,@,R?)) if

X . b-a)c-d)
(ﬁR)Zglf{zs}u{%}{V/\pm(f’{”}’{’f}) A 0 }<’

where |
|f (L > 1;)[P) ) 70
Vo000 = (£
in which {I;} and {I;} are finite collections of non-overlapping subintervals in [a,b] and [c,d], respectively, and

SHLYALY) = 6({Ixi— 1 x] b A j—1,951)) = iifljf\(xi —xi-1) X (yj=yj-1)l-
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Consider a function f : T* = R defined by f(x,y) = g(x) +h(y), where g and & are any two arbitrary need not be bounded (or need not be

measurable) functions from I into R. Then V/\M (f,ﬁz) = 0. Thus, a function f € ABV(p(n) 1 p, (p,Rz) need not be bounded (or need not
be measurable).

This class is further generalized to the class A* BV (p(n) 1 p, @,R?) in the sense of Hardy as follows.

Definition 2.2. If f € ABV (p(n) T p, @,R?) is such that the marginal functions f(.,c) € A'BV (p(n) 1 p, ¢, [a,b]) and f(a,.) € A2BV (p(n) 1
D, 9,[c,d]) (see [5, Definition 1.1, p. 215] for the definition of p(n) — A—bounded variation over |a,b)) then f is said to be of p(n) —
N* —bounded variation (that is, f € N*BV (p(n) 1 p, ¢,R>)).

If f € A*BV(p(n) 1 p,@,R?) then f is bounded and each of the marginal functions f(.,s) € A'BV(p(n) 1 p,@,[a,b]) and f(z,.) €
A’BV (p(n) 1 p,,[c,d]), where s € [c,d] and € [a,b] are fixed [6, p. 436].

Note that, for A! = A = {1} (that is, A} = A> = 1, for all n), the classes ABV (p(n) T p,®,R?) and \* BV (p(n) 1 p,@,R?) reduce
to the classes BVy (p(n) 1 p, @, R?) and BV (p(n) 1 p, @, R?), respectively. For p(n) = p, for all n, the classes ABV (p(n) 1 p, ¢,R*) and
N BV (p(n) 1 p,@,R%) reduce to the classes A BV (P) (R?) [3, Definition 4.2, p. 54] and \* BV (?) (R?), respectively. For p = co, the classes
ABV (p(n) 1 p,,R?) and A\* BV (p(n) 1 p, ¢,R?) reduce to the classes A\BV (p(n) T oo, @,R?) and \* BV (p(n) 1 co, ¢, R?), respectively.
For Al = A2 = {1} and p = o, the classes A BV (p(n) 1 p,@,R?) and A* BV (p(n) 1 p, @,R?) reduce to the classes BVy (p(n) 1 o0, @, R?)
and BVyy(p(n) 1 o, @, R?), respectively.

The Walsh orthonormal system { y;,(x) : m € No} on the unit interval I in the Paley enumeration is defined as follows.
Let

1, ifxe0,1),
ro(x) =
-1, ifxe[%,l);

and extend r((x) for the half-line [0, ) with period 1.

The Rademacher orthonormal system {ry(x) : k € Ny} is defined as
re(x) = r()(2kx)7 k=1,2,---;xel.

If

m= kaZk, eachm; =0or 1,
k=0

is the binary decomposition of m € Ny, then
Yin(x) = ITrZ“’(x)7 xel,
k=0

th

is called the m'" Walsh function in the Paley enumeration.

In particular, we have
Yo(x) =1 and You(x) = rp(x), m € Ny.
Any x € I can be written as

X =

Xy 27(“1), each xp, =0or 1.
k=0

For any x € I\ Q, there is only one expression of this form, where Q is a class of dyadic rationals in I. When x € Q there are two expressions
of this form, one which terminates in 0’s and one which terminates in 1’s.

For any x,y € I their dyadic sum is defined as
xby=Y -yl 27D,
k=0

Observe that, for each m € N, we have
Vin(x+y) = Y (X) Y (), x,y €L, x+y ¢ Q.

For a real-valued function f € L! (Ez), where f is 1—periodic in each variable, its double Walsh—Fourier series is defined as

&) =fley)~ Y FK) yn) yu() = Y Y, Fmn) yn(x) yu(y),

keN3 meNy neNy

where

7= Fmm = [ [ £63) vin() yalo) dedy

denotes the kth Walsh—Fourier coefficient of f.
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3. Results

We prove the following results.

Theorem 3.1. If f € ABV (p(n) 1 o0, 0,1°) NL=(*), then

fu2m) = : .

o P )
<Z IZk 11] ;Lz)

where
T(r)=min{s:seN, @(s) >r}, r>1.
Corollary 3.2. If f € \* BV (p(n) 1 o0, 9, 1), then (3.1) holds true.

Corollary 3.3. If f € BViy(p(n) 1o, ,1), then

A 1
et =0 ——— |,
(2u+v) )

where T(2'1V) is defined as in (3.2).

Corollary 3.3 follows from Theorem 3.1.

4. Proof of the results

Proof of Theorem 3.1. For fixed u,v € Ny, let h| = 2“% and hp = zy,lﬂ . Take

1 o1 1 1
g(xvy):f(xvy)—f(xwrzvﬂ) f(x+2bﬁvy)+f(X+2u+17y+2v+1)
=2
forall (x,y)el .

Form=2"and n=2", Y (h1) = Wu(hy) = —1 and ¥, (2) = ¥y (5) = 1 imply that

gt = Fnn) v (5 ) Fonn) vy ) T+ (7 ) i (557 ) Fomn

=4f(m,n)
and
4 f(m,n)| <

-/

o1 o1 o1
fley)—f (x y+2v+1) —f<x+ Wv)’) +f(x+ﬁ,y+2vﬁ>‘dxdy
1 1 1
f x+ﬁ7y+§ f x+2u7y+ +2v+1
11 1 1
ARSI TR o TR TR T +2v+1 dx dy
2 2 2 3
x+2u+1’y+2v+l —f x+2u+1’y+2t+l

.3 .2 .3 .3
ff(x+ﬁ,y+2vﬁ>+f(x+2uﬁ,y+2vﬁ)‘dxdy.

Similarly, we get

4|fmn|<

4 .4 5
2u+1 ’y+ v+l f X+ ST 2u+1 ’y+ 2v+1

.5 .4 .5 .5
ff(x+ﬁ,y+2vﬁ>+f<x+2uﬁ,y+2vﬁ)’dxdy

and in general we have

A7) < [ [, 18fitey)] dx .

where

(2k+1)

. 2j . 2k . 2j - (2k+1) S (2j+1) L 2k (2]-0—1)
Afjk(x’y):f( +214-4—1’)%'»21/-%-1) f(x+2u+l’er v+l AGE Ju+1 ’y+2v+l 1> Ju+1 y+

I

v+l

3.1

3.2)

.1

).
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forall j=1,...,2" and forall k= 1,...,2".

Dividing both sides of the above inequality by l} 7Lk2 and then summing over j = 1 to 2% and k = 1 to 2", we get

u v - ZZ ‘Af‘k(x:y”
4|f2 2 (Z Z ll 12) //—2 ! 1 1 dXdyv
j= lk 1

J=lk=1 11 A}{z)p(r(w"))+q(r<2u+w>

where g(7(24™")) is the index conjugate to p(T(2“"")).
Applying Holder’s inequality on the right side of the above inequality, we get

1 1
o qu Qv ‘Akay|p u+\> m u Qv m
472 (zzmz) //Z(zlkz BTy zzlm dx dy.
J

j=lk=1 j=lk=1

Hence,

1
u ~v & et Zuﬂ ‘Afk 7y |p ZHL ) P
4|f 2 2 (Z Z )Ll lz) //7 (Z Z — e 2,1 212 . (4'2)

Jj=1k=1 Jj=1lk=

For any x,y € R, all these points x+2jhy, x+(2j+ 1)y, for j=1,...,2" and y+2kh,, y+ (2k+1)hy, fork=1,...,2", lie in the interval
of length 1. Thus, f € ABV(p(n) 1 oo, (p,ﬁz) implies

20 2 A f i (x,y) [PER)\ 2GR
(ZZW =0(1).

j=lk=

This together with above inequality (4.2) imply that

1

/(242" =0

1
(c(24F7))

(22“ X l2)”

This completes the proof of the theorem.

Proof of Corollary 3.2. Since f € \* BV (p(n) 1 w0, @, 1) is bounded [6, p. 436] and A* BV (p(n) T 00, @,I2) C ABV (p(n) 1w, ¢,1%), the
Corollary 3.2 follows from Theorem 3.1.

One can extend these results for functions of N—variables (N > 2) analogously to the above-mentioned results for functions of two
variables.
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