A Study on Lorentzian α-Sasakian Manifolds

Rajendra Prasad ${ }^{1}$, Shashikant Pandey ${ }^{1}$, Sandeep Kumar Verma ${ }^{1 *}$ and Sumeet Kumar ${ }^{1}$
${ }^{1}$ Department of Mathematics \& Astronomy University of Lucknow, Lucknow-226007, U.P. INDIA.
*Corresponding author E-mail: skverma1208@gmail.com

Abstract

The object of the present paper is to study the geometric properties of Concircular curvature tensor on Lorentzian α-Sasakian manifold admitting a type of quarter-symmetric metric connection. In the last, we provide an example of 3-dimensional Lorentzian α-Sasakian manifold endowed with the quarter-symmetric metric connection which is under consideration is an η-Einstein manifold with respect to the quarter-symmetric metric connection.

Keywords: Concircular curvature tensor; η-Einstein manifold; Lorentzian α-Sasakian manifold; Quarter-symmetric metric connection. 2010 Mathematics Subject Classification: 53C15; 53C25; 53C40.

1. Introduction

In 1975, Golab [5] defined and studied quarter-symmetric connection in differentiable manifolds. A linear connection $\bar{\nabla}$ on an n-dimensional Riemannian manifold (M, g) is said to be a quarter-symmetric connection [5] if its torsion tensor T defined by
$T(X, Y)=\bar{\nabla}_{X} Y-\bar{\nabla}_{Y} X-[X, Y]$
satisfies
$T(X, Y)=\eta(Y) \phi X-\eta(X) \phi Y$,
where ϕ is a $(1,1)$ tensor field, η is a 1-form and X, Y are vector fields on $\Gamma(T M), \Gamma(T M)$ is the set of all differentiable vector fields on M. In particular, if $\phi X=X$, then the quarter-symmetric connection reduces to the semi-symmetric connection [4].
Thus the notion of the quarter-symmetric connection generalizes the notion of the semi-symmetric connection. If moreover, a quartersymmetric connection $\bar{\nabla}$ satisfies the condition

$$
\begin{equation*}
\left(\bar{\nabla}_{X} g\right)(Y, Z)=0 \tag{1.3}
\end{equation*}
$$

for all X, Y, Z on $\Gamma(T M)$, then $\bar{\nabla}$ is said to be a quarter-symmetric metric connection, otherwise it is said to be a quarter symmetric non-metric connection. Recently quarter-symmetric metric connection have been studied by several authors ([8], [9], [12]).
A differentiable manifold M is said to be a Lorentzian manifold, if M has a Lorentzian metric g, which is a symmetric non-degenerate $(0,2)$ tensor field of index 1 . Since the Lorentzian metric g is of index 1 therefore Lorentzian manifold M has not only spacelike vector fields but also lightlike and timelike vector fields. On a Lorentzian manifold this difference with Riemannian case gives interesting results. In 1989 , K. Matsumoto used a structure vector field $-\xi$ instead of ξ in an almost para contact manifold and associated a Lorentzian metric with this resulting structure, called it as Lorentzian almost para contact manifold.

Yildiz and Murathan studied [15] Lorentzian α-Sasakian manifolds in 2005 and obtained results for conformally flat and quasi-conformally flat Lorentzian α-Sasakian manifolds. In 2009, Yildiz et al. ([16, 17]), further studied on three dimensional Lorentzian α-Sasakian manifolds and a class of Lorentzian α-Sasakian manifolds and obtained some important results. In 2013, U.C. De and K. De ([3]) studied on Lorentzian Trans-Sasakian manifolds, which is a generalization of Lorentzian α-Sasakian manifolds.
A concircular transformation ([7], [13]) on an n-dimensional Riemannian manifold M is a transformation under which every geodesic circle of M transforms into a geodesic circle. Every concircular transformation is always a conformal transformation [7]. Thus the concircular geometry, is a generalization of inversive geometry in the sense that the change of metric is more general than that induced by a circle
preserving diffeomorphism (see also [2]). An interesting invariant of a concircular transformation is the concircular curvature tensor \bar{C}. It is defined by ([13], [14])
$\bar{C}(X, Y) Z=\bar{R}(X, Y) Z-\frac{\bar{r}}{2 n(2 n+1)}[g(Y, Z) X-g(X, Z) Y]$.
for all vector fields $X, Y, Z \in \Gamma(T M)$, where \bar{R} and \bar{r} be the curvature tensor and scalar curvature with respect to the quarter-symmetric metric connection $\bar{\nabla}$ respectively.
Using (1.4), we obtain
$` \bar{C}(X, Y, Z, W)=` \bar{R}(X, Y, Z, W)-\frac{\bar{r}}{2 n(2 n+1)}[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)]$,
where ' $\bar{C}(X, Y, Z, W)=g(\bar{C}(X, Y) Z, W),{ }^{`}(X, Y, Z, W)=g(\bar{R}(X, Y) Z, W)$, where $X, Y, Z, W \in \Gamma(T M)$ and \bar{C} is the concircular curvature tensor and \bar{r} is the scalar curvature with respect to the quarter-symmetric metric connection respectively. Riemannian manifolds with vanishing concircular curvature tensor are of constant curvature. Thus the concircular curvature tensor is a measure of the failure of a Riemannian manifold to be of constant curvature.

In this paper, we study a type of quarter-symmetric metric connection on Lorentzian α-Sasakian manifolds. The paper is organized as follows: After introduction section two gives some prerequisites of a Lorentzian α-Sasakian manifold. In section three, we obtain a relation between the quarter-symmetric metric connection and Levi-civita connection. In section four, curvature tensor and Ricci tensor of Lorentzian α-Sasakian manifold with respect to quarter-symmetric metric connection are given. Section five is devoted to the study of ξ-concircularly flat Lorentzian α-Sasakian manifold with respect to the quarter-symmetric metric connection. Quasi-concircularly flat and ϕ-concircularly flat Lorentzian α-Sasakian manifolds with respect to the quarter-symmetric metric connection have been studied in section six and seven respectively. In the next section, we study a Lorentzian α-Sasakian manifold satisfying $\bar{C} \cdot \bar{S}=0$ with respect to a quarter-symmetric metric connection. In the last, we construct an example of a 3-dimensional Lorentzian α-Sasakian manifold endowed with the quarter-symmetric metric connection.

2. Preliminaries

An $(2 n+1)$-dimensional differentiable manifold M is said to be a Lorentzian α-Sasakian manifold, if it admits a structure (ϕ, ξ, η, g) consisting of a $(1,1)$ tensor field ϕ, vector field $\xi, 1$-form η and a Lorentzian metric g satisfying
$\phi^{2} X=X+\eta(X) \xi$,
$\phi \circ \xi=0, \quad \eta \circ \phi=0, \eta(\xi)=-1, g(X, \xi)=\eta(X)$,
$g(\phi X, \phi Y)=g(X, Y)+\eta(X) \eta(Y)$,

$$
\begin{equation*}
\left(\nabla_{X} \phi\right) Y=\alpha\{g(X, Y) \xi+\eta(Y) X\} \tag{2.4}
\end{equation*}
$$

for any vector field X, Y on M, where ∇ denotes the covariant differentiation with respect to Lorentzian metric g.
Also a Lorentzian α-Sasakian manifold satisfies [16]
$\nabla_{X} \xi=\alpha \phi X$,
$\left(\nabla_{X} \eta\right) Y=\alpha g(X, \phi Y)$
for X, Y tangent to M.
Moreover, the curvature tensor R, the Ricci tensor S and the Ricci operator Q in a Lorentzian α-Sasakian manifold M with respect to the Levi-Civita connection ∇, satisfies following relations [16]
$R(\xi, X) Y=\alpha^{2}\{g(X, Y) \xi-\eta(Y) X\}$,
$R(X, Y) \xi=\alpha^{2}\{\eta(Y) X-\eta(X) Y\}$,
$R(\xi, X) \xi=-R(X, \xi) \xi=\alpha^{2}\{X+\eta(X) \xi\}$,
$S(X, \xi)=2 n \alpha^{2} \eta(X)$,
$S(\xi, \xi)=-2 n \alpha^{2}, \quad Q \xi=2 n \alpha^{2} \xi$,
$S(\phi X, \phi Y)=S(X, Y)-2 n \alpha^{2} g(X, Y)$,
for all vector fields $X, Y \in \Gamma(T M)$.

3. Relation Between the Quarter-Symmetric Metric Connection and Riemannian Connection

Let ∇ be a Riemannian connection and $\bar{\nabla}$ be a linear connection on Lorentzian α-Sasakian manifold M such that
$\bar{\nabla}_{X} Y=\nabla_{X} Y+H(X, Y)$,
where H is a tensor of type $(1,2)$. Now if $\bar{\nabla}$ be a quarter-symmetric connection on M, then we have [5]
$H(X, Y)=\frac{1}{2}\left[T(X, Y)+T^{\prime}(X, Y)+T^{\prime}(Y, X)\right]$,
where
$g\left(T^{\prime}(X, Y), Z\right)=g(T(Z, X), Y)$.

Using (1.2) in (3.3), we get
$T^{\prime}(X, Y)=\eta(X) \phi Y-g(\phi X, Y) \xi$.
In view of (1.2) and (3.4), equation (3.2) gives
$H(X, Y)=\eta(Y) \phi X-g(\phi X, Y) \xi$.
Hence from (3.1), a quarter-symmetric connection $\bar{\nabla}$ on a Lorentzian α-Sasakian manifold M is given by
$\bar{\nabla}_{X} Y=\nabla_{X} Y+\eta(Y) \phi X-g(\phi X, Y) \xi$.

Also we have
$\left(\bar{\nabla}_{X} g\right)(Y, Z)=X g(Y, Z)-g\left(\bar{\nabla}_{X} Y, Z\right)-g\left(Y, \bar{\nabla}_{X} Z\right)$

With the help of (3.6), after simplification (3.7) gives
$\left(\bar{\nabla}_{X} g\right)(Y, Z)=0, \quad \forall Y, Z \in \Gamma(T M)$.

By virtue of (3.6) and (3.8), we conclude that $\bar{\nabla}$ is a quarter-symmetric metric connection. Therefore (3.6) is the relation between Riemannian connection and quarter-symmetric metric connection on a Lorentzian α-Sasakian manifold.

4. Curvature Tensor and Ricci Tensor of Lorentzian α-Sasakian Manifold with respect to the

Quarter-Symmetric Metric Connection

Let $R(X, Y) Z$ and $\bar{R}(X, Y) Z$ be the curvature tensors of a Lorentzian α-Sasakian manifold M with respect to the Riemannian connection ∇ and quarter-symmetric metric connection $\bar{\nabla}$ respectively, then relation between $R(X, Y) Z$ and $\bar{R}(X, Y) Z$ is given by

$$
\begin{align*}
\bar{R}(X, Y) Z= & R(X, Y) Z+\alpha \eta(Z)[\eta(Y) X-\eta(X) Y] \tag{4.1}\\
& +(2 \alpha-1)[g(\phi X, Z) \phi Y-g(\phi Y, Z) \phi X] \\
& -\alpha[g(X, Z) \eta(Y)-g(Y, Z) \eta(X)] \xi
\end{align*}
$$

From (4.1), we have
$\bar{R}(\xi, X) Y=\left(\alpha^{2}-\alpha\right)[g(X, Y) \xi-\eta(Y) X]$,
$\bar{R}(X, Y) \xi=\left(\alpha^{2}-\alpha\right)[\eta(Y) X-\eta(X) Y]$,
$\bar{R}(\xi, Y) \xi=\left(\alpha^{2}-\alpha\right)[Y+\eta(Y) \xi]$.
Let $\left\{e_{1}, e_{2}, \ldots, e_{2 n}, e_{2 n+1}=\xi\right\}$ be a local orthonormal basis of vector fields in M. Since on a semi-Riemannian manifold, we have [10]
$\sum_{i=1}^{2 n+1} \varepsilon_{i} g\left(R\left(e_{i}, Y\right) Z, e_{i}\right)=S(Y, Z)$,
$\sum_{i=1}^{2 n+1} \varepsilon_{i} S\left(e_{i}, Y\right) g\left(e_{i}, Z\right)=S(Y, Z)$,
$\sum_{i=1}^{2 n+1} \varepsilon_{i} g\left(e_{i}, Y\right) g\left(e_{i}, Z\right)=g(Y, Z)$,
and
$\sum_{i=1}^{2 n+1} \varepsilon_{i} g\left(\phi e_{i}, e_{i}\right)=\operatorname{trace}(\phi)$,
where $\varepsilon_{i}=g\left(e_{i}, e_{i}\right), i=1,2, \ldots, 2 n+1$. Using above results on a Lorentzian α-Sasakian manifold, it can be easily verify that
$\sum_{i=1}^{2 n} g\left(R\left(e_{i}, Y\right) Z, e_{i}\right)=S(Y, Z)-\alpha^{2} g(\phi Y, \phi Z)$,
$\sum_{i=1}^{2 n} S\left(e_{i}, Y\right) g\left(e_{i}, Z\right)=S(Y, Z)+2 n \alpha^{2} \eta(Y) \eta(Z)$,
$\sum_{i=1}^{2 n} g\left(e_{i}, e_{i}\right)=2 n$,
$\sum_{i=1}^{2 n} g\left(e_{i}, Y\right) g\left(e_{i}, Z\right)=g(\phi Y, \phi Z)$,
$\sum_{i=1}^{2 n} g\left(\phi e_{i}, e_{i}\right)=\operatorname{trace}(\phi)$
and

$$
\begin{equation*}
\sum_{i=1}^{2 n} g\left(\bar{R}\left(e_{i}, Y\right) Z, e_{i}\right)=\bar{S}(Y, Z)-\left(\alpha^{2}-\alpha\right) g(\phi Y, \phi Z) \tag{4.10}
\end{equation*}
$$

Then from (4.1), we obtain

$$
\begin{align*}
\bar{S}(Y, Z)= & S(Y, Z)+\{(2 n+1) \alpha-1\} \eta(Y) \eta(Z) \tag{4.11}\\
& +(\alpha-1) g(Y, Z)-(2 \alpha-1) \operatorname{trace}(\phi) \Phi(Y, Z)
\end{align*}
$$

$\bar{S}(Y, \xi)=2 n\left(\alpha^{2}-\alpha\right) \eta(Y)$,
$\bar{S}(\xi, \xi)=-2 n\left(\alpha^{2}-\alpha\right)$,
$\bar{S}(\phi Y, \phi Z)=\bar{S}(Y, Z)-2 n \alpha^{2} g(Y, Z)-2 n \alpha \eta(Y) \eta(Z)$.
where \bar{S} and \bar{r} be the Ricci tensor and scalar curvature with respect to the quarter-symmetric metric connection $\bar{\nabla}$ respectively.

5. ξ-Concircularly Flat Lorentzian α-Sasakian Manifold with Respect to the Quarter-Symmetric Metric Connection

Definition 5.1. A Lorentzian α-Sasakian manifold is said to be ξ-concircularly flat [1] with respect to the quarter-symmetric metric connection if $\bar{C}(X, Y) \xi=0$, where $X, Y \in \Gamma(T M)$.

Theorem 5.2. A Lorentzian α-Sasakian manifold admitting a quarter-symmetric metric connection $\bar{\nabla}$ is ξ-concircularly flat if and only if the scalar curvature \bar{r} with respect to the quarter-symmetric metric connection is equal to $2 n(2 n+1)\left(\alpha^{2}-\alpha\right)$.

Proof. From (1.4), we have
$\bar{C}(X, Y) \xi=\bar{R}(X, Y) \xi-\frac{\bar{r}}{2 n(2 n+1)}[\eta(Y) X-\eta(X) Y]$.
Using (4.3) in (5.1), we have

$$
\begin{align*}
\bar{C}(X, Y) \xi= & \left(\alpha^{2}-\alpha\right)[\eta(Y) X-\eta(X) Y] \tag{5.2}\\
& -\frac{\bar{r}}{2 n(2 n+1)}[\eta(Y) X-\eta(X) Y] .
\end{align*}
$$

From (5.2), we have
$\bar{C}(X, Y) \xi=\left[\left(\alpha^{2}-\alpha\right)-\frac{\bar{r}}{2 n(2 n+1)}\right][\eta(Y) X-\eta(X) Y]$.
Thus from (5.3), if $\bar{C}(X, Y) \xi=0$, then $\bar{r}=2 n(2 n+1)\left(\alpha^{2}-\alpha\right)$ or $\eta(Y) X-\eta(X) Y=0$, implies that $\eta(X)=0$ which is not possible.
Conversely, if $\bar{r}=2 n(2 n+1)\left(\alpha^{2}-\alpha\right)$, then from (5.3), it follows that $\bar{C}(X, Y) \xi=0$.
This completes the proof of the theorem.

6. Quasi-Concircularly Flat Lorentzian α-Sasakian Manifold with Respect to the Quarter-Symmetric

Metric Connection

Definition 6.1. A Lorentzian α-Sasakian manifold is said to be quasi-concircularly flat with respect to the quarter-symmetric metric connection if
$‘ \bar{C}(\phi X, Y, Z, \phi W)=0$
where $X, Y, Z, W \in \Gamma(T M)$.
Definition 6.2. A Lorentzian α-Sasakian manifold is said to be an η-Einstein manifold [17] if its Ricci tensor S of the Levi-Civita connection is of the form
$S(X, Y)=a g(X, Y)+b \eta(X) \eta(Y)$,
where a and b are smooth functions on the manifold.
Theorem 6.3. If a Lorentzian α-Sasakian manifold admitting a quarter-symmetric metric connection is quasi-concircularly flat, then the manifold with respect to the quarter-symmetric metric connection is an η-Einstein manifold.

Proof. From (1.4), we have

$$
\begin{align*}
{ }_{C}^{C}(X, Y, Z, W)= & \tag{6.3}\\
& \bar{R}(X, Y, Z, W)-\frac{\bar{r}}{2 n(2 n+1)}[g(Y, Z) g(X, W) \\
& -g(X, Z) g(Y, W)] .
\end{align*}
$$

where ${ }^{`} \bar{C}(X, Y, Z, W)=g(\bar{C}(X, Y) Z, W)$ and ${ }^{\prime} \bar{R}(X, Y, Z, W)=g(\bar{R}(X, Y) Z, W)$.
Now putting $X=\phi X$ and $W=\phi W$ in (6.3), we get

$$
\begin{align*}
‘ \bar{C}(\phi X, Y, Z, \phi W)= & ‘ \bar{R}(\phi X, Y, Z, \phi W)-\frac{\bar{r}}{2 n(2 n+1)}[g(Y, Z) g(\phi X, \phi W) \tag{6.4}\\
& -g(\phi X, Z) g(Y, \phi W)] .
\end{align*}
$$

Using (6.1) in (6.4), we get
$‘ \bar{R}(\phi X, Y, Z, \phi W)=\frac{\bar{r}}{2 n(2 n+1)}[g(Y, Z) g(\phi X, \phi W)-g(\phi X, Z) g(Y, \phi W)]$.
Let $\left\{e_{1}, e_{2}, \ldots ., e_{2 n}, \xi\right\}$ be a local orthonormal basis of vector fields in M, then $\left\{\phi e_{1}, \phi e_{2}, \ldots ., \phi e_{2 n}, \xi\right\}$ is also a local orthonormal basis. Putting $X=W=e_{i}$ in (6.5) and summing over $i=1$ to $2 n$, we obtain
$\sum_{i=1}^{2 n} \cdot \bar{R}\left(\phi e_{i}, Y, Z, \phi e_{i}\right)=\frac{\bar{r}}{2 n(2 n+1)} \sum_{i=1}^{2 n}\left[g(Y, Z) g\left(\phi e_{i}, \phi e_{i}\right)-g\left(\phi e_{i}, Z\right) g\left(Y, \phi e_{i}\right)\right]$,
So by virtue of $(2.3),(4.7),(4.8)$ and (4.10), the equation (6.6) takes the form
$\bar{S}(Y, Z)=\left[\frac{\bar{r}(2 n-1)}{2 n(2 n+1)}+\left(\alpha^{2}-\alpha\right)\right] g(Y, Z)-\left[\frac{\bar{r}}{2 n(2 n+1)}-\left(\alpha^{2}-\alpha\right)\right] \eta(Y) \eta(Z)$.
or
$\bar{S}(Y, Z)=a g(Y, Z)+b \eta(Y) \eta(Z)$,
where $a=\left[\frac{\bar{r}(2 n-1)}{2 n(2 n+1)}+\left(\alpha^{2}-\alpha\right)\right]$ and $b=-\left[\frac{\bar{r}}{2 n(2 n+1)}-\left(\alpha^{2}-\alpha\right)\right]$.
From which it follows that the manifold is an η-Einstein manifold with respect to the quarter-symmetric metric connection.
This completes the proof of the theorem.

7. ϕ-Concircularly Flat Lorentzian α-Sasakian Manifold with Respect to the Quarter-Symmetric Metric Connection

Definition 7.1. A Lorentzian α-Sasakian manifold is said to be ϕ-concircularly flat [11] with respect to the quarter-symmetric metric connection if
${ }^{`} \bar{C}(\phi X, \phi Y, \phi Z, \phi W)=0$,
where $X, Y, Z, W \in \Gamma(T M)$.
Theorem 7.2. If a Lorentzian α-Sasakian manifold admitting a quarter-symmetric metric connection is ϕ-concircularly flat, then the manifold with respect to the quarter-symmetric metric connection is an η-Einstein manifold.

Proof. From (1.4), we have

$$
\begin{align*}
‘ \bar{C}(X, Y, Z, W)= & ‘ \bar{R}(X, Y, Z, W)-\frac{\bar{r}}{2 n(2 n+1)}[g(Y, Z) g(X, W) \tag{7.2}\\
& -g(X, Z) g(Y, W)]
\end{align*}
$$

where ' $\bar{C}(X, Y, Z, W)=g(\bar{C}(X, Y) Z, W)$ and ' $\bar{R}(X, Y, Z, W)=g(\bar{R}(X, Y) Z, W)$.
Now putting $X=\phi X, Y=\phi Y, Z=\phi Z, W=\phi W$ in (7.2), we get

$$
\begin{align*}
‘ \bar{C}(\phi X, \phi Y, \phi Z, \phi W)= & ‘ \bar{R}(\phi X, \phi Y, \phi Z, \phi W)-\frac{\bar{r}}{2 n(2 n+1)}[g(\phi Y, \phi Z) g(\phi X, \phi W) \\
& -g(\phi X, \phi Z) g(\phi Y, \phi W)] \tag{7.3}
\end{align*}
$$

Using (7.1) in (7.3), we get
$‘ \bar{R}(\phi X, \phi Y, \phi Z, \phi W)=\frac{\bar{r}}{2 n(2 n+1)}[g(\phi Y, \phi Z) g(\phi X, \phi W)-g(\phi X, \phi Z) g(\phi Y, \phi W)]$.
Let $\left\{e_{1}, e_{2}, \ldots, e_{2 n}, \xi\right\}$ be a local orthonormal basis of vector fields in M, then $\left\{\phi e_{1}, \phi e_{2}, \ldots, \phi e_{2 n}, \xi\right\}$ is also a local orthonormal basis. Putting $X=W=e_{i}$ in (7.4) and summing over $i=1$ to $2 n$, we obtain
$\sum_{i=1}^{2 n} ‘ \bar{R}\left(\phi e_{i}, \phi Y, \phi Z, \phi e_{i}\right)=\frac{\bar{r}}{2 n(2 n+1)} \sum_{i=1}^{2 n}\left[g(\phi Y, \phi Z) g\left(\phi e_{i}, \phi e_{i}\right)-g\left(\phi e_{i}, \phi Z\right) g\left(\phi Y, \phi e_{i}\right)\right]$,
So by virtue of (4.7), (4.8) and (4.10), the equation (7.5) takes the form
$\bar{S}(\phi Y, \phi Z)=\left[\frac{\bar{r}(2 n-1)}{2 n(2 n+1)}+\left(\alpha^{2}-\alpha\right)\right] g(\phi Y, \phi Z)$.
By making use of (2.3) and (4.14) in equation (7.6), we obtain

$$
\begin{align*}
\bar{S}(Y, Z)= & {\left[\frac{\bar{r}(2 n-1)}{2 n(2 n+1)}+\left(\alpha^{2}-\alpha\right)+2 n \alpha^{2}\right] g(Y, Z) } \tag{7.7}\\
& +\left[\frac{\bar{r}(2 n-1)}{2 n(2 n+1)}+\left(\alpha^{2}-\alpha\right)+2 n \alpha\right] \eta(Y) \eta(Z)
\end{align*}
$$

or
$\bar{S}(Y, Z)=a g(Y, Z)+b \eta(Y) \eta(Z)$,
where $a=\left[\frac{\bar{r}(2 n-1)}{2 n(2 n+1)}+\left(\alpha^{2}-\alpha\right)+2 n \alpha^{2}\right]$ and $b=\left[\frac{\bar{r}(2 n-1)}{2 n(2 n+1)}+\left(\alpha^{2}-\alpha\right)+2 n \alpha\right]$.
From which it follows that the manifold is an η-Einstein manifold with respect to the quarter-symmetric metric connection.
This completes the proof of the theorem.

8. Lorentzian α-Sasakian Manifold Satisfying $\bar{C} \cdot \bar{S}=0$ with Respect to the Quarter-Symmetric Metric Connection

Definition 8.1. A Lorentzian α-Sasakian manifold is said to be an Einstein manifold if its Ricci tensor S of the Levi-Civita connection is of the form
$S(X, Y)=a g(X, Y)$,
where a is a constant on the manifold.
Theorem 8.2. If Lorentzian α-Sasakian manifold satisfying $\bar{C} \cdot \bar{S}=0$ with respect to a quarter-symmetric metric connection, then the manifold is an Einstein manifold with respect to the quarter-symmetric metric connection.

Proof. We consider Lorentzian α-Sasakian manifolds with respect to a quarter-symmetric metric connection $\bar{\nabla}$ satisfying the curvature condition $\bar{C} \cdot \bar{S}=0$. Then
$(\bar{C}(X, Y) \cdot \bar{S})(Z, W)=0$.
So,
$\bar{S}(\bar{C}(X, Y) Z, W)+\bar{S}(Z, \bar{C}(X, Y) W)=0$.
Putting $X=\xi$ in (8.3), we get
$\bar{S}(\bar{C}(\xi, Y) Z, W)+\bar{S}(Z, \bar{C}(\xi, Y) W)=0$.
From equation (1.4), we have
$\bar{C}(\xi, Y) Z=\bar{R}(\xi, Y) Z-\frac{\bar{r}}{2 n(2 n+1)}[g(Y, Z) \xi-\eta(Z) Y]$.
Using (4.2) in the equation (8.5), we obtain
$\bar{C}(\xi, Y) Z=\left\{\alpha^{2}-\alpha-\frac{\bar{r}}{2 n(2 n+1)}\right\}[g(Y, Z) \xi-\eta(Z) Y]$.
Using (8.6) and putting $Z=\xi$ in (8.4) and using the equations (2.2), (4.12), we obtain
$\left\{\alpha^{2}-\alpha-\frac{\bar{r}}{2 n(2 n+1)}\right\}\left[\bar{S}(Y, W)-2 n\left(\alpha^{2}-\alpha\right) g(Y, W)\right]=0$.
Therefore,
$\bar{S}(Y, W)=2 n\left(\alpha^{2}-\alpha\right) g(Y, W)$
provided $\bar{r} \neq 2 n(2 n+1)\left(\alpha^{2}-\alpha\right)$.
This means that the manifold is an Einstein manifold with respect to the quarter-symmetric metric connection.
This completes the proof.

9. Example

In this section we construct an example on Lorentzian α-Sasakian manifold endowed with the quarter-symmetric metric connection. We consider the 3-dimensional manifold $M^{3}=\{(x, y, z): x, y, z \in \mathbb{R}\}$, where (x, y, z) are the standard coordinates in \mathbb{R}^{3}. We choose the vector fields
$e_{1}=e^{z} \frac{\partial}{\partial y}, e_{2}=e^{z}\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}\right), e_{3}=\alpha \frac{\partial}{\partial z}=\xi$,
which are linearly independent at each point of M^{3}.
Let g be a Lorentzian metric defined by
$g\left(e_{1}, e_{1}\right)=1, g\left(e_{2}, e_{2}\right)=1, g\left(e_{3}, e_{3}\right)=-1$,
and $g\left(e_{i}, e_{j}\right)=0$ if $i \neq j$.
Let ϕ be the (1,1)-tensor field defined by
$\phi e_{1}=-e_{1}, \phi e_{2}=-e_{2}, \phi e_{3}=0$.
and η be a 1 -form defined by $\eta(X)=g\left(X, e_{3}\right)$ for any $X \in \Gamma\left(T M^{3}\right)$
Now using the linearity of ϕ and g, we obtain
$\phi^{2} X=X+\eta(X) \xi$,
$\eta(\xi)=-1$,
and
$g(\phi X, \phi Y)=g(X, Y)+\eta(X) \eta(Y)$,
for any vector fields $X, Y \in \Gamma\left(T M^{3}\right)$. Thus for $e_{3}=\xi$, the structure (ϕ, ξ, η, g) defines a Lorentzian para-contact metric structure on M^{3}. Now, we have
$\left[e_{1}, e_{2}\right]=0,\left[e_{2}, e_{3}\right]=-\alpha e_{2},\left[e_{1}, e_{3}\right]=-\alpha e_{1}$,
Let ∇ be the Levi-Civita connection of the Lorentzian metric g which is given by Koszul's formula defined by
$2 g\left(\nabla_{X} Y, Z\right)=X g(Y, Z)+Y g(Z, X)-Z g(X, Y)-g(X,[Y, Z])-g(Y,[X, Z])+g(Z,[X, Y])$.

Using Koszul's formula, we obtain the following:
$\nabla_{e_{1}} e_{1}=-\alpha e_{3}, \nabla_{e_{1}} e_{2}=0, \nabla_{e_{1}} e_{3}=-\alpha e_{1}$,
$\nabla_{e_{2}} e_{1}=0, \nabla_{e_{2}} e_{2}=-\alpha e_{3}, \nabla_{e_{2}} e_{3}=-\alpha e_{2}$,

$$
\nabla_{e_{3}} e_{1}=0, \nabla_{e_{3}} e_{2}=0, \nabla_{e_{3}} e_{3}=0
$$

In view of the above results, we see that
$\left(\nabla_{X} \eta\right) Y=\alpha g(\phi X, Y) \xi$,
$\nabla_{X} \xi=\alpha \phi X$,
for all $X, Y \in \Gamma\left(T M^{3}\right)$ and $\xi=e_{3}$. Therefore the manifold is a Lorentzian α-Sasakian manifold with the structure (ϕ, ξ, η, g). It is known that
$R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z$
Now using (9.1), we can easily obtain the non-zero components of the curvature tensor R as follows:
$R\left(e_{1}, e_{2}\right) e_{1}=-\alpha^{2} e_{2}, R\left(e_{1}, e_{2}\right) e_{2}=\alpha^{2} e_{1}$,
$R\left(e_{1}, e_{3}\right) e_{1}=-\alpha^{2} e_{3}, R\left(e_{1}, e_{3}\right) e_{3}=-\alpha^{2} e_{1}$
$R\left(e_{2}, e_{3}\right) e_{2}=-\alpha^{2} e_{3}, R\left(e_{2}, e_{3}\right) e_{3}=-\alpha^{2} e_{2}$,
Let X, Y and Z be any three vector fields given by
$X=X^{1} e_{1}+X^{2} e_{2}+X^{3} e_{3}$,
$Y=Y^{1} e_{1}+Y^{2} e_{2}+Y^{3} e_{3}$,
$Z=Z^{1} e_{1}+Z^{2} e_{2}+Z^{3} e_{3}$
where X^{i}, Y^{i} and Z^{i}, for all $i=1,2,3$ are all non-zero real numbers. Then
$R(X, Y) Z=R\left(X^{1} e_{1}+X^{2} e_{2}+X^{3} e_{3}, Y^{1} e_{1}+Y^{2} e_{2}+Y^{3} e\right)\left(Z^{1} e_{1}+Z^{2} e_{2}+Z^{3} e_{3}\right)$.
Using equation (9.2) in (9.4), we get
$R(X, Y) Z=\alpha^{2}\{g(Y, Z) X-g(X, Z) Y\}$.

Hence, the 3-dimensional Lorentzian α-Sasakian manifold is of constant curvature α^{2}. Also from (9.5), we obtain
$S(Y, Z)=2 \alpha^{2} g(Y, Z)$
which gives $S\left(e_{1}, e_{1}\right)=S\left(e_{2}, e_{2}\right)=2 \alpha^{2}, S\left(e_{3}, e_{3}\right)=-2 \alpha^{2}$ and therefore the scalar curvature $r=6 \alpha^{2}$.
Now using (9.1) in (3.7), we obtain the components of quarter-symmetric metric connection $\bar{\nabla}$ as follows:
$\bar{\nabla}_{e_{1}} e_{1}=-(\alpha-1) e_{3}, \bar{\nabla}_{e_{1}} e_{2}=0, \bar{\nabla}_{e_{1}} e_{3}=-(\alpha-1) e_{1}$,
$\bar{\nabla}_{e_{2}} e_{1}=0, \bar{\nabla}_{e_{2}} e_{2}=-(\alpha-1) e_{3}, \bar{\nabla}_{e_{2}} e_{3}=-(\alpha-1) e_{2}$,
$\bar{\nabla}_{e_{3}} e_{1}=0, \quad \bar{\nabla}_{e_{3}} e_{2}=0, \quad \bar{\nabla}_{e_{3}} e_{3}=0$,
Using above results, we can easily obtain the components of curvature tensor \bar{R} with respect to quarter-symmetric metric connection $\bar{\nabla}$ as follows:
$\bar{R}\left(e_{1}, e_{2}\right) e_{1}=-(\alpha-1)^{2} e_{2}, \bar{R}\left(e_{1}, e_{2}\right) e_{2}=(\alpha-1)^{2} e_{1}, \bar{R}\left(e_{1}, e_{2}\right) e_{3}=0$,
$\bar{R}\left(e_{1}, e_{3}\right) e_{1}=-\alpha(\alpha-1) e_{3}, \bar{R}\left(e_{1}, e_{3}\right) e_{2}=0, \bar{R}\left(e_{1}, e_{3}\right) e_{3}=-\alpha(\alpha-1) e_{1}$
$\bar{R}\left(e_{2}, e_{3}\right) e_{1}=0, \bar{R}\left(e_{2}, e_{3}\right) e_{2}=-\alpha(\alpha-1) e_{3}, \bar{R}\left(e_{2}, e_{3}\right) e_{3}=-\alpha(\alpha-1) e_{2}$,
With the help of (9.8), we find the Ricci tensors \bar{S} with respect to the quarter-symmetric metric connection as:
$\bar{S}\left(e_{1}, e_{1}\right)=\bar{S}\left(e_{2}, e_{2}\right)=(2 \alpha-1)(\alpha-1), \bar{S}\left(e_{3}, e_{3}\right)=-2 \alpha(\alpha-1)$.
From above results, it follows that the scalar curvature tensor with respect to the quarter-symmetric metric connection is $\bar{r}=2(3 \alpha-1)(\alpha-1)$.
Using (4.11) and (9.6) in 3-dimensional Lorentzian α-Sasakian manifold M^{3}, we have
$\bar{S}(Y, Z)=(2 \alpha-1)(\alpha-1) g(Y, Z)-(\alpha-1) \eta(Y) \eta(Z)$.
Thus the three dimensional Lorentzian α-Sasakian manifold M^{3} is an η-Einstein manifold with respect to the quarter-symmetric metric connection $\bar{\nabla}$.
If we take $\alpha=1$ in this example, then 3-dimensional Lorentzian α-Sasakian manifold M^{3} becomes flat with respect to the quarter-symmetric metric connection $\bar{\nabla}$.

Acknowledgement

The authors are thankful to the referees for providing valuable comments.

References

[1] A. Barman and G. Ghosh, Concircular curvature tensor of a semi-symmetric non-metric connection on P-Sasakian manifolds, An. Univ. Vest. Timis. Ser. Mat. Inform. LIV(2016), 47-58.
[2] D. E. Blair, Inversion theory and conformal mapping, Stud. Math. Libr. 9, Amer. Math. Soc. (2000)
[3] U. C. De and Krishnendu De, On Lorentzian Trans-Sasakian manifolds, Cummun. Fac. Sci. Univ. Ank. Series 62 (2013) no. 2, $37-51$.
[4] A. Friedmann and J. A. Schouten, Über die Geometric der halbsymmetrischen Übertragung, Math. Z.21(1924), 211-223.
[5] S. Golab, On semi-symmetric and quarter-symmetric linear connections, Tensor (N.S.) 29 (1975), 249 - 254.
[6] K. Matsumoto, On Lorentzian para-contact manifold, Bull Yomagata Univ. Natur. Sci. 12 no. 2 (1989) 151-156.
[7] W. Kuhnel, Conformal Transformations between Einstein Spaces, Bonn, 1985/1986, 105-146, Aspects Math. E12, Vieweg, Braunschweig, 1988.
[8] A.K. Mondal, U.C. De, Some properties of a quarter-symmetric metric connection on a Sasakian manifold. Bull. Math. Analysis Appl. 3 (2009), 99-108.
[9] K. Mandal and U.C. De, Quarter-symmetric metric connection in a P-Sasakian manifold. An. Univ. Vest. Timis. Ser. Math-Inform. LIII(2015), 137-150.
[10] O'Neill, B., Semi-Riemannian geometry with applications to relativity, Academic press (1983).
[11] C. Özgür, ϕ-conformally flat Lorentzian para-Sasakian manifolds. Radovi Matematički 12 (2003), 99-106.
[12] R. Prasad and A. Haseeb, On a Lorentzian para-Sasakian manifold with respect to the quarter-symmetric metric connection, Novi Sad J. Math. Vol. 46, No. 2, 2016, 103-116.
13] K. Yano, Concircular Geometry I. Concircular Transformations, Proc. Imp. Acad. Tokyo 16 (1940), 195-200.
[14] K. Yano and S. Bochner, Curvature and Betti numbers, Ann. of Math. Stud. 32(1953).
[15] A. Yildiz and C. Murathan, On Lorentzian α-Sasakian manifolds. Kyungpook Math. J. 45 (2005),95-103.
[16] A. Yildiz, M. Turan and B. E. Acet, On three dimensional Lorentzian α-Sasakian manifolds. Bull. Math. Anal. Appl. 1(2009), 90-98.
[17] A. Yildiz, M. Turan and C. Murathan, A class of Lorentzian α-Sasakian manifolds. Kyungpook Math. J. 49 (2009),789-799.

