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Abstract

In this paper, firstly we research basic definition of convexity in terms of non-Newtonian calculi, i.e. interval, convex set, convexity,
etc. Secondly, we deal with the different classes of convexity and generalizations via non-Newtonian calculi. Finally, we reveal the new
generalization of the definition of convexity that can reduce many order of convexity and constitute some new Hermite-Hadamard type
inequalities for this calculi.
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Isaac Newton and Gottfried Wilhelm Leibnitz obtained the differential and integral calculus, applied in mathematical theory, independently
in the second half of the 17th century. Afterwards Leonard Euler deflected calculus by giving a pivotal position and so founded analysis.
Differentiation and integration are basic operations of analysis. Indeed, they are many versions of the subtraction and addition operations on
numbers, respectively.
From 1967 till 1970 Michael Grossman and Robert Katz [1] gave definitions of a new kind of derivative and integral, converting the roles of
subtraction and addition into division and multiplication, respectively and thus establish a new calculus, called Non-Newtonian Calculus.
Non-Newtonian calculus has a limited area of applications than the classical calculus. But Non-Newtonian calculus can particulary be useful
for economics and finance [2].
In this area the reader can refer to a lot of authors, i.e. [1]-[9], and references therein. The reader can refer to the recent papers [10]-[17]
related to the multiplicative calculi and related topics
Kadak and Gürefe [9] introduced some characteristic features of weighted means and convex functions in term of the non-Newtonian calculus
which is a self-contained system independent of any other system of calculus, i.e. *-convex function.
Some new definitions, theorems and corollaries is obtained for Non-Newtonian Calculi by E. Unluyol et all. [18].

1. Preliminaries

Arithmetic is any system that satisfies the whole of the ordered field axiom whose domain is a subset of R. There are many types arithmetic,
all of which are isomorphic that is, structurally equivalent.
A generator α is a one-to-one function whose domain is R and whose range is a subset Rα of R where Rα = {α(x) : x ∈R}. Each generator
generates exactly one arithmetic, and conversely each arithmetic is generated by exactly one generator.The inverse of the identity function
defined by I(x) = x for all x ∈ R is itself. In the special cases α = I and α = exp, α generates the classical and geometric arithmetic,
respectively. By α-arithmetic, we mean the arithmetic whose domain is R and whose operations are defined as follows: for x,y ∈ Rα and
generator α ,

α−addition, x+̇y = α{α−1(x)+α
−1(y)},

α−subtraction, x−̇y = α{α−1(x)−α
−1(y)},

α−multiplication, x×̇y = α{α−1(x)×α
−1(y)},

α−division, x/̇y = α{α−1(x)/α
−1(y)},

α−order, x<̇y ⇐⇒ α
−1(x)< α

−1(y).
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As a generator, we choose exp function acting from R into the set Rexp = (0,∞) as follows:

α : R−→ Rexp

x −→ y = α(x) = ex

It is obvious that α arithmetic reduces to the geometric arithmetic as follows:

geometric addition, x+̇y = e{lnx+lny} = x.y,

geometric subtraction, x−̇y = e{lnx×lny} = x/y,

geometric multiplication, x×̇y = e{lnx lny} = xlny = ylnx,

geometric division, x/̇y = e{lnx/ lny} = x
1

lny ,

geometric order, x<̇y ⇐⇒ ln(x)< ln(y).

Definition 1.1. [1] Let α(p) = ṗ for all p ∈ Z. If for y ∈ Rα , y+̇0̇ = y and y×̇1̇ = y, then according to α-addition 0̇(α − zero) and
1̇(α−one) numbers are called identity and unit elements, respectively.

Definition 1.2. [1] Let −̇ṅ = 0̇−̇ṅ = α(−n) for all n ∈ Z. The set Zα or Z(N) of α-integers is defined, as follows;

Zα = Z(N) =
{
. . . ,−̇2̇,−̇1̇, 0̇, 1̇, 2̇ . . .

}
=

{
. . . ,α(−2),α(−1),α(0),α(1),α(2), . . .

}
.

Namely, Zα = Z(N) =
{

ṅ : ṅ = α(n),n ∈ Z
}

. Similarly we can define α-real numbers as follows,

R(N) = Rα =
{

ṅ : ṅ = α(n),n ∈ R
}

Definition 1.3. [1] Let p ∈ R\{0}. In this case, qp : R→ Rq ⊆ R and q−1
p are defined as follows,

qp(x) =


x

1
p , x > 0;

0, x = 0;

−(−x)
1
p , x < 0.

and

q−1
p (x) =


xp, x > 0;
0, x = 0;

−(−x)p, x < 0.

Specially, if we take p = 1 in qp-function, then qp calculus is reduced to the classical calculus.

Definition 1.4. Let I be an interval in R, f : I ⊂ R→ R be a convex function. f : I ⊂ R→ R is said to be Hermite-Hadamard Type
Inequality, if

f
(a+b

2

)
≤
∫ b

a
f (x)dx≤ f (a)+ f (b)

2
(1.1)

for all x ∈ I and t ∈ [0,1]. If the above inequality is reversed, then f is said to be Hermite-Hadamard Type Inequality concave function.

Definition 1.5. [10] Let I be an interval, ϕ : I ⊂ R→ R be a continuous and strictly monotonic function. f : I ⊂ R→ R is said to be Mϕ A
convex, if

f
(
ϕ
−1(tϕ(x)+(1− t)ϕ(y))

)
≤ t f (x)+(1− t) f (y)

for all x,y ∈ I and t ∈ [0,1]. If the above inequality is reversed, then f is said to be Mϕ A-concave function.

2. Some New Definitions and Theorems About Inequalities via Non-Newtonian Calculus

In this section, we define the notions interval, convex set, convex function etc. in terms of Non-Newtonian Calculi.

Definition 2.1. Let α is a generator. Then Iα ⊆ Rα is said to an α-interval on Rα if for all x,y ∈ Iα ;

1. (̇x,y)̇ := {z ∈ Iα : x<̇z<̇y} ⊆ Iα ,
2. (̇x,y]̇ := {z ∈ Iα : x<̇z≤̇y} ⊆ Iα ,
3. [̇x,y)̇ := {z ∈ Iα : x≤̇z<̇y} ⊆ Iα ,
4. [̇x,y]̇ := {z ∈ Iα : x≤̇z≤̇y} ⊆ Iα ,
5. (̇x,+̇∞̇)̇ := {z ∈ Iα : x<̇z<̇+̇∞̇} ⊆ Iα ,
6. (̇−̇∞̇,y)̇ := {z ∈ Iα : −̇∞̇<̇z<̇y} ⊆ Iα ,
7. [̇x,+̇∞̇)̇ := {z ∈ Iα : x≤̇z<̇+̇∞̇} ⊆ Iα ,
8. (̇−̇∞̇,y]̇ := {z ∈ Iα : −̇∞̇<̇z≤̇y} ⊆ Iα .

Remark 2.2. Alternatively, we can express these (1)-(8) α-intervals as follows respectively;

(x,y)α ,(x,y]α , [x,y)α , [x,y]α ,(x,+∞)α ,(−∞,y)α , [x,+∞)α ,(−∞,y]α .
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Remark 2.3. Afterwards [x,y]α ,(x,y)α are said to be respectively α-closed interval, α-open interval.

Definition 2.4. Let Lα be an α-linear space and A⊆ Lα . A set is said to be an α-convex set, if for all x,y ∈ A

Bα = {z ∈ Lα : z = θ1×̇x+̇θ2×̇y, θ1+̇θ2 = 1̇, 0̇≤̇θ1,θ2≤̇1̇} ⊆ A.

It is immediate that z = θ1×̇x+̇θ2×̇y, θ1+̇θ2 = 1̇, θ1,θ2 ∈ [0,1]α for x,y ∈ A,z ∈ Bα .

Lemma 2.5. Iα := [x,y]α interval on Rα is an α-convex set.

Proof. For u ∈ {θ1×̇x+θ2×̇y : θ1,θ2 ∈ [̇0̇, 1̇]̇,θ1+̇θ2 = 1̇} then u = θ1×̇x+̇θ2×̇y. In the circumstances, we can write the following,

u = α

{
α
−1(θ1)α

−1(x)+α
−1(θ2)α

−1(y)
}

α
−1{u} = α

−1(θ1)α
−1(x)+α

−1(θ2)α
−1(y)

≤ min{α−1(x),α−1(y)}= α
−1(x)≤max{α−1(x),α−1(y)}= α

−1(y)

⇐⇒ α
−1(x)≤ α

−1(u)≤ α
−1(y)

⇐⇒ x≤̇u≤̇y

⇐⇒ u ∈ [x,y]α .

So the proof is completed.

Lemma 2.6. A⊂ Rα is α−convex set if and only if [̇x,y]̇⊂ A for all x,y ∈ A, such that x≤̇y.

Theorem 2.7. A⊂ Rα is α-convex set if and only if for all a,b ∈ A, θ1,θ2 ∈ [̇0̇, 1̇]̇, θ1+̇θ2 = 1̇

θ1×̇a+̇θ2×̇b ∈ A.

In other words, we can write the above condition, as follows:
Let A⊂ Rα . Then, for all a,b ∈ A and θ1+̇θ2 = 1̇, θ1,θ2 ∈ [̇0̇, 1̇]̇

θ1×̇a+̇θ2 ×̇b ∈ A

if and only if for all a,b ∈ A and t ∈ [0,1]
α(t)×̇a+̇α(1− t)×̇b ∈ A.

Proof. By using θ1,θ2 ∈ [̇0̇, 1̇]̇ such that θ1+̇θ2 = 1̇, we can write the below equality:

α(α−1(θ1)+α
−1(θ2)) = α(1).

From injectivity of α , we have
α
−1(θ1)+α

−1(θ2) = 1.

Thus, by choosing θ1 = α(t), θ2 = α(1− t), then θ1 = α(t), θ2 = α(1− t),

α(t)×̇a+̇α(1− t)×̇b ∈ A.

So we have proved the desired conclusion.

Definition 2.8. Let Iα be an α−closed interval in Rα . Then the function f : Iα −→ R is said to be α∗-convex if

f (λ1×̇x+̇λ2×̇y)≤ θ1 f (x)+θ2 f (y) (2.1)

(2.1) holds, where λ1+̇λ2 = 1̇ and θ1 +θ2 = 1 for all λ1,λ2 ∈ [0,1]α and θ1,θ2 ∈ [0,1]. If we take θ1 = α−1(λ1) and θ2 = α−1(λ2) in
(2.1), then we obtain

f (λ1×̇x+̇λ2×̇y)≤ α
−1(λ1)× f (x)+α

−1(λ2)× f (y). (2.2)

Therefore, by combining this with the generator α , we deduce that

f
(

α

{
α
−1(λ1).α

−1(x)+α
−1(λ2).α

−1(y)
})
≤ θ1. f (x)+θ2. f (y) (2.3)

If (2.1) is strict for all x 6= y, then f said to be strictly α∗-convex. If the inequality in (2.1) is reversed, then f is said to be α∗-concave.
Depending on the choice of generator functions, the definition of α∗-convex in (2.1) can be interpreted as follows.

Theorem 2.9. The function f : Iα ⊂ Rα → R is an α∗-convex if and only if for α : R−→ Rα ,

f ◦α : α
−1(Iα )⊂ R→ R

is a convex function.
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Proof. Firstly we assume that f is an α∗-convex function, then we write for all θ1,θ2 ∈ [0̇, 1̇], such that θ1+̇θ2 = 1̇ and for all a,b ∈ Iα , we
have the following inequality

f (θ1×̇a+̇θ2×̇b)≤ α
−1(θ1) f (a)+α

−1(θ2) f (b). (2.4)

In (2.4), if we choose a,b ∈ Iα , t ∈ [0,1], α−1(θ1) = t and α−1(θ1) = (1− t), then we obtain following inequality

f (α(t)×̇a+̇α(1− t)×̇b)≤ t f (a)+(1− t) f (b)

Then, definition of α-addition and α-multiplication , we get the following inequality

f
(

α(tα−1(a)+(1− t)α−1(b))
)
≤ t f (a)+(1− t) f (b)

( f ◦α)(tα−1(a)+(1− t)α−1(b)) ≤ t( f ◦α)(α−1(a))+(1− t)( f ◦α)(α−1(b)).

Hence,
(

f ◦α
)

is convex in α−1(Iα ). Secondly vice versa.

Definition 2.10. If we choose β = I in definitions of ∗-differential and ∗-derivative in [1], then we say, these definitions, respectively,
α∗-differential and α∗-derivative.

Remark 2.11. Let f : Iα ⊂ Rα → R is a second order α∗-differentiable function and α : R→ Rα is a generator. Then f is α∗-convex if
and only if for all x ∈ α−1(Iα ),

( f ◦α)′′(x)≥ 0.

Remark 2.12. If we take α(x) = I(x) and α−1(λ1) = t, α−1(λ2) = (1− t) in (2.1), then we obtain the definition of usual convex function,
namely for all t ∈ [0,1],

f (tx+(1− t)y)≤ t f (x)+(1− t) f (y).

Remark 2.13. If we take α(x) = I(x), R= Rα in (2.2), then we obtain α-convex function [18], that is for all t ∈ [0,1]

f (tx+(1− t)y)≤ θ1×̇ f (x)+̇θ2×̇ f (y).

Remark 2.14. Let Iα ⊂ (̇0̇, ∞̇)̇ be an α-interval. In this case, if we take α(x) = qp(x) and α−1(λ1) = t, α−1(λ2) = (1− t) in (2.2), then
we obtain p-convex function[19], so for all t ∈ [0,1],

f
(
((tx)p +((1− t)y)p))

1
p
)
≤ t f (x)+(1− t) f (y).

Remark 2.15. If we take α(x) = exp(x) and α−1(λ1) = t, α−1(λ2) = (1− t) in (2.2), then we get

f (xlnt .yln(1−t))≤ t f (x)+(1− t) f (y), (t ∈ [1,e]),

f : Iexp −→ R is geometric convex function [20].

Remark 2.16. If we take α(x) = ϕ−1(x) and α−1(λ1) = t, α−1(λ2) = (1− t) in (2.2), then we obtain

f
(
ϕ
−1(tϕ(x)+(1− t)ϕ(y)

)
≤ t f (x)+(1− t) f (y), (t ∈ [0,1]),

Mϕ A convex function [21].

Remark 2.17. Let Iα ⊂ (̇0̇, ∞̇)̇ is an α-interval. Thus if we take α(x) = I(x) = 1
x , and α−1(λ1) = t, α−1(λ2) = (1− t) in (2.2), then we

obtain
f
( xy

x(1− t)+ yt

)
≤ t f (x)+(1− t) f (y), (t ∈ [0,1]),

Harmonically convex function [22].

3. Hermite-Hadamard Type Inequality in terms of Non-Newtonian Calculus and its Some Proper-
ties

Theorem 3.1. Let Iα be a closed interval in Rα , and f : Iα →R also be any α∗-convex function. Then the following double inequality holds
for all a,b ∈ Iα ,

f
(

α

(
1
2

)
×̇(a+̇b)

)
≤
∫ 1

0
f (α(t)×̇a+̇α(1− t)×̇b)dt ≤ f (a)+ f (b)

2
(3.1)

Proof. Since f is an α∗-convex function, we can write the following inequality

f (λ1×̇a+̇λ2×̇b)≤ α
−1(λ1) f (a)+α

−1(λ2) f (b). (3.2)

If we take α−1(λ1) = t, α−1(λ2) = 1− t, then we have

f (α(t)×̇a+̇α(1− t)×̇b)≤ t f (a)+(1− t) f (b). (3.3)



356 Konuralp Journal of Mathematics

and integrating with respect to t over · [0,1], then we have the following inequality, for a,b ∈ Iα∫ 1

0
f
(
α(t)×̇a+̇α(1− t)×̇b

)
dt ≤

∫ 1

0

(
t f (a)+(1− t) f (b)

)
dt∫ 1

0
f
(
α(t)×̇a+̇α(1− t)×̇b

)
dt ≤ f (a)+ f (b)

2
(3.4)

If we choose t = 1
2 , a = α(t)×̇a+̇α(1− t)×̇b and b = α(t)×̇b+̇α(1− t)×̇a in (3.3), then we get the followings,

f
(
α(

1
2
)×̇a+̇α(

1
2
)×̇b

)
= f (α(

1
2
)×̇(a+̇b))

= f
(
α(

1
2
)×̇(α(t)×̇a+̇α(1− t)×̇b)+̇α(

1
2
)×̇(α(t)×̇b+̇α(1− t)×̇b)

)
≤ 1

2
[ f (α(t)×̇a+̇α(1− t)×̇b)+ f (α(t)×̇b+̇α(1− t)×̇b)]. (3.5)

If we apply integration to (3.5) over the interval [0,1], taking into account that∫ 1

0
f
(
α(t)×̇a+̇α(1− t)×̇b

)
dt =

∫ 1

0
f
(
α(1− t)×̇a+̇α(t)×̇b

)
dt,

and use (3.4), then we have the following inequality

f
(
α(

1
2
)×̇a+̇α(

1
2
)×̇b

)
≤
∫ 1

0
f
(
α(t)×̇a+̇α(1− t)×̇b

)
dt =

∫ 1

0
f (λ1×̇a+̇λ2×̇b)dt ≤ f (a)+ f (b)

2
.

Thus the proof is completed.

Definition 3.2. Here and after, we call the inequality given by (3.1) inequality Hermite-Hadamard Type Inequality in terms of Non-Newtonian
Calculus or α∗−Hermite-Hadamard Type Inequality.

Theorem 3.3. (α-partial integration) Let Iα be an α−interval, v∗,u∗ : Iα −→ Rα also be two functions whose first α−derivatives are
α−continuous and a,b are α−points of Iα . Then we get∫ b

a
u(x)×̇v∗(x)dx = u(x)×̇v(x)|ba−̇

∫ b

a
v(x)×̇u∗(x)dx (3.6)

or (Due to u∗(x)dx =du, and, v∗(x)dx =dv)∫
udv = u×̇v−̇

∫
vdu (3.7)

Proof. Suppose that f ,g : Iα −→ Rα are any two functions with f (x) := u, g(x) := v. Since the functions f ,g are α−derivativable, we
obtain

f ∗(x)dx =du, g∗(x)dx =dv .

If we taking into account that
[ f (x)×̇g(x)]∗ = f ∗(x)×̇g(x)+̇ f (x)×̇g∗(x),

then we have

f ∗(x)×̇g(x) = [ f (x)×̇g(x)]∗−̇ f (x)×̇g∗(x). (3.8)

Later, if we apply integration to (3.8) ∫
f ∗(x)×̇g(x)dx =

∫
[ f (x)×̇g(x)]∗dx−̇

∫
f (x)×̇g∗(x)dx,

then we have the following equality ∫
f (x)×̇g∗(x)dx = [ f (x)×̇g(x)]−̇

∫
f ∗(x)×̇g(x)dx.

Since f (x) = u, g(x) = v, f ∗(x)dx =du and g∗ (x)dx =dv, we obtain∫
udv = u×̇v−̇

∫
vdu

Hence the proof is completed.

Lemma 3.4. Let Iα be an α-closed interval in Rα and f : Iα → Rα be any function. Then the following equality holds for all a,b ∈ Iα and
t ∈ [0,1]α

b−̇a
2̇

.×̇
∫ 1̇

0̇
(1̇−̇2̇×̇t)×̇ f ∗(t×̇a+̇(1̇−̇t)×̇b)dt =

f (a)+̇ f (b)
2̇

.−̇ 1̇
b−̇a

.×̇
∫ b

a
f (x)dx. (3.9)
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Proof. For all a,b ∈ Iα and t ∈ [0,1]α , we get

J :=
∫ 1̇

0̇
(1̇−̇2̇×̇t)×̇ f (t×̇a+̇(1̇−̇t)×̇b)dt

Now by applying α-partly integration to J, if we choose

u := (1̇−̇2̇×̇t) and dv := f ∗(t×̇a+̇(1̇−̇t)×̇b)dt ,

then we obtain
du := −̇2̇dt and v := f (t×̇a+̇(1̇−̇t)×̇b)×̇ 1̇

a−̇b
. .

Later on, we get by α-partly integration∫ 1̇

0̇
(1̇−̇2̇×̇t)×̇ f ∗(t×̇a+̇(1̇−̇t)×̇b)dt = (1̇−̇2̇t)×̇ f (t×̇a+̇(1̇−̇t)×̇b)×̇ 1̇

a−̇b
.
∣∣1̇
0̇ (3.10)

+̇2̇×̇ 1̇
a−̇b

.×̇
∫ 1̇

0̇
f (t×̇a+̇(1̇−̇t)×̇b)dt .

We can easily see that ∫ 1̇

0̇
f (t×̇a+̇(1̇−̇t)×̇b)dt =

1̇
b−̇a

.×̇
∫ b

a
f (x)dx.

and we get by straightforward calculations in (3.10), we can find the desired result.

Remark 3.5. Let Iα be an interval in Rα , and f : Iα → R be any α∗-convex function. Then for all a,b ∈ Iα and t ∈ [0,1]∫ 1

0
f (α(t)×̇a+̇α(1− t)×̇b)dt =

−1
α−1(b)−α−1(a)

∫
α−1(b)

α−1(a)
f (α(u))du (3.11)

equality holds.

Proof. Let we denote for all a,b ∈ Iα and t ∈ [0,1],

K :=
∫ 1

0
f
(
α(t)×̇a+̇α(1− t)×̇b

)
dt.

On the other hand we can write

K =
∫ 1

0
f
(

α
{

α
−1(α(t))α−1(a)+α

−1(α(1− t))α−1(b)
})

dt.

If we choose α−1(α(t))α−1(a))+α−1(α(1− t))α−1(b)) = u, then

K =
∫ 1

0
f (α(u))dt.

We can rewrite u = tα−1(a)+(1− t)α−1(b), in this case

du = [α−1(a)−α
−1(b)]dt⇒ dt =

−1
α−1(b)−α−1(a)

du.

Thus we get

K =
1

α−1(b)−α−1(a)

∫
α−1(b)

α−1(a)
f (α(u))du,

namely,∫ 1

0
f (α(t)×̇a+̇α(1− t)×̇b)dt =

1
α−1(b)−α−1(a)

∫
α−1(b)

α−1(a)
f (α(u))du

Consequently, the proof is completed.

Remark 3.6. Let Iα ⊂ (̇0̇, ∞̇)̇ be an α-interval. If we take α(x) = qp and α−1(λ1) = t, α−1(λ2) = (1− t) in α∗ Hermite-Hadamard Type
Inequality (Definition 3.2), then we obtain

f
(( (x)p +(y)p

2
)

1
p

))
≤
∫ 1

0
f
(( (x)p +(y)p

2
)

1
p

))
dt ≤ f (a)+ f (b)

2
, (t ∈ [0,1])

p-convex function [19].

Remark 3.7. If we take α(x) = exp(x) and α−1(λ1) = t, α−1(λ2) = (1− t) in α∗−Hermite-Hadamard Type Inequality (Definition 3.2),
then we obtain

f
((a.b

2

))
≤
∫ 1

0
f (xlnt .yln(1−t))dt ≤ f (a)+ f (b)

2
, (t ∈ [1,e]),

f : Iexp→ R geometric convex function [20].
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Remark 3.8. If we take α(x) = ϕ−1(x) and α−1(λ1) = t, α−1(λ2) = (1− t) in α∗−Hermite-Hadamard Type Inequality (Definition 3.2),
then for t ∈ [0,1] we obtain

f
(

ϕ
−1
(

ϕ(x)+ϕ(y)
2

))
≤
∫ 1

0
f (ϕ−1(tϕ(x)+(1− t)ϕ(y)))dt ≤ f (a)+ f (b)

2

Mϕ A convex function [21].

Remark 3.9. If we take α(x) = I(x) and α−1(λ1) = t, α−1(λ2) = (1− t) in (3.1), then we obtain Hermite-Hadamard Type inequality
(Definition 1.4), namely

f
(a+b

2

)
≤
∫ 1

0
f (ta+(1− t)b)dt ≤ f (a)+ f (b)

2
.

Remark 3.10. If we take α(x) = I(x) = 1
x and α−1(λ1) = t, α−1(λ2) = (1− t) in α∗−Hermite-Hadamard Type Inequality (Definition 3.2),

then we obtain Harmonically convex function [22], that is,

f
(( 2xy

x+ y

))
≤
∫ 1

0
f (

xy
x(1− t)+ yt

)dt ≤ f (a)+ f (b)
2

, (t ∈ [0,1]).
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[4] C. Türkmen, F. Başar, Some Basic Results on the Sets of Squences with Geometric Calculus, Commun. Fac. Univ. Ank. Series A1 61(2012), 17–34.
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