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Abstract: Let M be a module over a commutative ring R with identity. A submodule K of M is copure
provided that (K :M I) = K +(0 :M I) for each ideal I of R. In this paper, we investigate some results about
copure submodules of M.
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1. Introduction

Throughout this work, R denotes a commutative ring with identity and Z denotes the ring of

integers.

A submodule N of an R-module M is called a pure submodule of M if JN = N∩JM for every ideal

J of R [2].

H. Ansari-Toroghy and F. Farshadifar introduced the dual notion of pure submodules (that is cop-

ure submodules) of an R-module and discussed some properties of this class of modules, see [4].

A submodule K of an R-module M is called copure if (K :M I) = K+(0 :M I) for each ideal I of R

[4].

The aim of this note is to explore more information about this class of R-modules. Furthermore,

we investigate the properties of R-modules that the sum of any two copure submodules is a copure

submodule.

2. Main Results

Theorem 2.1. Let M be a distributive R-module. Then the following hold.

(a) A submodule N of M is copure if and only if for each a ∈ R we have

(N :M a) = N +(0 :M a).
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(b) A submodule N of M is pure if and only if for each a ∈ R we have

aN = N∩aM.

(c) A submodule N of M is a pure submodule if and only if it is a copure submodule.

Proof. (a) First assume that for each a ∈ R we have (N :M a) = N +(0 :M a). Suppose that I is an

ideal of R. Then we have

(N :M I) = (N :M ∑
a∈I

Ra) = ∩a∈I(N :M a) = ∩a∈I(N +(0 :M a)).

Now as M is distributive, we have

∩a∈I(N +(0 :M a)) = N +∩a∈I(0 :M a) = N +(0 :M I).

Therefore, N is a copure submodule of M. The reverse implication is clear.

(b) First assume that for each a ∈ R we have aN = N ∩aM. Suppose that I is an ideal of R. Then

as M is a distributive R-module, we have

IN = (∑
a∈I

Ra)N = ∑
a∈I

(RaM∩N) = (∑
a∈I

Ra)M∩N = IM∩N.

Hence, N is a pure submodule of M. The reverse implication is clear.

(c) This follows from parts (a), (b) and [4, Theorem 2.12].

Let Ri be a commutative ring with identity and Mi be an Ri-module, for i = 1,2. Let R = R1×R2.

Then M = M1×M2 is an R-module. Clearly, every submodule of M is in the form of N = N1×N2

for some submodules N1 of M1 and N2 of M2.

Proposition 2.2. Let R = R1×R2 be a ring and let M = M1×M2 be an R-module, where M1 is an

R1-module and M2 is an R2-module. Then N = N1×N2 is a pure (resp. copure) submodule of M

if and only if Ni is a pure (resp. copure) submodule of Mi for i = 1,2.

Proof. This is straightforward.

Proposition 2.3. Let R be a Noetherian ring and let M be an R-module. Then the following hold.

(a) If N is a copure submodule of M, then for each prime ideal P of R, NP is a copure submodule

of MP as an RP-module.

(b) If NP is a copure submodule of an RP-module MP for each maximal ideal P of R, then N is

a copure submodule of M.

Proof. (a) This follows from the fact that by [9, 9.13], if I is a finitely generated ideal of R, then

((N :M I))P = (NP :MP IP).
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(b) Suppose that I is an ideal of R. As R is a Noetherian ring, I is finitely generated ideal of R.

Hence by [9, 9.13], for any maximal ideal P of R, ((N :M I))P = (NP :MP IP). Thus by assumption,

for any maximal ideal P of R,

((N :M I))P = NP +(0 :MP IP) = (N +(0 :M I))P.

It follows that

(N :M I) = N +(0 :M I),

as needed.

Proposition 2.4. Let M be an R-module and let f : M→M be an endomorphism such that f = f 2.

Then Ker( f ) is a copure submodule of M.

Proof. Let I be an ideal of R. Clearly Ker( f ) + (0 :M I) ⊆ (Ker( f ) :M I). To see the reverse

inclusion, suppose that x ∈ (Ker( f ) :M I). Then xI ⊆ Ker( f ). It follows that f (x) ∈ (0 :M I). As

f = f 2, we have x− f (x)∈Ker( f ). Therefore x= x− f (x)+ f (x)∈Ker( f )+(0 :M I), as required.

Definition 2.5. We say that an R-module M is copure simple if M and (0) are the only copure

submodules of M.

Example 2.6. The Z-module Z4 is copure simple.

Definition 2.7. We say that an R-module M has the copure sum property if the sum of any two

copure submodules is again copure.

Recall that an R-module M is called fully copure if each submodule of M is a copure submodule

of M [5].

Example 2.8. (a) Every fully copure R-module has the copure sum property.

(b) Consider the Z-module M = Z4⊕Z2. Let N1 = 0⊕Z2 and N2 = Z(2,1), the submodule

generated by (2,1). It is easy to see that N1 and N2 are copure submodules of M. But

N1 +N2 = {(0,0),(0,1),(2,1),(2,0)} is not a copure submodule of M. Thus M does not

have the copure sum property.

(c) Every copure simple R-module has the copure sum property.

(d) Since the submodules of the Zp∞ (as Z-module) are comparable, the Z-module Zp∞ has the

copure sum property.

Proposition 2.9. Suppose that M is an R-module. Then the following hold.

(a) If M has the copure sum property and N is a copure submodule of M, then N (resp. M/N)

is also has the copure sum property.
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(b) If M has the copure sum property, then

(N +K :M I) = (N :M I)+(K :M I)

for every ideal I of R and for every copure submodules N and K of M.

(c) M as an R-module has the copure sum property if and only if M has the copure sum property

as an R/AnnR(M)-module.

Proof. (a) It follows from [4, 2.9].

(b) Let H and T be two copure submodules of M and J be an ideal of R. By assumption, H +T is

a copure submodule of M. Thus

(H +T :M J) = H +T +(0 :M J) = H +T +(0 :M J)+(0 :M J)

= (H :M J)+(T :M J).

(c) This is clear.

Proposition 2.10. Suppose that R is a Noetherian ring and M is an R-module. If the Rm-module

Mm has copure sum property for each maximal ideal m of R, then M has the copure sum property

as R-module.

Proof. Let H and T be two copure submodules of M. Then Hm and Tm are copure submodules of

Mm as Rm-module by Proposition 2.3. Since Mm has copure sum property, Hm +Tm = (H +T )m

is copure in Mm for every maximal ideal m of R. Thus H + T is a copure submodule of M by

Proposition 2.3.

Remark 2.11. If an R-module M has the copure sum property, then the R-module M⊕M may not

have the copure sum property. For example, consider Z4 as Z-module. Then Z4 has the copure

sum property. But the Z-module Z4⊕Z4 does not have the copure sum property.

Recall that a submodule K of an R-module H is called a fully invariant submodule if for every

endomorphism f : H→ H, we have f (K)⊆ K [10].

Theorem 2.12. Let M = ⊕i∈IMi be an R-module, where each Mi is a submodule of M. If M

has copure sum property, then each Mi has the copure sum property. The converse is true if each

copure submodule of M is fully invariant.

Proof. Suppose that M has copure sum property. Since each Mi is a summand of M, then each Mi

is a copure submodule of M by [5, 3.11]. Thus by Proposition 2.9, each Mi has the copure sum

property. For the converse, let N and K be two copure submodules of M. Then N and K are fully

invariant by assumption. Thus N =⊕i∈I(N∩Mi) and K =⊕i∈I(K∩Mi) by [10, 8.11]. So

N +K =⊕i∈I((N∩Mi)+(K∩Mi)).
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One can see that N ∩Mi and K ∩Mi are copure submodules of Mi and Mi has the copure sum

property, thus (N ∩Mi)+ (K ∩Mi) is a copure submodule of Mi. Therefore, N +K is a copure

submodule of M by [4, 2.11].

Proposition 2.13. Let M1 and M2 be R-modules with copure sum property such that AnnR(M1)+

AnnR(M2) = R. Then the R-module M1⊕M2 has the copure sum property.

Proof. Let T and H be two copure submodules of M1⊕M2. Since AnnR(M1)+AnnR(M2) = R,

then T = T1⊕T2 and H =H1⊕H2, where T1, H1 are submodules of M1 and T2 , H2 are submodules

of M2 by [1]. Now by assumption, T1 +H1 is a copure submodule of M1 and T2 +H2 is a copure

submodule of M2. Hence by [4, 2.11], (T1 +H1)⊕ (T2 +H2) is a copure submodule of M1⊕M2.

So T +H is a copure submodule of M1⊕M2, as desired.

Theorem 2.14. Suppose that R=R1×R2 is a commutative ring and M =M1×M2 is an R-module,

where M1 is an R1-module and M2 is an R2-module. Then M has the copure sum property if and

only if Mi has the copure sum property for i = 1,2.

Proof. This is straightforward by using Proposition 2.2.

An R-module M satisfies the double annihilator conditions if, for every ideal J of R, we have

J = AnnR((0 :M J)) [7].

An R-module H is called a comultiplication R-module if for each submodule K of H there exists

an ideal J of R such that K = (0 :H J) [3].

An R-module S is a strong comultiplication R-module if S is a comultiplication R-module and

satisfies the double annihilator conditions [4].

Theorem 2.15. Let M be a strong comultiplication R-module. Then M has the copure sum prop-

erty.

Proof. Let N1 and N2 be two copure submodules of M. Since M is a comultiplication R-module,

N1 = (0 :M I1) and N2 = (0 :M I2) for some ideals I1 and I2 of R. Now since M is a strong comulti-

plication module, we have

(0 :M I1)+(0 :M I2) = (0 :M I1∩ I2).

By [4, Theorem 2.13], I1 and I2 are pure submodules of R. Clearly, I1∩ I2 is a pure submodule of

R. Now let I3 be an ideal of R. Then we have

I3(I1∩ I2) = I3∩ (I1∩ I2).

Therefore,

(N1 +N2 :M I3) = ((0 :M I1)+(0 :M I2) :M I3) = ((0 :M I1∩ I2) :M I3) =
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(0 :M I1∩ I2∩ I3) = N1 +N2 +(0 :M I3).

An R-module M has the pure sum property if the sum of any two pure submodules is again pure

[8].

Proposition 2.16. Let R be a PID and M be an R-module. Then M has the pure sum property if

and only if M has the copure sum property.

Proof. This follows from the fact that every submodule N of M is a pure submodule of M if and

only if it is a copure submodule of M by [4, Theorem 2.12].

An R-module H is called a multiplication module if for each submodule K of H there exists an

ideal J of R such that K = JH [6].

Corollary 2.17. Let R be a PID and let M be a locally cyclic R-module (in particular, M be a

multiplication R-module). Then M has the copure sum property.

Proof. By Proposition 2.16 and [8, Corollary 3.5].

Example 2.18. The Z-module Z has the copure sum property.
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