Çankaya University Journal of Science and Engineering Volume 16, No. 2 (2019) 010–015 Date Received: July 30, 2019 Date Accepted: October 13, 2019

Copure Submodules and Related Results

Faranak Farshadifar

Department of Mathematics, Farhangian University, Iran, e-mail: f.farshadifar@cfu.ac.ir

Abstract: Let *M* be a module over a commutative ring *R* with identity. A submodule *K* of *M* is copure provided that $(K :_M I) = K + (0 :_M I)$ for each ideal *I* of *R*. In this paper, we investigate some results about copure submodules of *M*.

Keywords: Pure submodule, copure submodule, copure sum property

1. Introduction

Throughout this work, *R* denotes a commutative ring with identity and \mathbb{Z} denotes the ring of integers.

A submodule N of an R-module M is called a *pure submodule* of M if $JN = N \cap JM$ for every ideal J of R [2].

H. Ansari-Toroghy and F. Farshadifar introduced the dual notion of pure submodules (that is copure submodules) of an *R*-module and discussed some properties of this class of modules, see [4]. A submodule *K* of an *R*-module *M* is called *copure* if $(K :_M I) = K + (0 :_M I)$ for each ideal *I* of *R* [4].

The aim of this note is to explore more information about this class of R-modules. Furthermore, we investigate the properties of R-modules that the sum of any two copure submodules is a copure submodule.

2. Main Results

Theorem 2.1. Let *M* be a distributive *R*-module. Then the following hold.

(a) A submodule N of M is copure if and only if for each $a \in R$ we have

$$(N:_M a) = N + (0:_M a).$$

ISSN 1309 - 6788 © 2019 Çankaya University

CUJ

(b) A submodule *N* of *M* is pure if and only if for each $a \in R$ we have

$$aN = N \cap aM$$
.

(c) A submodule N of M is a pure submodule if and only if it is a copure submodule.

Proof. (a) First assume that for each $a \in R$ we have $(N :_M a) = N + (0 :_M a)$. Suppose that *I* is an ideal of *R*. Then we have

$$(N:_{M} I) = (N:_{M} \sum_{a \in I} Ra) = \bigcap_{a \in I} (N:_{M} a) = \bigcap_{a \in I} (N + (0:_{M} a)).$$

Now as *M* is distributive, we have

$$\bigcap_{a \in I} (N + (0:_M a)) = N + \bigcap_{a \in I} (0:_M a) = N + (0:_M I).$$

Therefore, N is a copure submodule of M. The reverse implication is clear.

(b) First assume that for each $a \in R$ we have $aN = N \cap aM$. Suppose that *I* is an ideal of *R*. Then as *M* is a distributive *R*-module, we have

$$IN = (\sum_{a \in I} Ra)N = \sum_{a \in I} (RaM \cap N) = (\sum_{a \in I} Ra)M \cap N = IM \cap N.$$

Hence, N is a pure submodule of M. The reverse implication is clear.

(c) This follows from parts (a), (b) and [4, Theorem 2.12].

Let R_i be a commutative ring with identity and M_i be an R_i -module, for i = 1, 2. Let $R = R_1 \times R_2$. Then $M = M_1 \times M_2$ is an *R*-module. Clearly, every submodule of *M* is in the form of $N = N_1 \times N_2$ for some submodules N_1 of M_1 and N_2 of M_2 .

Proposition 2.2. Let $R = R_1 \times R_2$ be a ring and let $M = M_1 \times M_2$ be an *R*-module, where M_1 is an R_1 -module and M_2 is an R_2 -module. Then $N = N_1 \times N_2$ is a pure (resp. copure) submodule of *M* if and only if N_i is a pure (resp. copure) submodule of M_i for i = 1, 2.

Proof. This is straightforward.

Proposition 2.3. Let *R* be a Noetherian ring and let *M* be an *R*-module. Then the following hold.

- (a) If N is a copure submodule of M, then for each prime ideal P of R, N_P is a copure submodule of M_P as an R_P -module.
- (b) If N_P is a copure submodule of an R_P -module M_P for each maximal ideal P of R, then N is a copure submodule of M.

Proof. (a) This follows from the fact that by [9, 9.13], if *I* is a finitely generated ideal of *R*, then $((N :_M I))_P = (N_P :_{M_P} I_P).$

(b) Suppose that *I* is an ideal of *R*. As *R* is a Noetherian ring, *I* is finitely generated ideal of *R*. Hence by [9, 9.13], for any maximal ideal *P* of *R*, $((N :_M I))_P = (N_P :_{M_P} I_P)$. Thus by assumption, for any maximal ideal *P* of *R*,

$$((N:_M I))_P = N_P + (0:_{M_P} I_P) = (N + (0:_M I))_P.$$

It follows that

$$(N:_M I) = N + (0:_M I),$$

as needed.

Proposition 2.4. Let *M* be an *R*-module and let $f : M \to M$ be an endomorphism such that $f = f^2$. Then Ker(f) is a copure submodule of *M*.

Proof. Let *I* be an ideal of *R*. Clearly $Ker(f) + (0 :_M I) \subseteq (Ker(f) :_M I)$. To see the reverse inclusion, suppose that $x \in (Ker(f) :_M I)$. Then $xI \subseteq Ker(f)$. It follows that $f(x) \in (0 :_M I)$. As $f = f^2$, we have $x - f(x) \in Ker(f)$. Therefore $x = x - f(x) + f(x) \in Ker(f) + (0 :_M I)$, as required.

Definition 2.5. We say that an *R*-module *M* is *copure simple* if *M* and (0) are the only copure submodules of *M*.

Example 2.6. The \mathbb{Z} -module \mathbb{Z}_4 is copure simple.

Definition 2.7. We say that an *R*-module *M* has *the copure sum property* if the sum of any two copure submodules is again copure.

Recall that an *R*-module M is called *fully copure* if each submodule of M is a copure submodule of M [5].

Example 2.8. (a) Every fully copure *R*-module has the copure sum property.

- (b) Consider the Z-module M = Z₄ ⊕ Z₂. Let N₁ = 0 ⊕ Z₂ and N₂ = Z(2,1), the submodule generated by (2,1). It is easy to see that N₁ and N₂ are copure submodules of M. But N₁ + N₂ = {(0,0), (0,1), (2,1), (2,0)} is not a copure submodule of M. Thus M does not have the copure sum property.
- (c) Every copure simple *R*-module has the copure sum property.
- (d) Since the submodules of the $\mathbb{Z}_{p^{\infty}}$ (as \mathbb{Z} -module) are comparable, the \mathbb{Z} -module $\mathbb{Z}_{p^{\infty}}$ has the copure sum property.

Proposition 2.9. Suppose that *M* is an *R*-module. Then the following hold.

(a) If *M* has the copure sum property and *N* is a copure submodule of *M*, then *N* (resp. M/N) is also has the copure sum property.

(b) If *M* has the copure sum property, then

$$(N + K :_M I) = (N :_M I) + (K :_M I)$$

for every ideal I of R and for every copure submodules N and K of M.

(c) *M* as an *R*-module has the copure sum property if and only if *M* has the copure sum property as an $R/Ann_R(M)$ -module.

Proof. (a) It follows from [4, 2.9].

(b) Let *H* and *T* be two copure submodules of *M* and *J* be an ideal of *R*. By assumption, H + T is a copure submodule of *M*. Thus

$$(H + T :_M J) = H + T + (0 :_M J) = H + T + (0 :_M J) + (0 :_M J)$$
$$= (H :_M J) + (T :_M J).$$

(c) This is clear.

Proposition 2.10. Suppose that *R* is a Noetherian ring and *M* is an *R*-module. If the R_m -module M_m has copure sum property for each maximal ideal *m* of *R*, then *M* has the copure sum property as *R*-module.

Proof. Let *H* and *T* be two copure submodules of *M*. Then H_m and T_m are copure submodules of M_m as R_m -module by Proposition 2.3. Since M_m has copure sum property, $H_m + T_m = (H + T)_m$ is copure in M_m for every maximal ideal *m* of *R*. Thus H + T is a copure submodule of *M* by Proposition 2.3.

Remark 2.11. If an *R*-module *M* has the copure sum property, then the *R*-module $M \oplus M$ may not have the copure sum property. For example, consider \mathbb{Z}_4 as \mathbb{Z} -module. Then \mathbb{Z}_4 has the copure sum property. But the \mathbb{Z} -module $\mathbb{Z}_4 \oplus \mathbb{Z}_4$ does not have the copure sum property.

Recall that a submodule K of an R-module H is called a *fully invariant submodule* if for every endomorphism $f : H \to H$, we have $f(K) \subseteq K$ [10].

Theorem 2.12. Let $M = \bigoplus_{i \in I} M_i$ be an *R*-module, where each M_i is a submodule of *M*. If *M* has copure sum property, then each M_i has the copure sum property. The converse is true if each copure submodule of *M* is fully invariant.

Proof. Suppose that *M* has copure sum property. Since each M_i is a summand of *M*, then each M_i is a copure submodule of *M* by [5, 3.11]. Thus by Proposition 2.9, each M_i has the copure sum property. For the converse, let *N* and *K* be two copure submodules of *M*. Then *N* and *K* are fully invariant by assumption. Thus $N = \bigoplus_{i \in I} (N \cap M_i)$ and $K = \bigoplus_{i \in I} (K \cap M_i)$ by [10, 8.11]. So

$$N+K=\oplus_{i\in I}((N\cap M_i)+(K\cap M_i)).$$

One can see that $N \cap M_i$ and $K \cap M_i$ are copure submodules of M_i and M_i has the copure sum property, thus $(N \cap M_i) + (K \cap M_i)$ is a copure submodule of M_i . Therefore, N + K is a copure submodule of M by [4, 2.11].

Proposition 2.13. Let M_1 and M_2 be *R*-modules with copure sum property such that $Ann_R(M_1) + Ann_R(M_2) = R$. Then the *R*-module $M_1 \oplus M_2$ has the copure sum property.

Proof. Let *T* and *H* be two copure submodules of $M_1 \oplus M_2$. Since $Ann_R(M_1) + Ann_R(M_2) = R$, then $T = T_1 \oplus T_2$ and $H = H_1 \oplus H_2$, where T_1 , H_1 are submodules of M_1 and T_2 , H_2 are submodules of M_2 by [1]. Now by assumption, $T_1 + H_1$ is a copure submodule of M_1 and $T_2 + H_2$ is a copure submodule of M_2 . Hence by [4, 2.11], $(T_1 + H_1) \oplus (T_2 + H_2)$ is a copure submodule of $M_1 \oplus M_2$. So T + H is a copure submodule of $M_1 \oplus M_2$, as desired.

Theorem 2.14. Suppose that $R = R_1 \times R_2$ is a commutative ring and $M = M_1 \times M_2$ is an *R*-module, where M_1 is an R_1 -module and M_2 is an R_2 -module. Then *M* has the copure sum property if and only if M_i has the copure sum property for i = 1, 2.

Proof. This is straightforward by using Proposition 2.2.

An *R*-module *M* satisfies the *double annihilator conditions* if, for every ideal *J* of *R*, we have $J = Ann_R((0:_M J))$ [7].

An *R*-module *H* is called a *comultiplication R-module* if for each submodule *K* of *H* there exists an ideal *J* of *R* such that $K = (0:_H J)$ [3].

An *R*-module *S* is a *strong comultiplication R-module* if *S* is a comultiplication *R*-module and satisfies the double annihilator conditions [4].

Theorem 2.15. Let M be a strong comultiplication R-module. Then M has the copure sum property.

Proof. Let N_1 and N_2 be two copure submodules of M. Since M is a comultiplication R-module, $N_1 = (0:_M I_1)$ and $N_2 = (0:_M I_2)$ for some ideals I_1 and I_2 of R. Now since M is a strong comultiplication module, we have

$$(0:_M I_1) + (0:_M I_2) = (0:_M I_1 \cap I_2).$$

By [4, Theorem 2.13], I_1 and I_2 are pure submodules of R. Clearly, $I_1 \cap I_2$ is a pure submodule of R. Now let I_3 be an ideal of R. Then we have

$$I_3(I_1 \cap I_2) = I_3 \cap (I_1 \cap I_2).$$

Therefore,

$$(N_1 + N_2 :_M I_3) = ((0 :_M I_1) + (0 :_M I_2) :_M I_3) = ((0 :_M I_1 \cap I_2) :_M I_3) =$$

CUJSE 16, No. 2 (2019)

Copure Submodules and Related Results

$$(0:_{M} I_{1} \cap I_{2} \cap I_{3}) = N_{1} + N_{2} + (0:_{M} I_{3}).$$

An *R*-module *M* has *the pure sum property* if the sum of any two pure submodules is again pure [8].

Proposition 2.16. Let R be a PID and M be an R-module. Then M has the pure sum property if and only if M has the copure sum property.

Proof. This follows from the fact that every submodule N of M is a pure submodule of M if and only if it is a copure submodule of M by [4, Theorem 2.12].

An *R*-module *H* is called a *multiplication module* if for each submodule *K* of *H* there exists an ideal *J* of *R* such that K = JH [6].

Corollary 2.17. Let R be a PID and let M be a locally cyclic R-module (in particular, M be a multiplication R-module). Then M has the copure sum property.

Proof. By Proposition 2.16 and [8, Corollary 3.5].

Example 2.18. The \mathbb{Z} -module \mathbb{Z} has the copure sum property.

References

- [1] M.S .Abbass, On fully stable modules, Ph.D. Thesis, University of Baghdad, 1991.
- [2] W. Anderson and K.R. Fuller, Rings and Categories of Modules, *Springer-Verlag*, New York-Heidelberg-Berlin, 1974.
- [3] H. Ansari-Toroghy and F. Farshadifar, The dual notion of multiplication modules, *Taiwanese J. Math.* **11** (4) (2007), 1189–1201.
- [4] H. Ansari-Toroghy and F. Farshadifar, Strong comultiplication modules, CMU. J. Nat. Sci. 8 (1) (2009), 105–113.
- [5] H. Ansari-Toroghy and F. Farshadifar, Fully idempotent and coidempotent modules, *Bull. Iranian Math. Soc.* 38 (4) (2012), 987-1005.
- [6] A. Barnard, Multiplication modules, *J. Algebra*, **71** (1981), 174–178.
- [7] C. Faith, Rings whose modules have maximal submodules, Publ. Mat., 39 (1995), 201-214.
- [8] Adil G. Naoum and Bahar H. Al-Bahraany, Modules with the pure sum property, *Iraqi J. Sci.*, 43 (3) (2002), 39-51.
- [9] R. Y. Sharp, Step in commutative algebra, Cambridge University Press, 1990.
- [10] R. Wisbauer, Foundations of Modules and Rings Theory, Gordon and Breach, Philadelphia, PA, 1991.