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Abstract: Path planning algorithms for mobile robots are concerned with finding a feasible path between a
start and goal location in a given environment without hitting obstacles. In the existing literature, important
performance metrics for path planning algorithms are the path length, computation time and path safety,
which is quantified by the minimum distance of a path from obstacles.

The subject of this paper is the development of path planning algorithms for omni-directional robots,
which have the ability of following paths that consist of concatenated line segments. As the main contribution
of the paper, we develop three new sampling-based path planning algorithms that address all of the stated
performance metrics. The original idea of the paper is the computation of a modified environment map that
confines solution paths to the vicinity of the Voronoi boundary of the given environment. Using this modified
environment map, we adapt the sampling strategy of the popular path planning algorithms PRM (probabilistic
roadmap), PRM* and FMT (fast marching tree). As a result, we are able to generate solution paths with a
reduced computation time and increased path safety. Computational experiments with different environments
show that the proposed algorithms outperform state-of-the-art algorithms.

Keywords: Path planning, omni-directional robots, sampling-based algorithms, Voronoi diagram, safety.

1. Introduction

Path planning for mobile robots has attracted much attention in the recent years [1, 2, 3, 4, 5].
Path planning is concerned with finding a feasible robot path between a start and goal location,
while avoiding obstacles in the robot environment [6, 7]. Hereby, the most common performance
metrics to validate the quality of solution paths are computation time, path length and the minimum

distance to obstacles, which quantifies path safety [8, 9].

There are different possible scenarios for robotic path planning depending on the availability of
information about the environment [10, 11, 12, 13, 14], the type of obstacles (static or dynamic)
[15, 16, 17] and the robot type [7, 3, 18]. In this paper, we focus on the path planning for omni-

directional robots in known environments with static obstacles.
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In the recent literature, sampling-based algorithms are most popular for path planning in known
environments with static obstacles [5, 10, 12, 13, 14, 9, 19, 20, 21, 22]. A large majority of such
algorithms is based on probabilistic roadmaps (PRM) or rapidly exploring random trees (RRT).
On the one hand, PRMs generate random sample nodes and introduce connections between close
nodes in the obstacle-free region to determine a solution path [10]. On the other hand, RRTs are
based on the idea of growing a tree in the obstacle-free region from the start location to the goal
location [13]. Moreover, there are various extensions of these algorithms. The PRM* and RRT*
algorithms ensure convergence to an optimal path [12] and the FMT algorithm in [14] combines
features of PRMs and RRTs to determine shorter solution paths. The Quick RRT* algorithm in
[21] promises faster convergence to the optimal path and the synchronized biased-greedy RRT in
[22] grows trees towards the goal location. A common feature of these algorithms is that they
focus on the fast computation of minimum length solution paths. Only very recently, confidence

random trees (CRT) [9] were introduced as a sampling-based method for path safety.

Methods that take into account path safety are frequently based on the generalized Voronoi dia-
gram (GVD) [23, 24, 25, 26], which partitions an environment in Voronoi regions of points that are
closest to an obstacle. Then, the Voronoi boundary represents the border of the Voronoi regions
such that each point on the Voronoi boundary has the same distance to its closest obstacles. Using
the GVD, methods such as [24, 26] guide the search for a solution path along the GVD while ap-
plying sampling-based methods in narrow passages [24] or satisfying differential constraints [26].
The method in [25] combines visibility graphs, GVDs and potential fields to obtain short paths.
Although these methods make use of the GVD, they do not specifically address path safety. [23]
first determines a graph from the GVD and then finds the shortest path in that graph using Dijk-
stra’s algorithm [27]. In this case, the solution path has the largest possible distance to obstacles
but can be unnecessarily long. As a remedy, [8] suggests to first refine the shortest path in the
GVD by removing unnecessary turns and then introduces additional points in order to shorten the

solution path. Differently, [28] applies the fast marching method on an inflated Voronoi boundary.

The main objective of this paper is the development of sampling-based methods for robotic path
planning with a small computation time, short path length and guaranteed safety distance to ob-
stacles. To this end, we propose to first compute an inflated Voronoi boundary, which then serves
as the available free space for solution paths. Next, we develop a new sampling strategy that
efficiently generates samples exlusively on the inflated Voronoi boundary. Finally, we adapt the
sampling-based algorithms PRM, PRM* and FMT in order to obtain connections between node
samples that stay within the inflated Voronoi boundary. The resulting methods are denoted as
Inflated PRM (IPRM), Inflated PRM* (IPRM*) and Inflated FMT (IFMT). The quality of the
computed solution paths regarding path length and safety is demonstrated by comprehensive com-

putational experiments with different environments and a comparison to state-of-the-art methods.
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We note that the only existing sampling-based method in combination with the inflated Voronoi
boundary is given by our previous work in [29]. This work only considers the algorithm IPRM

and does not provide a comprehensive evaluation.

The remainder of the paper is organized as follows. Background information on sampling-based
path planning is given in Section 2. The proposed method is introduced in Section 3 and evaluated

in Section 4. Conclusions and an outline of future work are given in Section 5.

2. Background

This section summarizes the required background information for the paper. The notation for
robotic path planning is introduced in Section 2.1 and Section 2.2 explains the generalized Voronoi

diagram. Several relevant state-of-the-art path planning methods are explained in Section 2.3.

2.1. Notation and Path Planning Problem

In this paper, we focus on path planning in two-dimensional (2D) environments. Such environ-
ments are suitable for robots that can navigate along paths that consist of straight-line segments.

A possible example for such robots are omni-directional robots that can turn on the spot [18].

We represent the 2D environment by the configuration space € € R?. Obstacles in % that should
not be hit by the mobile robot are characterized by the obstacle region 6o,s C € as depicted in
Fig. 1. Then, the obstacle-free region that can be used for the robot motion is Gfee = € \ Gobs-

obs
% Pn=Xn, Yn
free Z E

p 2=X2 Y. 22l P3=Xs Y3 P4 XeYa_—

Ps X5, Y5

I
(gobs

FIGURE 1. Example robot environment.

For any point p € €, we write p = (x,y), whereby x and y represent the coordinates of p as shown
in Fig.1. Then, a robot path P can be described by a sequence of vertexes P = (p1,p2,---,Pn)s
whereby p; € € for i = 1,...,n. Here, p; is the start vertex, p, is the goal vertex and n is the

number of vertexes of the path. Connecting adjacent vertexes p; and p;;| of a path by straight
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lines /; foreachi=1,...,n— 1, the overall path consists of the points &Zp C ¢ that are covered by
the line segments /y,...,/,_1. Accordingly, a path P is collision-free if all points covered by the

path are in the obstacle-free region, that is, &Zp C %fee. The set of all obstacle-free paths is
M:{PL@Pg(gfree}- (1)

The distance between two points p; = (x;,y;),pj = (xj,yj) € € is given by

d(pi,pj) = \/(Xi—xj)2+(yi—yj)2- 2)
Using (2) and considering a point p € ¢ and subsets ¢”, %" C €, we further write
d(p,¢") = min d(p,p’) 3)
pleg//

for the minimum distance of p from points in the set ¢’ and

d(¢',¢") = d(p',p") 4)

min
plg(g/’plle(é)//
for the minimum distance of points in the sets ¢’ and €. Referring to (4), d(Pp, €ops) represents
the minimum distance of a path P from the obstacle region. In addition, the path length of P is

n—1

Lp=Y d(pi,pis1)- 4
i=1

Employing the above notation, the path planning problem for mobile robots is concerned with
finding a suitable obstacle-free path between a given start position ps € Gfee and goal position
PG € Gree- Here, suitability is specified by performance metrics based on the path length (finding
the shortest path), path safety (finding a path distant from obstacles) or the computation time for

finding a path. In this paper, we will consider a combination of the stated performance metrics.

2.2. Generalized Voronoi Diagram

The generalized Voronoi diagram (GVD) is frequently used in robotic path planning [8, 16, 24,
25, 26]. Consider a set of geometric objects &, 05, ..., 0, such that 0; C € fori=1,...,m. The
Voronoi region ¥; of 0 is the set of all points p € ¢ that are closer to &; than to any other object
O; with i # j [24, 25, 26]. Formally,

Then, the generalized Voronoi diagram (GVD) is the collection of all regions 71,...,%;,,. More-
over, we introduce the notation ¥ for the set of all points on the boundary of a Voronoi region
and we call ¥ the Voronoi boundary. Hereby, it is the case for any p € 7 that there are at least
two objects 0, 0; with i # j and such that d(p, 0;) = d(p, 0;). In addition, we define the set of

branching points (BPs) 2 as the set of all points on the boundary of at least 3 Voronoi regions.
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The existing literature provides a multitude of methods for the computation of GVDs [8, 24, 25,
31]. In this paper, we assume that the robot environment is given in the form of a digital map,
where G and G,y are represented by white and black pixels, respectively. In this case, the GVD

can be computed by using the morphological operation of thinning as illustrated in Fig.2.
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FIGURE 2. Example environment with generalized Voronoi diagram.

2.3. Basic Methods

We next describe several popular algorithms for robotic path planning.

2.3.1. Voronoi Diagram and Dijkstra’s Algorithm. GVDs can be used for path planning in
order to obtain a path with a maximum distance from the obstacle region [8, 24, 25, 31]. Hereby,
the existing methods generate the GVD of the environment and extend it by the shortest obstacle-
free connection of the start position ps and goal position pg to the GVD [16, 26, 32]. Then, a
graph G = (V,E) is extracted from this extended GVD such that ps, pg and the BPs correspond
to vertexes in V. The edges E are introduced between vertexes that are connected by the Voronoi
boundary and are labeled with the connection distance. Finally, Dijkstra’s algorithm [27] is applied
to this graph to determine the shortest path in the extended GVD. The described algorithms are

safe but generally produce long paths. An example for the environment in Fig. 1 is given in Fig. 3.

O
S

FIGURE 3. Shortest path on the Voronoi boundary.
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2.3.2. Relevant Functions for Sampling-based Methods. Sampling-based algorithms for robotic
path planning are of high interest due to their fast computation of reasonable solution paths. We

next outline common functions of these sampling-based algorithms.

All sampling-based methods are based on the generation of random samples in Gfe.. We denote

the function that generates N samples in e that are drawn from a uniform distribution as

Xrand = SampleFree((gfreeyN) - Cgfree-

Hereby, each x € X;,,q represents a random sample in @fee. In addition, we introduce the function
Xnew = SampleRad(x,r,N, Giree) C Ghree
that generates N random samples Xjew in Gfee ON a circle with radius » around a point x. Further,
Xnear = Near(V,x,r) = {2 € V|d(x,%) <r}
determines all points in the set V that lie on a disk with radius r around a point x. Finally,

true if [, ;N Gops # 0

CollisionFree(x,X, Gobs) = .
false otherwise

returns true if the straight line /, 3 between the points x and X intersects %ops and false otherwise.

2.3.3. Probabilistiy Roadmap (PRM). The PRM algorithm in Algorithm 1 is one of the most
popular algorithms for robotic path planning [10, 11] that has initially been introduced for multi-
query applications. However, the PRM algorithm is as well suitable for single-query applications
[30]. In this case, the PRM algorithm first generates a set of Nprym random nodes in % and
creates a graph G = (V,E). Initially, the vertexes consist of Xung, ps and pg and there are no
edges. Then, the PRM algorithm iteratively picks one of the sample nodes (line 4) and determines
all neighbor nodes Xjcar Of Xang Within a radius rpry (line 5). Edges from nodes xpear € Xpear t0
Xrand are introduced if xpapq and xpear do not belong to the same connected component in G and if
they can be connected by a collision free line (line 6 to 9). Each edge (X;and,X), (X, Xranq) is labeled
by its cost ¢((Xrand;X)) = ¢((x,Xrand)), Which is represented by the distance between the related
nodes (line 10). Finally, the algorithm returns the shortest (minimum cost) path P from ps to p, in

the resulting graph G.
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Function P = PRM(ps, pG, Nprm, C s Cobs Clree)
Initialize: X;ang = SampleFree(Gee, NerM); V = {Ps, PG} UXrang; E =0
fori= 17---7NPRM do
PicK Xrand € Xrand: Xrand = Xrand \ {xrand}
Xnear = Near (V7 Xrand rPRM)
for x € X4y in order of increasing d(x,X,qnq) do
if x,,,4 and x are not in the same connected component of G then
if CollisionFree(Xuu,X, 6,ps) then
E=EU {(xrandax)y (xaxrand)}
C((xrand’x)) = C((xaxrand)) = d(xrandax)7 (xaxrand)

| return shortest path P from ps to pg in G.

Algorithm 1: PRM algorithm (for fixed value of rpry) and PRM* algorithm (for rpry =
Yorm - (log(n)/n)?)).

2.3.4. PRM*. The PRM* algorithm was proposed as a modified version of PRM in [12]. Its
only difference to the classical PRM algorithm in Algorithm 1 is that the connection radius rprm
between nodes in line 5 decreases with an increasing number of nodes in the form rpryv = YprM -
\/W. Hereby, Ry is a constant that has to be chosen larger than 2 - /1.5 - 4 (%ee ) /7 for
2D-environments (U (%Gfree ) denotes the area of Gee). As a result, the PRM* algorithm is expected
to produce shorter solution paths than the PRM algorithm with a possibly increased computational

effort.

2.3.5. Fast Marching Tree (FMT). The FMT algorithm was proposed in [14]. Its set of nodes V
is generated in the same way as for the PRM algorithm. Moreover, it keeps sets of closed (V iosed)s
open (Vopen) and unvisited (Vy,) nodes that are initialized in line 2. Hereby, c(x) represents the
cost (distance) of traveling from pg to x along the graph G = (V,E). In each iteration, the FMT
algorithm selects the node with the lowest cost in the open set (line 18) and finds all of its neighbors
Xhear in the unvisited set (line 5). In analogy to PRM*, neighbors are defined based on a connection
distance rgmT = YeMT - \/log(w that decreases with the number of iterations. Each neighbor
X € Xpear 18 then connected to the closest neighbor y,i, in the open set Yy, if the connection is
collision free and the relevant sets are updated (line 7 to 15). The algorithm terminates without
success if no more nodes are left to be processed (Vopen = 0 in line 16). Otherwise, a solution path

is returned if pg is found to be the unprocessed node with the lowest cost.
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Function P = FMT(ps, pG, Nemt, €, Cobs: Clree)
Initialize: V = {ps, pg} U SampleFree(Giee, Nemt): E = 0; Van =V \ ps; Vopen = {Ps};
Velosed = 0; C(PS) =0;z=ps
while z # p; do
Vopen =0
Xnear = Van NNear (V\ {z},z, rrvr)
for x € Xj,eqr do
Yaear = Vopen NNear (V \ {x},x, remr)
Ymin = argminernear{C(y) + d(y7x)}
if CollisionFree(ymin,X, Gops) then
E=EU {(yminax)}
Vopen = Vopen U {x}
Vin = Vi \ {x}
L C(X) = C(ymin) +d(ymin,x)
Vopen - (Vopen U Vopen) \ {Z}
Velosed = Vlosed U {Z}
if V,en = 0 then
‘ return no path found
2= argmin,ey,, {c(x)}

| return shortest path P from ps to pg in G.

Algorithm 2: FMT algorithm.

2.3.6. Confidence Random Tree (CRT). The previously discussed algorithms are designed for
finding short paths with a small computation time. Including path safety as a performance metric,
the confidence random tree (CRT) algorithm tries to generate solution paths that stay away from
obstacles [9]. To this end, the CRT algorithm introduces the notion of confidence of anode x € Giree
as

Conf(x,Gobs) = min{d(x, Gobs)/Cmax, 1 }-

Hereby, cmax is @ maximum distance parameter and the confidence gives an indication of the
distance of x to the obstacle region. Then, the CRT algorithm expands a tree G = (V, E) starting
from pg (line 2). In each iteration, a set Xpew Of new nodes is determined at a distance d =
Conf(x,%obs) - Cmax from each node x in the current open set Xopen (line 5 to 9). Hereby, each
element of Xpew stores the generated node xpew and its parent node x (line 9). In order to limit
the number of nodes, the CRT algorithm includes a node rejection method to avoid generating
nodes in previously explored areas (line 10 to 23). Here, nodes are rejected if they are too close
to previously explored nodes in X¢joseq (line 14 to 17) or if they are too close to an accepted node
Xnew With a higher confidence (line 21 to line 23). Accepted nodes xpew are added to Xopen for
processing and an edge to the parent node is introduced in G (line 19 and 20). The CRT algorithm
terminates without a solution path if Xpe is empty or with a solution path P if a connection to pg
is found (line 26).
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Due to the consideration of node confidence, the CRT algorithm generates safe solution paths at

the expense of an increased path length.

Function P = CRT(pS;pGacmamcmina%7cgobs’ %Cree)
Initialize: Xopen = {ps}; Xciosed =0; V = {ps}, E=0
while X,,,., # 0 do
Xelosed = Xclosed UXopen; Xnew =0
for x € X,pen do

Xiand = SampleRad(x,Conf(x, Gobs) - Cmax, MCRT, Clree)

for xey € Xyana do

L if Conf (Xuew, Gobs) = Cmin then
‘ Xnew = Xnew U {(xneW7x)}

Sort Xpew With decreasing confidence

Xopen =0

while X,,.,, # 0 do

Take first element (Xpew,x) from Xnew; Xnew = Xnew \ { (Xnew,X) }5 faccept = 1
for £ € X, jp50q do

if Conf(X) - cmax > d(Xpew,X) then

f accept — 0
| | break
if fuccepr 7 0 then

Xopen = Xopen U {xnew}
V=V U{xnew}; E = EU{(x,Xnew)}
for (fnewaf) € Xuew do
L if Conf (Xuew) * Cimax > d(Xnew, Xnew) then
‘ Xnew = Xnew \ {(xAnewa)?)}

Xnear = ar'g rninxeXopen d(x, PG)
if Conf(xnear) *Crax > d(xnearv pG) then
|| return path P from ps to pg in G = (V,E)

B return P =0

Algorithm 3: CRT algorithm.

For illustration, Fig. 4 shows solution paths for the described algorithms. It is readily observed that
the paths obtained for PRM, PRM* and FMT come very close to the obstacles. This is expected
since these algorithms try to minimize the path length and do not account for path safety. On the
other hand, the example path for CRT in Fig. 4 (d) stays away from the obstacles but leads to an
increased path length. The main focus of this paper is the adaptation of algorithms such as PRM,

PRM* and FMT in order to address path safety without a significant increase in path length.
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FIGURE 4. Example solution paths: (a) PRM; (b) PRM*; (c) FMT; (d) CRT.

3. Proposed Method

This section develops the method for safe and fast path planning based on the knowledge of the
extended GVD and the corresponding Voronoi boundary #” in Section 2.3.1. Section 3.1 describes
the general methodology and Section 3.2 and 3.3 combine the proposed methodology with the

classical path planning algorithms described in Section 2.3.

3.1. Inflated Path

We assume that the Voronoi boundary is available in the form of a set of points ¥ C % and
the start and goal point ps and pg are elements of ¥ in analogy to Section 2.3.1. Specifically,
we consider the case where a solution path exists in the extended GVD.! As the first step of our
algorithm, we suggest to prune the extended GVD in order to remove parts of #” that cannot lie on

a solution path from pg to pg similar to [25].

Next, we define a distance Dy and we inflate ¥ by the width D;. Considering that the environment
is given in the form of a digital image (such as JPEG), whereby ¥ is represented by pixels in this
image, the inflated Voronoi boundary ¥ can be computed by a morphological dilation operation:

N="®Bp,= |J %, (7

bGBDI

'We note that this is not a restriction of the general case. If there is no solution in the extended GVD, there is generally
no solution of the path planning problem.
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whereby Bp, represents a disk with radius Dy, @ represents the dilation operation and ¥}, is the
translation of 7" by b € Bp,. The resulting map for the environment in Fig. 2 with the inflated

pruned Voronoi boundary %1 for D = 6 and Dy = 12 is shown in Fig. 5.

AN (s

(a) (b)
FIGURE 5. Example environment with different path width: (a) D = (6 pixels)

(b) D = (12 pixels)

Using 71, the main idea of this paper is a modification of the sampling method SampleFree
used in the sampling-based path planning algorithms in Section 2.3. Instead of generating random
samples in the free space Gfee, We suggest to generate samples only in #1. To this end, we next
both develop an efficient method for generating such samples and provide a formula for deciding

on the number of required node samples.

In order to efficiently generate samples in 71, we first observe that all such samples should have a
maximum distance of Dy from the original Voronoi boundary ¥'. That is, we first select a number
of Ny random points Py from ¥'. For each point p € Py, we generate random values d € [0,Dy]
and 6 € [0,2, 7] and determine the sample

v=p+d- (8)

sin(0)

cos(O)]

That is, each node sample is represented by a point, whose distance to 7" is bounded by D;. The
proposed procedure is summarized in Algorithm 4.

Writing |#| for the overall sum of all path lengths on ¥, we observe that the number of required
node samples increases with | 7’| and decreases with Dy since a larger value of Dy leaves more free
space for obstacle-free connections (compare Fig. 5 (a) and (b)). Hence, we suggest to compute
the number of node samples as ”

Ny =7y - Dy’ )
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Function S = SampleInflated(Ny,¥,Dy)
Initialize: S =0
Select Ny random points Py from ¥
for p € Py do
Generate random d € [0, Dj]
Generate random 6 € [0,2, 7]
Generate new sample v according to (8)
S=Su{v}

B return S

Algorithm 4: Computation of samples close to ¥'.

whereby 7y is a safety coefficient that can be adjusted depending on the specific environment. We

next point out the proposed modifications of the algorithms (PRM, PRM’, FMT) in Section 2.3.

3.2. Inflated-path PRM (IPRM) and Inflated-path PRM* (IPRM*)

The original PRM algorithm (Section 2.3.3, Algorithm 1) computes node samples in the over-
all free space using SampleFree(%, %obs, NprM) and checks if connections between nodes are
collision-free using CollisionFree(Xmpnd,X, Gobs) With the obstacle region %ops. The pro-
posed algorithms inflated-path PRM (IPRM) and inflated-path PRM* (IPRM*) generate node
samples as described in Section 3.1 and check collision-freeness using the modified obstacle re-

gion Gops = € \ #1. That is, line 2 in Algorithm 1 is replaced by
Xiand = SampleInflated(Ny,? ,Dy);V ={ps,pc};E =0
and line 8 in Algorithm 1 is replaced by
if CollisionFree(Xmang,X, %%bs) then.

3.3. Improved FMT

Similar to the modification of PRM and PRM*, we suggest to change the sampling method and the
obstacle region of the FMT algorithm in Section 2.3.5. To this end, we replace line 2 in Algorithm
2 by

V ={ps,pc}USampleInflated(Ny,”? ,D1);E =0;Vin =V \ ps;Vopen = {Ps};
In addition, we replace line 9 in Algorithm 2 by

if CollisionFree(Ymin,X, Cfobs) then.
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4. Evaluation

We next perform a comparison of the proposed methods and the existing methods in Section 2.3
regarding the resulting path length, safety distance and computation time. Section 4.1 explains the
setup of the computational experiments and Section 4.2 to 4.5 evaluate the considered algorithms

for different environments. A discussion of the obtained results is given in Section 4.6.

4.1. Experimental Setup and Maps

We apply the described algorithms to the environments in Figure 6 which are given as binary
images, where pixels in % are white and pixels in Ggps are black. The start position and the goal

position are shown by a green diamond and red circle, respectively.

The maps are selected according to their different properties as follows. The polygon map in
Fig. 6 (a) has different obstacles that are represented by polygon shapes and that leave sufficient
free space for multiple routes between ps and pg. In the maze map in Fig. 6 (b), obstacles are
represented by straight lines and there are multiple routes between ps and pg. The U-map in Fig.
6 (c) offers U-shaped obstacles, where candidate paths can be trapped. The maze map in Fig. 6

(d) provides a single long and narrow circular solution route.

0 oA |
AN @ T—}‘Tk.l
307

FIGURE 6. Environments used for the evaluation.
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In order to perform a fair evaluation, all the algorithms were implemented in Matlab using the
same functions for common tasks of the different algorithms as indicated in Section 2.3.2. The
experiments were run on a personal computer with Intel(R) Core(TM) i5-6500 CPU @ 3.20GHz

and 8.00 GB RAM. For each environment, 100 test runs of each algorithm were performed.

4.2. Polygon Map

We first consider the polygon map in Fig. 6 (a). Following the procedure in Section 2.2 and 3.1, we
determine the extended GVD and the inflated Voronoi boundary as shown in Fig. 7 for different
values of Dy = 14, Dy = 10 and Dy = 6. Here, 71 is shown in white, ¥ is shown in green and %ops
is shown in black. The light blue region represents the part of % that is not close enough to #

and hence is not considered for solution paths.

extended GVD Di=14

Dy=10 D=6
FIGURE 7. Polygon map: extended GVD and inflated Voronoi boundary.

The computational results for the polygon map are shown in Fig. 8. For each method the average
values of computation time (Tcomp), path length (I:path), minimum obstacle distance (D) and
number of nodes (Npoges) for 100 runs (represented by a bar) are displayed. In addition, the error
bars show the maximum and minimum value among the 100 test runs. We point out the following

main observations from the figure.

e Regarding the computation time, it is observed that the proposed algorithms are always
faster than the related classical algorithm, whereby the computation time increases for a
narrower inflated path. This change in the computation time is directly related to the number

of nodes Npodes as computed with (9).
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e Although it is the case that PRM, PRM* and FMT produce short solution paths, these al-
gorithms do not account for path safety, that is, Dy, is small. All the proposed algorithms
achieve increased safety depending on the value of D;. Most interestingly, path safety is
comparable to the results of the CRT algorithm if Dy is chosen small enough, whereas the
computation time, the path length and the variation among solutions are smaller for the
proposed algorithms.

e Only the VD algorithm can achieve safer paths than the proposed algorithms but with a

significantly increased path length.
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FIGURE 8. Comparison of the performance metrics for the polygon map.

In summary, the proposed algorithms clearly outperform the existing algorithms for the polygon
map when taking into account computation time, path length and safety. For illustration, Fig. 9
compares solution path examples for the different methods (D; = 6). It can be seen that the path
for CRT has unnecessary turns, which extend the path compared to the paths generated by IPRM,
IPRM* and IFMT, which attempt to find the shortest path within the inflated Voronoi boundary.
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FIGURE 9. Solution paths for the polygon map.

4.3. Maze Map with Straight Lines

We next consider the maze map in Fig. 6 (b). The extended GVD and the inflated Voronoi bound-
ary for this map are shown in Fig. 10 for D; =9, D; =7 and D; = 5, whereas Fig. 11 depicts the

computational results for this map.
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FIGURE 10. Maze map: extended GVD and inflated Voronoi boundary.

We point out the following main observations from this experiment.

e Regarding the computation time, it can again be seen that the proposed algorithms are gen-

erally faster than the related classical algorithm, whereby the IPRM* algorithm is fastest.
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o Path safety can be significantly increased compared to the classical algorithms when using
the proposed algorithms. Moreover, an increase in path safety compared to the CRT algo-
rithm is possible at a significantly reduced computation time, path length and variation of
the obtained solutions. Here, the main reason for the increased computation time of the
CRT algorithm is the generation of node samples in parts of the map that are not relevant
for finding a solution path. The proposed algorithms only generate node samples along the

possible routes along the inflated Voronoi boundary.
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FIGURE 11. Comparison of the performance metrics for the maze map with
straight lines.
Fig. 12 compares solutions paths of the different methods. Similar to previous section, CRT gen-
erates longer paths due to unnecessary turns when following straight passages. On the contrary,

the solution paths of IPRM, IPRM* and IFMT use straight line connections in such passages.

[PRM* IFMT

FIGURE 12. Solution paths for the maze map with straight lines.
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4.4. U-Map

We further study the U-map in 6 (¢). The extended GVD and the inflated Voronoi boundary for
this map are shown in Fig. 13 for D; = 20, Dy = 15 and Dy = 10, whereas Fig. 11 depicts the

computational results for this map.

extended GVD

| ==

Dr=15

FIGURE 13. U-map: extended Voronoi diagram and inflated Voronoi boundary.
The main observations from this experiment are summarized as follows.

e The proposed algorithms lead to a reduced computation time compared to the existing algo-
rithms except for the VD algorithm, which generates a very long path.

e The proposed algorithms allow adjusting path safety by selecting an appropriate value of Dy.
For this environment, it has to be mentioned that the CRT algorithm generates safe paths
with a similar path length as the proposed algorithms. Nevertheless, the CRT algorithm still
leads to a larger computation time and significant variations in the minimum distance from
the obstacle region. The main reason is that the CRT algorithm generates random samples
that can be more or less close to the obstacle region depending on the found confidence
values. On the other hand, the node samples of the proposed algorithms are restricted to the

inflated Voronoi boundary such that the lower bound for Dy, is well-defined.
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FIGURE 14. Comparison of the performance metrics for the U-map.

We further note that the solution paths in Fig. 15 confirm the observations from the previous

sections and solution paths of CRT might come close to obstacles.
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FIGURE 15. Solution paths for the U-map.
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4.5. Maze Map with Spiral

We finally investigate the maze map in 6 (d) that has a very long solution path. The extended GVD
and the inflated Voronoi boundary for this map are shown in Fig. 16 for D; = 8, D; = 6 and D; =4,

whereas Fig. 17 depicts the computational results for this map.

extended GVD D=8

Dy =6 D=4
FIGURE 16. Polygon map: extended GVD and inflated Voronoi boundary.

We next describe the main observations from this experiment.

e The proposed algorithms mostly lead to significantly smaller computation times compared
to the existing algorithms. It can only be observed that a very small value of Dy should be
avoided due to the increase in the required number of nodes.

e For this map with a narrow space between obstacles, the proposed algorithms enable a
significant increase of path safety without much increase in the path length compared to the
classical methods. In addition, the proposed algorithms outperform the CRT algorithm in

all performance metrics.

Finally, the solution paths in Fig. 18 again support the superiority of the proposed methods com-
pared to CRT.
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FIGURE 18. Solution paths for the maze map with spiral.
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4.6. Discussion

Overall, the computational experiments for different environments indicate that the proposed
methods are superior to both existing sampling-based methods such as PRM [11], PRM* [12] and
FMT [14] as well as recent methods for path safety such as CRT [9]. In particular, the proposed
IPRM algorithm outperforms the original PRM algorithm, the proposed IPRM* algorithm outper-
forms the original PRM* algorithm and the proposed IFMT algorithm outperforms the original
FMT algorithm regarding both computation time and path safety while accepting a slight increase
in path length. Moreover, all the proposed algorithms (IPRM, IPRM* and FMT*) lead to a reduced
computation time and path length while providing comparable path safety as the CRT algorithm.
When comparing the proposed algorithms IPRM, IPRM* and IFMT, it can be observed that all of
these algorithms provide similar results regarding computation time, path length and path safety.
It is only the case that the IFMT algorithm leads to an increased computation time in case of a

small width of the inflated Voronoi boundary and for environments with very long solution paths.

In this context, it has to be noted that the proposed algorithms benefit from confining the generated
node samples to the inflated Voronoi boundary. This helps avoiding the exploration of irrelevant
regions of 6. Moreover, this ensures the generation of reliable solution paths with small varia-

tions in the path length, minimum distance from obstacles and computation time.

5. Conclusions

The subject of this paper is the path planning problem for mobile robots in a two-dimensional
configuration space with obstacles. That is, the presented work specifically addresses the case of

omni-directional robots that can perform turning maneuvers on the spot.

As the main contribution, the paper proposes three new path planning algorithms that are exten-
sions of the PRM (probabilistic roadmap) algorithm, PRM* algorithm and FMT (fast marching
tree) algorithm. The underlying idea for defining the new algorithms is to first compute a general-
ized Voronoi diagram (GVD) of the robot environment. The Voronoi boundary of this GVD is then
inflated by a certain width. Each of the stated algorithms (PRM, PRM* and FMT) is adapted such
that node samples are only generated on the inflated Voronoi boundary and node connections lie
fully within the inflated Voronoi boundary. The resulting algorithms are denoted as IPRM (Inflated
PRM), IPRM* (Inflated PRM*) and IFMT (Inflated FMT). As a particular feature, the proposed
algorithms require fewer nodes when determining a solution path and ensure a minimum distance

to obstacles by appropriately choosing the width of the inflated Voronoi boundary.

The proposed algorithms were evaluated by computational experiments with different environ-
ments. In these experiments, it was confirmed that the proposed methods IPRM, IPRM* and
IFMT outperform the existing methods PRM, PRM* and FMT regarding computation time and
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path safety at a slight increase of the path length. Moreover, a comparison with the recent confi-
dence random tree (CRT) algorithm that specifically addresses path safety was performed. This
comparison indicates that the proposed algorithms are significantly faster, generate shorter paths
and lead to a comparable path safety. Furthermore, large variations of these performance metrics
that are observed for the CRT algorithm can be avoided for the proposed algorithms since solu-
tion paths are confined to the inflated Voronoi boundary. As an important result of the paper, we
conclude that it is preferable to apply proven algorithms such as PRM, PRM* or FMT on pre-
processed environment maps instead of designing specific algorithms such as CRT for the original

environment map.

Based on these observations, our future work will focus on additional methods for pre-processing

environment maps and the extraction of map properties such as the density of obstacles.
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