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Abstract

The object of the present paper is to characterize ξ -conformally flat (k,µ)-almost Kenmotsu manifolds and (k,µ)′-almost Kenmotsu
manifolds. It is proved that a (k,µ)-almost Kenmotsu manifold is ξ -conformally flat if and only if the manifold is an Einstein manifold.
Further it is shown that a (2n+1)-dimensional (k,µ)′-almost Kenmotsu manifold is ξ -conformally flat if and only if it is conformally flat.
As a consequence of the main results we obtain several corollaries. Finally, we give an example to verify our result.
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1. Introduction

Let M be a (2n+1)-dimensional Riemannian manifold with metric g and let T (M) be the Lie algebra of differentiable vector fields in M.
The Ricci operator Q of (M,g) is defined by

g(QX ,Y ) = S(X ,Y ), (1.1)

where S denotes the Ricci tensor of type (0,2) on M and X ,Y ∈ T (M). The Weyl conformal curvature tensor C is defined by

C(X ,Y )Z = R(X ,Y )Z− 1
2n−1

[S(Y,Z)X−S(X ,Z)Y +g(Y,Z)QX

−g(X ,Z)QY ]+
r

2n(2n−1)
[g(Y,Z)X−g(X ,Z)Y ], (1.2)

for X ,Y,Z ∈ T (M), where R and r denote the Riemannian curvature tensor and the scalar curvature of M respectively.
In the present time the study of nullity distributions is a very interesting topic on almost contact metric manifolds. The notion of k-nullity
distribution was introduced by Gray [9] and Tanno [14] in the study of Riemannian manifolds (M,g), which is defined for any p ∈M and
k ∈ R as follows:

Np(k) = {Z ∈ Tp(M) : R(X ,Y )Z = k[g(Y,Z)X−g(X ,Z)Y ]}, (1.3)

for any X ,Y ∈ Tp(M), where Tp(M) denotes the tangent space of M at any point p ∈M and R denotes the Riemannian curvature tensor of
type (1,3). Blair, Koufogiorgos and Papantoniou [1] introduced the generalized notion of the k-nullity distribution, named the (k,µ)-nullity
distribution on a contact metric manifold (M, φ , ξ , η , g), which is defined for any p ∈M and k,µ ∈ R as follows:

Np(k,µ) = {Z ∈ Tp(M) : R(X ,Y )Z = k[g(Y,Z)X−g(X ,Z)Y ]

+µ[g(Y,Z)hX−g(X ,Z)hY ]}, (1.4)

where h = 1
2 £ξ φ and £ denotes the Lie differentiation.

In [4], Dileo and Pastore introduced the notion of (k,µ)′-nullity distribution, another generalized notion of the k-nullity distribution, on an
almost Kenmotsu manifold (M,φ ,ξ ,η ,g), which is defined for any p ∈M and k,µ ∈ R as follows:

Np(k,µ)′ = {Z ∈ Tp(M) : R(X ,Y )Z = k[g(Y,Z)X−g(X ,Z)Y ]

+µ[g(Y,Z)h′X−g(X ,Z)h′Y ]}, (1.5)
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where h′ = h◦φ .
A (2n+1)-dimensional differentiable manifold M is said to have a (φ ,ξ ,η)-structure or an almost contact structure, if it admits a (1,1)
tensor field φ , a characteristic vector field ξ and a 1-form η satisfying ([2], [3]),

φ
2 =−I +η⊗ξ , η(ξ ) = 1, (1.6)

where I denote the identity endomorphism. Here also φξ = 0 and η ◦φ = 0; both can be derived from (1.6) easily.
If a manifold M with a (φ ,ξ ,η)-structure admits a Riemannian metric g such that

g(φX ,φY ) = g(X ,Y )−η(X)η(Y ),

for any vector fields X , Y ∈ T (M), then M is said to be an almost contact metric manifold. The fundamental 2-form Φ on an almost contact
metric manifold is defined by Φ(X ,Y ) = g(X ,φY ) for any X , Y ∈ T (M). The condition for an almost contact metric manifold being normal
is equivalent to vanishing of the (1,2)-type torsion tensor Nφ , defined by Nφ = [φ ,φ ]+2dη⊗ξ , where [φ ,φ ] is the Nijenhuis tensor of φ

[2]. Recently in ([4],[5],[6],[12],[13]), almost contact metric manifold such that η is closed and dΦ = 2η ∧Φ are studied and they are called
almost Kenmotsu manifolds. Obviously, a normal almost Kenmotsu manifold is a Kenmotsu manifold. Also Kenmotsu manifolds can be
characterized by (∇X φ)Y = g(φX ,Y )ξ −η(Y )φX , for any vector fields X , Y ∈ T (M). It is well known [10] that a (2n+1)-dimensional
Kenmotsu manifold M is locally a warped product I× f N2n where N2n is a Kähler manifold, I is an open interval with coordinate t and the
warping function f , defined by f = cet for some positive constant c. Let us denote the distribution orthogonal to ξ by D and defined by
D = Ker(η) = Im(φ). In an almost Kenmotsu manifold, since η is closed, D is an integrable distribution.
At each point p ∈M, we have

Tp(M) = φ(Tp(M))⊕{ξp},
where {ξp} is 1-dimensional linear subspace of Tp(M) generated by ξp. Then the Weyl conformal curvature tensor C is a map:

C : Tp(M)×Tp(M)×Tp(M)→ φ(Tp(M))⊕{ξ}.

Three particular cases can be considered as follows :
(1) C : Tp(M)×Tp(M)×Tp(M)→{ξ}, that is, the projection of the image of C in φ(Tp(M)) is zero.
(2) C : Tp(M)×Tp(M)×Tp(M)→ φ(Tp(M)), that is, the projection of the image of C in {ξ} is zero.
(3) C : Tp(M)×Tp(M)×Tp(M)→{ξ}, that is, when C is restricted to φ(Tp(M))×φ(Tp(M)), the projection of the image of C in φ(Tp(M))
is zero, which is equivalent to φ 2C(φX ,φY )φZ = 0.

Definition 1.1. [17] A contact metric manifold (M,φ ,ξ ,η ,g) is said to be ξ -conformally flat if the linear operator C(X ,Y ) is an endomor-
phism of φ(T (M)), that is, if

C(X ,Y )φ(T (M))⊂ φ(T (M)).

Then it is immediately follows that

Proposition 1.2. [17] On a contact metric manifold (M,φ ,ξ ,η ,g), the following conditions are equivalent.

(a) M is ξ -conformally flat,
(b) η(C(X ,Y )Z) = 0,
(c) φ 2C(X ,Y )Z =−C(X ,Y )Z,
(d) C(X ,Y )ξ = 0,

where X ,Y,Z ∈ T (M).

Almost Kenmotsu manifolds have been studied by several authors such as Dileo and Pastore ([4], [5], [6]), De and Mandal ([7], [8], [11]) and
many others. In the present paper we like to study ξ -conformally flat almost Kenmotsu manifolds with (k,µ) and (k,µ)′-nullity distributions
respectively.
The paper is organized as follows:

In Section 2, we give a brief account on almost Kenmotsu manifolds with ξ belonging to the (k,µ)-nullity distribution and ξ belonging to
the (k,µ)′-nullity distribution. Section 3 deals with ξ -conformally flat almost Kenmotsu manifolds with the characteristic vector field ξ

belonging to the (k,µ)-nullity distribution. As a consequence of the main result we obtain several corollaries. Section 4 is devoted to study
ξ -conformally flat almost Kenmotsu manifolds with the characteristic vector field ξ belonging to the (k,µ)′-nullity distribution. Finally, we
present an example to verify our results.

2. Almost Kenmotsu manifolds

Let M be a (2n+1)-dimensional almost Kenmotsu manifold. We denote by h = 1
2 £ξ φ and l = R(·,ξ )ξ on M. The tensor fields l and h are

symmetric operators and satisfy the following relations [12]:

hξ = 0, lξ = 0, tr(h) = 0, tr(hφ) = 0, hφ +φh = 0, (2.1)

∇X ξ = X−η(X)ξ −φhX(⇒ ∇ξ ξ = 0), (2.2)

φ lφ − l = 2(h2−φ
2), (2.3)
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R(X ,Y )ξ = η(X)(Y −φhY )−η(Y )(X−φhX)+(∇Y φh)X− (∇X φh)Y, (2.4)

for any vector fields X ,Y ∈ T (M). The (1,1)-type symmetric tensor field h′ = h◦φ is anti-commuting with φ and h′ξ = 0. Also it is clear
that ([4], [16])

h = 0⇔ h′ = 0, h′2 = (k+1)φ 2(⇔ h2 = (k+1)φ 2). (2.5)

3. ξ belonging to the (k,µ)-nullity distribution

In this section we study ξ -conformally flat almost Kenmotsu manifolds with ξ belonging to the (k,µ)-nullity distribution.
From (1.4) we obtain

R(X ,Y )ξ = k[η(Y )X−η(X)Y ]+µ[η(Y )hX−η(X)hY ], (3.1)

where k,µ ∈ R. Before proving our main results in this section we first state the following:

Lemma 3.1. [4] Let M be an almost Kenmotsu manifold of dimension (2n+1). Suppose that the characteristic vector field ξ belonging to
the (k,µ)-nullity distribution. Then k =−1, h = 0 and M is locally a warped product of an open interval and an almost Kähler manifold.

In view of Lemma 3.1 it follows from (3.1),

R(X ,Y )ξ = η(X)Y −η(Y )X , (3.2)

R(ξ ,X)Y =−g(X ,Y )ξ +η(Y )X , (3.3)

S(X ,ξ ) =−2nη(X), (3.4)

Qξ =−2nξ , (3.5)

for any vector fields X ,Y ∈ T (M).

Let us consider the manifold M be ξ -conformally flat, that is,

C(X ,Y )ξ = 0, (3.6)

for any vector fields X ,Y ∈ T (M).
From (1.2) and (3.6), we have

R(X ,Y )ξ =
1

2n−1
[S(Y,ξ )X−S(X ,ξ )Y +g(Y,ξ )QX−g(X ,ξ )QY ]

− r
2n(2n−1)

[g(Y,ξ )X−g(X ,ξ )Y ]. (3.7)

Using (3.2) and (3.4), we have from (3.7)

η(X)Y −η(Y )X =
1

2n−1
[−2nη(Y )X +2nη(X)Y +η(Y )QX−η(X)QY ]

− r
2n(2n−1)

[η(Y )X−η(X)Y ]. (3.8)

Simplifying the above equation, we have

η(Y )QX−η(X)QY = (1+
r

2n
)[η(Y )X−η(X)Y ]. (3.9)

Putting Y = ξ in (3.9) and using (3.5), yields

QX = (1+
r

2n
)X− (1+2n+

r
2n

)η(X)ξ . (3.10)

Taking inner product of (3.10) with Y , we get

S(X ,Y ) = (1+
r

2n
)g(X ,Y )− (1+2n+

r
2n

)η(X)η(Y ). (3.11)

In [4], Dileo and Pastore prove that in an almost Kenmotsu manifold with ξ belonging to the (k,µ)-nullity distribution the sectional curvature
K(X ,ξ ) =−1. From this we get in an almost Kenmotsu manifold with ξ belonging to the (k,µ)-nullity distribution the scalar curvature
r =−2n(2n+1).
Thus from (3.11), we obtain

S(X ,Y ) =−2ng(X ,Y ), (3.12)
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which implies that the manifold is an Einstein manifold.
Conversely, suppose that the manifold is Einstein. Then we have

S(X ,Y ) =−2ng(X ,Y ). (3.13)

From above, we get

QX =−2nX . (3.14)

Now putting Z = ξ in (1.2) we obtain

C(X ,Y )ξ = R(X ,Y )ξ − 1
2n−1

[S(Y,ξ )X−S(X ,ξ )Y +g(Y,ξ )QX

−g(X ,ξ )QY ]+
r

2n(2n−1)
[g(Y,ξ )X−g(X ,ξ )Y ]. (3.15)

With the help of (3.4), (3.13) and (3.14), the relation (3.15) reduces to

C(X ,Y )ξ = R(X ,Y )ξ +(η(Y )X−η(X)Y ). (3.16)

Using (3.2) in the foregoing equation, we obtain

C(X ,Y )ξ = 0. (3.17)

Hence we can state the following:

Theorem 3.2. An almost Kenmotsu manifold with ξ belonging to the (k,µ)-nullity distribution is ξ -conformally flat if and only if the
manifold is an Einstein manifold.

Since conformally flatness implies ξ -conformally flat, hence we obtain the following:

Corollary 3.3. A conformally flat almost Kenmotsu manifold with ξ belonging to the (k,µ)-nullity distribution is an Einstein manifold.

From (1.2), we get for a conformally flat manifold

R(X ,Y )Z =
1

2n−1
[S(Y,Z)X−S(X ,Z)Y +g(Y,Z)QX−g(X ,Z)QY ]

− r
2n(2n−1)

[g(Y,Z)X−g(X ,Z)Y ], (3.18)

for X ,Y,Z ∈ T (M), where R and r denote the Riemannian curvature tensor and the scalar curvature of M respectively.
Now using (3.12) in the above expression we get

R(X ,Y )Z =−[g(Y,Z)X−g(X ,Z)Y ]. (3.19)

Conversely, if the manifold is of constant curvature -1, then obviously the manifold is conformally flat.
Thus we arrive to the following:

Corollary 3.4. An almost Kenmotsu manifold with ξ belonging to the (k,µ)-nullity distribution is conformally flat if and only if it is of
constant curvature -1.

The above corollary has been proved by De and Mandal [7].

4. ξ belonging to the (k,µ)′-nullity distribution

In this section we study ξ -conformally flat almost Kenmotsu manifolds with ξ belonging to the (k,µ)′-nullity distribution. Let X ∈D be
the eigen vector of h′ corresponding to the eigen value λ . Then from (2.5) it is clear that λ 2 = −(k+1), a constant. Therefore k ≤ −1
and λ = ±

√
−k−1. We denote by [λ ]′ and [−λ ]′ the corresponding eigen spaces related to the non-zero eigen value λ and −λ of h′,

respectively. Before presenting our main theorem we recall some results:

Lemma 4.1. (Prop. 4.1 and Prop. 4.3 of [4]) Let (M,φ ,ξ ,η ,g) be a (2n+1)-dimensional almost Kenmotsu manifold such that ξ belongs to
the (k,µ)′-nullity distribution and h′ 6= 0. Then k <−1, µ =−2 and Spec(h′) = {0,λ ,−λ}, with 0 as simple eigen value and λ =

√
−k−1.

The distributions [ξ ]⊕ [λ ]′ and [ξ ]⊕ [−λ ]′ are integrable with totally geodesic leaves. The distributions [λ ]′ and [−λ ]′ are integrable with
totally umbilical leaves. Furthermore, the sectional curvature are given by the following:

(a) K(X ,ξ ) = k−2λ if X ∈ [λ ]′ and
K(X ,ξ ) = k+2λ if X ∈ [−λ ]′,

(b) K(X ,Y ) = k−2λ if X ,Y ∈ [λ ]′;
K(X ,Y ) = k+2λ if X ,Y ∈ [−λ ]′ and
K(X ,Y ) =−(k+2) if X ∈ [λ ]′, Y ∈ [−λ ]′,

(c) M2n+1 has constant negative scalar curvature r = 2n(k−2n).
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Lemma 4.2. (Lemma 3 of [15]) Let (M,φ ,ξ ,η ,g) be a (2n+1)-dimensional almost Kenmotsu manifold with ξ belonging to the (k,µ)′-
nullity distribution. If h′ 6= 0, then the Ricci operator Q of M is given by

Q =−2nid +2n(k+1)η⊗ξ −2nh′. (4.1)

Moreover, the scalar curvature of M is 2n(k−2n).

From (1.5), we have

R(X ,Y )ξ = k[η(Y )X−η(X)Y ]+µ[η(Y )h′X−η(X)h′Y ], (4.2)

where k,µ ∈ R. Also we get from (4.2)

R(ξ ,X)Y = k[g(X ,Y )ξ −η(Y )X ]+µ[g(h′X ,Y )ξ −η(Y )h′X ]. (4.3)

Contracting (4.2) over X , we have

S(Y,ξ ) = 2nkη(Y ). (4.4)

Moreover in an almost Kenmotsu manifold with (k,µ)′-nullity distribution, we have

∇X ξ = X−η(X)ξ +h′X , (4.5)

(∇X η)Y = g(X ,Y )−η(X)η(Y )+g(h′X ,Y ). (4.6)

Let us consider the manifold M be ξ -conformally flat, that is,

C(X ,Y )ξ = 0, (4.7)

for any vector fields X ,Y ∈ T (M).
From (1.2) and (4.7), we have

R(X ,Y )ξ =
1

2n−1
[S(Y,ξ )X−S(X ,ξ )Y +g(Y,ξ )QX−g(X ,ξ )QY ]

− r
2n(2n−1)

[g(Y,ξ )X−g(X ,ξ )Y ]. (4.8)

Using (4.2) and (4.4), we get from (4.8)

k[η(Y )X−η(X)Y ]+µ[η(Y )h′X−η(X)h′Y ]

=
1

2n−1
[2nkη(Y )X−2nkη(X)Y +η(Y )QX−η(X)QY ]

− r
2n(2n−1)

[η(Y )X−η(X)Y ]. (4.9)

Using (4.1), we get from the foregoing equation

(µ +
2n

2n−1
)[η(Y )h′X−η(X)h′Y ] = 0. (4.10)

Putting Y = ξ in (4.10), we obtain

(µ +
2n

2n−1
)h′X = 0. (4.11)

Since h′ 6= 0, we have

µ +
2n

2n−1
= 0. (4.12)

From Lemma 4.1, we have µ =−2. Using the value of µ in (4.12), we get n = 1.
Hence we obtain the following:

Proposition 4.3. A (2n+ 1)-dimensional ξ -conformally flat almost Kenmotsu manifold with (k,µ)′-nullity distribution reduces to a
3-dimensional almost Kenmotsu manifold.

Since a 3-dimensional Riemannian manifold is conformally flat, therefore ξ -conformally flat almost Kenmotsu manifold with (k,µ)′-nullity
distribution is conformally flat. Conversely, conformally flatness implies ξ -conformally flat. Hence, we obtain the following:

Theorem 4.4. A (2n+1)-dimensional almost Kenmotsu manifold with (k,µ)′-nullity distribution is ξ -conformally flat if and only if it is
conformally flat.
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5. Example of a 5-dimensional almost Kenmotsu manifolds

In this section, we construct an example of an almost Kenmotsu manifold such that ξ belongs to the (k,µ)′-nullity distribution and h′ 6= 0,
which is of constant curvature and is conformally flat. We consider 5-dimensional manifold M = {(x,y,z,u,v) ∈ R5}, where (x,y,z,u,v) are
the standard coordinates in R5. Let ξ ,e2,e3,e4,e5 be five vector fields in R5 which satisfies [4]

[ξ ,e2] =−2e2, [ξ ,e3] =−2e3, [ξ ,e4] = 0, [ξ ,e5] = 0,

[ei,e j] = 0, where i, j = 2,3,4,5.
Let g be the Riemannian metric defined by

g(ξ ,ξ ) = g(e2,e2) = g(e3,e3) = g(e4,e4) = g(e5,e5) = 1

and g(ξ ,ei) = g(ei,e j) = 0 for i 6= j; i, j = 2,3,4,5.
Let η be the 1-form defined by η(Z) = g(Z,ξ ), for any Z ∈ T (M).
Let φ be the (1,1)-tensor field defined by

φ(ξ ) = 0, φ(e2) = e4, φ(e3) = e5, φ(e4) =−e2, φ(e5) =−e3.

Using the linearity of φ and g, we have
η(ξ ) = 1, φ 2(Z) =−Z +η(Z)ξ , g(φZ,φU) = g(Z,U)−η(Z)η(U),
for any Z,U ∈ T (M).
Moreover, h′ξ = 0, h′e2 = e2, h′e3 = e3, h′e4 =−e4, h′e5 =−e5.
The Levi-Civita connection ∇ of the metric tensor g is given by Koszul’s formula which is given by

2g(∇XY,Z) = Xg(Y,Z)+Y g(Z,X)−Zg(X ,Y )

−g(X , [Y,Z])−g(Y, [X ,Z])+g(Z, [X ,Y ]).

Using Koszul’s formula we get the following:

∇ξ ξ = 0, ∇ξ e2 = 0, ∇ξ e3 = 0, ∇ξ e4 = 0, ∇ξ e5 = ξ ,

∇e2 ξ = 2e2, ∇e2 e2 =−2ξ , ∇e2 e3 = 0, ∇e2 e4 = 0, ∇e2 e5 = 0,

∇e3 ξ = 2e3, ∇e3 e2 = 0, ∇e3 e3 =−2ξ , ∇e3 e4 = 0, ∇e3 e5 = 0,

∇e4 ξ = 0, ∇e4 e2 = 0, ∇e4 e3 = 0, ∇e4 e4 = 0, ∇e4 e5 = 0,

∇e5 ξ = 0, ∇e5 e2 = 0, ∇e5 e3 = 0, ∇e5 e4 = 0, ∇e5 e5 = 0.

In view of the above relations we have

∇X ξ =−φ
2X +h′X ,

for any X ∈ T (M). Therefore, the structure (φ ,ξ ,η ,g) is an almost contact metric structure such that dη = 0 and dΦ = 2η ∧Φ, so that M is
an almost Kenmotsu manifold.
By the above results, we can easily obtain the components of the curvature tensor R as follows:

R(ξ ,e2)ξ = 4e2, R(ξ ,e2)e2 =−4ξ , R(ξ ,e3)ξ = 4e3, R(ξ ,e3)e3 =−4ξ ,

R(ξ ,e4)ξ = R(ξ ,e4)e4 = R(ξ ,e5)ξ = R(ξ ,e5)e5 = 0,

R(e2,e3)e2 = 4e3, R(e2,e3)e3 =−4e2, R(e2,e4)e2 = R(e2,e4)e4 = 0,

R(e2,e5)e2 = R(e2,e5)e5 = R(e3,e4)e3 = R(e3,e4)e4 = 0,

R(e3,e5)e3 = R(e3,e5)e5 = R(e4,e5)e4 = R(e4,e5)e5 = 0.

With the help of the expressions of the curvature tensor we conclude that the characteristic vector field ξ belongs to the (k,µ)′-nullity
distribution, with k =−2 and µ =−2.
Using the expressions of the curvature tensor R we have

R(X ,Y )Z =−4[g(Y,Z)X−g(X ,Z)Y ].

From the above equation we obtain

S(Y,Z) =−16g(Y,Z), which implies r =−80.

Now using these values in the expression of the conformal curvature tensor C we get, C(X ,Y )Z = 0. Hence Theorem 4.1 is verified.
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