

Konuralp Journal of Mathematics

Journal Homepage: www.dergipark.gov.tr/konuralpjournalmath e-ISSN: 2147-625X

The First Theorem on UP-Biisomorphism Between UP-Bialgebras

Daniel A. Romano^{1*}

1 *International Mathematical Virtual Institute, Banja Luka, Bosnia and Herzegovina* **Corresponding author E-mail: bato49@hotmail.com*

Abstract

The concept of UP-bialgebras was introduced and analyzed by Mosrijai and Iampan at the beginning of 2019. In this article we analyzed a UP-biisomorphism between UP-bialgebras.

Keywords: UP-algebra, UP-ideal, UP-homomorphism, UP-bialgebra, UP-biideal, UP-bihomomorphism, UP-biisomorphism. 2010 Mathematics Subject Classification: 03G25

1. Introduction

The concept of UP-algebras developed by Iampan in [\[1\]](#page-3-0). Examining the substructures in this algebra are done in articles [\[2,](#page-3-1) [4\]](#page-3-2). Some forms of the isomorphism theorem between UP-algebras can be found in [\[2,](#page-3-1) [4,](#page-3-2) [7,](#page-3-3) [8\]](#page-3-4).

The concept of bialgebraic structures was discussed by Vasantha Kandasamy in 2003 [\[3\]](#page-3-5). The concept of UP-bialgebras with the associated substructures and their mutual connections can be found in [\[5\]](#page-3-6). In this article we expose a form of the isomorphism theorem between UP-bialgebras.

2. Preliminaries and extension of some results

In this section, we will present the necessary previous concepts of UP-algebras, their substructures and UP-homomorphisms taken from texts [\[1,](#page-3-0) [2,](#page-3-1) [4,](#page-3-2) [5\]](#page-3-6). We will also expose their mutual relationships in the form of proclaims necessary for our intention.

2.1. UP-algebras

In this subsection we will describe some elements of UP-algebras and their substructures necessary for our intentions in this text.

Definition 2.1 ([\[1\]](#page-3-0)). An algebra $A = (A, \cdot, 0)$ of type $(2, 0)$ is called a UP-algebra where A is a nonempty set, $\cdot \cdot'$ is a binary operation on A, *and* 0 *is a fixed element of A (i.e. a nullary operation) if it satisfies the following axioms:*

(UP-1) $(\forall x, y \in A)((y \cdot z) \cdot ((x \cdot y) \cdot (x \cdot z)) = 0)$ *, (UP-2)* $(∀x ∈ A)(0 ⋅ x = x)$, *(UP-3)* $(\forall x \in A)(x \cdot 0 = 0)$ *, and* $(UP-4)$ $(\forall x, y \in A)((x \cdot y = 0 \land y \cdot x = 0) \Longrightarrow x = y)$.

On a UP-algebra $A = (A, \cdot, 0)$, we define the UP-ordering \leq on *A* as follows:

 $(\forall x, y \in A)(x \leq y \iff x \cdot y = 0).$

Definition 2.2 ([\[1\]](#page-3-0)). *A nonempty subset S of a UP-algebra* (*A*,·,0) *is called* (*I*) a UP-subalgebra of A if $(\forall x, y \in A)(x \cdot y \in S)$. *(2) a UP-ideal of A if (i)* 0 ∈ *S;* and (iii) $(\forall x, y, z \in A)$ $((x \cdot (y \cdot z) \in S \land y \in S) \Longrightarrow x \cdot z \in S).$

The set {0} is a trivial UP-subalgebra (trivial UP-ideal) of *A*.

In the article [\[8\]](#page-3-4), Theorem 3.3, it has been shown that the conditions (i) and (ii) in the preceding definition are equivalent to the following conditions

(iii) $(\forall x, y \in A)((x \cdot y \in S \land x \in S) \implies y \in S),$ (iv) $(\forall x, y \in A)(y \in S \implies x \cdot y \in S)$.

Definition 2.3 ([\[1\]](#page-3-0)). Let $(A, \cdot, 0_A)$ and $(B, \cdot', 0_B)$ be two UP-algebras. A mapping $f : A \longrightarrow B$ is called a UP-homomorphism if

 $(\forall x, y \in A) (f(x \cdot y) = f(x) \cdot f(y)).$

A UP-homomorphism $f : A \longrightarrow B$ *is called* (3) *a UP-epimorphism if f is surjective,* (4) *a UP-monomorphism if f is injective, and* (5) *a UP-isomorphism if f is bijective.*

Let *f* be a mapping form UP-algebra *A* to UP-algebra *B*, and let *C* and *D* be nonempty subsets of *A* and of *B*, respectively. The set $\{f(x)|x \in C\}$ which denoted by $f(C)$ is called the image of C under f. In particular, $f(A)$ which denoted by $Im(f)$ is called the image of f. The dually set $\{x \in A | f(x) \in D\}$ which denoted by $f^{-1}(D)$ is called the inverse image of *D* under *f*. Especially, the set $f^{-1}(\{0_B\})$ which written by $Ker(f)$ is called the kernel of f .

Proposition 2.4 ([\[1\]](#page-3-0)). Let $(A, \cdot, 0_A)$ and $(B, \cdot', 0_B)$ be UP-algebras and let $f : A \longrightarrow B$ be a UP-homomorphism. Then the following *statements hold:*

 $f(0_A) = 0_B$;

(7) $(\forall x, y \in A)(x \leq_A y \implies f(x) \leq_B f(y));$

(8) *if C is a UP-subalgebra of A, then the image f*(*C*) *is a UP-subalgebra of B. In particular, Im*(*f*) *is a UP-subalgebra of B;* (9) *if D is a UP-subalgebra of B, then the inverse image f* [−]¹ (*D*) *is a UP-subalgebra of A. In particular, Ker*(*f*) *is a UP-subalgebra of A;* (10) if D is a UP-ideal of B, then the inverse image $f^{-1}(D)$ is a UP-ideal of A. In particular, $Ker(f)$ is a UP-ideal of A; (11) *if C is a UP-ideal of A such that Ker*(f) \subseteq *C, then the image f*(*C*) *is a UP-ideal of Im*(f)*; and* (12) $Ker(f) = \{0_A\}$ *if and only if f is an injective mapping.*

Let *A* be a UP-algebra and *J* a UP-ideal of *A*. If we define the binary relation ∼*^J* on *A* as follows: $(\forall x, y \in A)(x \sim_I y \iff (x \cdot y \in J \land y \cdot x \in J)),$

then ∼*^J* is a congruence on *A* suc that *J* = [0]∼*^J* by Proposition 3.5 and assertion (1) of Theorem 3.6 in [\[1\]](#page-3-0). In addition, the family *A*/ ∼*^J* is a UP-algebra by the assertion (4) of Theorem 3.7 in [\[1\]](#page-3-0). This UP-algebra constructed by the UP-algebra *A* through the congruence ∼*^J* will be written as *A*/*J*. Specially, we will write *A*/*Ker*(*f*) instead of *A*/ $\sim_{Ker(f)}$.

2.2. UP-bialgebras

The concept of UP-bialgebras and some their substructures were introduced and analyzed by Mosrijai and Iampan in the recently published work [\[5\]](#page-3-6) In this subsection, taking into account their determinations, we describe the concept of UP-bialgebras and their substructures. So, in this subsection, we will describe the concept of UP-bialgebras and the notions of UP-bisubalgebras and UP-biideals of UP-bialgebras, and will expose some results related to substructures of such algebras.

Definition 2.5 ([\[5\]](#page-3-6), Definition 3.1). *An algebra* $A = (A, \cdot, *, 0)$ *of type* (2,2,0) *is called a UP-bialgebra where A is a nonempty set,* · *and* * *two are binary internal operations on A, and* 0 *is a fixed element of A if there exist two distinct proper subsets A*¹ *and A*² *of A with respect to* · *and* ∗*, respectively, such that*

 $(UPB-I) A = A_1 \cup A_2;$ *(UPB-2)* (*A*1,·,0) *is a UP-algebra, and (UPB-3)* (*A*2,∗,0) *is a UP-algebra. We will denote the UP-bialgebra by A* = $A_1 \oplus A_2$ *. In case of A*₁ $\cap A_2 = \{0\}$ *, we call A zero disjoint.*

On a UP-bialgebra $A = A_1 \oplus A_2$ with two binary operations · and *, we define a binary relation \leq on *A* as follows ([\[5\]](#page-3-6)):

 $(\forall x, y \in A)(x \leq y$ under · by $x \cdot y = 0)$

 $(\forall \in x, y \in A)(x \leq y \text{ under } * \text{ by } x * y = 0).$

Definition 2.6 ([\[5\]](#page-3-6), Definition 3.7). A nonempty subset S of a UP-bialgebra $A = A_1 \oplus A_2$ is called a UP-bisubalgebra of A if there exist *subsets S*¹ *of A*¹ *and S*² *of A*² *with respect to* · *and* ∗*, respectively, such that*

 $(13) S_1 \neq S_2$ *and* $S = S_1 \cup S_2$; (14) $(S_1, \cdot, 0)$ *is a UP-subalgebra of* $(A_1, \cdot, 0)$ *, and* (15) $(S_2,*,0)$ *is a UP-subalgebra of* $(A_2,*,0)$ *. In case of* $S_1 \cap A_2 = \{0\} = A_1 \cap S_2$, we call S zero disjoint.

Definition 2.7 ([\[5\]](#page-3-6), Definition 3.7). A nonempty subset *S* of a UPB-algebra $A = A_1 \oplus A_2$ is called a UPB-ideal of A if there exist subsets S_1 *of A*¹ *and S*² *of A*² *with respect to* · *and* ∗*, respectively, such that* $(16) S_1 \neq S_2$ *and* $S = S_1 \cup S_2$ *;* (17) $(S_1, \cdot, 0)$ *is a UP-ideal of* $(A_1, \cdot, 0)$ *, and* (18) $(S_2, * , 0)$ *is a UP-ideal of* $(A_2, * , 0)$ *.*

In case of $S_1 \cap A_2 = \{0\} = A_1 \cap S_2$, we call S zero disjoint.

Proposition 2.8 ([\[5\]](#page-3-6), Theorem 3.15). Let S be a nonempty subset of a UP-bialgebra $A = A_1 \oplus A_2$ which satisfies the following conditions: (19) $(S \cap A_1, \cdot, 0)$ *is a UP-subalgebra (resp., UP-ideal) of* $(A_1, \cdot, 0)$ *and* (20) $(S \cap A_2, *, 0)$ *is a UP-subalgebra (resp., UP-ideal) of* $(A_2, *, 0)$ *. Then S is a UP-bisubalgebra (resp., UP-biideal) of A.*

The reverse proposition of the previous proposition is also valid with one additional condition.

Proposition 2.9 ([\[5\]](#page-3-6), Theorem 3.16). Let *S* be a nonempty subset of a UP-bialgebra $A = A_1 \oplus A_2$. Then *S* is a zero disjoint UP-bisubalgebra *(resp., zero disjoint UP-biideal) of A if and only if it satisfies the following conditions:* (21) $(S \cap A_1, \cdot, 0)$ *is a UP-subalgebra (resp., UP-ideal) of* $(A_1, \cdot, 0)$ *, and* (22) $(S ∩ A₂,*,0)$ *is a UP-subalgebra (resp., UP-ideal) of* $(A₂,*,0)$ *.*

The important consequence of this proposition is the following assertion:

Assertion 2.10. *If* $S \supset \{0\}$ *is a UP-subalgebra (resp., UP-ideal) of UP-algebra* A_1 *(of UP-algebra* A_2 *, respectively), such that* $\{0\} \neq S$ *, then on S can be seen as a zero disjoint UP-bisubgebra (resp., UP-biideal) of UP-bialgebra* $A = A_1 \oplus A_2$ *.*

Proof. The conditions (21) and (22) in the preceding proposition are easily and directly verified in this special case. Indeed, Let *S* ⊃ {0} is a UP-subalgebra (resp., UP-ideal) of UP-algebra A_1 . If we put $S = S_1$ and $S_2 = \{0\}$, we have that $S = S_1 \cup S_2$ satisfies conditions (21) and (22) in the previous proposition. Therefore, *S* is a zero disjoint UP-bisubalgebra (resp., UP-biideal) of UP-bialgebra because $S_1 \cap S_2 = \{0\}$. The second part of the claim in case when $S \supset \{0\}$ is an UP-subalgebra (resp., UP-ideal) of UP-algebra A_2 , is proven analogously to the previous proof. \Box

Assertion 2.11. Let $A = A_1 \oplus A_2$ be a UP-bialgebra and let $S = S_1 \oplus S_2$ be a UP-biideal of A. Then

 (23) $(\forall x, y \in A_1)$ $((x \cdot y \in S_1 \land x \in S_1) \Longrightarrow y \in S_1)$; (24) $(\forall x, y \in A_1)(y \in S_1 \implies x \cdot y \in S_1);$ (25) $(\forall x, y \in A_2)((x * y \in S_2 \land x \in S_2) \Longrightarrow y \in S_2);$ $(26)(\forall x, y \in A_2)(y \in S_2 \Longrightarrow x * y \in S_2).$

Proof. Let *S* be UP-biideal of a UP-bialgebra $A = A_1 \oplus A_2$. Then there exist subsets S_1 of A_1 and S_2 of A_2 with respect to · and ∗, respectively, such that (16), (17) and (18) hold. The assertions (23) and (24), and the assertions (25) and (26) follow directly from Theorem 3.1 in [\[8\]](#page-3-4). \square

Assertion 2.12. Let $A = A_1 \oplus A_2$ be a UP-bialgebra and let S be a nonempty subset of A such that $0 \in S$ and $S \cap A_1$ and $S \cap A_2$ fulfills the *following requirements*

 (27) $(\forall x, y \in A_1)$ $((x \cdot y \in S \cap A_1 \land x \in S \cap A_1) \implies y \in S \cap A_1);$ $(28)(\forall x, y \in A_1)(y \in S \cap A_1 \implies x \cdot y \in S \cap A_1);$ $(29)(\forall x, y \in A_2)((x * y \in S \cap A_2 \land x \in S \cap A_2) \Longrightarrow y \in S \cap A_2);$ (30) $(\forall x, y \in A_2)(y \in S \cap A_2 \implies x * y \in S \cap A_2).$ *Then S is a UP-biideal of A.*

Proof. In accordance with Theorem 3.3. in [\[8\]](#page-3-4), if the set $S \cap A_1$ satisfies the conditions (27) and (28), then it is UP-ideal of UP-algebra A_1 . Analogously, if a set *S* satisfies the conditions (29) and (30), then it is the UP-ideal of UP-algebra A_2 , according to Theorem 3.3 in [\[8\]](#page-3-4). So, the set *S* is a UP-biideal of UP-bialgebra *A* by Proposition [2.9.](#page-2-0) П

3. The main results

Let $f : A \longrightarrow B$ be a function from a set *A* to a set *B* and $C \subseteq A$. Then the restriction of f to C is the function $f_{[C]} : C \longrightarrow B$.

Definition 3.1 ([\[5\]](#page-3-6), Definition 4.1). Let $A = A_1 \oplus A_2$ be a UP-bialgebra with two binary operations \cdot and \ast , and let $B = B_1 \oplus B_2$ be a *UP-bialgebra with two binary operations* \cdot' *and* \cdot' . A mapping f form A to B is called a UP-bihomomorphism if it satisfies the following *properties:*

 $(31) f_{A_1}$: $A_1 \longrightarrow B_1$ *is a UP-homomorphism, and* (32) $f_{[A_2]}$: $A_2 \longrightarrow B_2$ *is a UP-homomorphism.*

A UP-bihomomorphism $f : A \longrightarrow B$ *is called*

- a UP-biepimorphism if f[*A*1] *and f*[*A*2] *are UP-epimorphisms,*

- a UP-bimonomorphism if f[*A*1] *and f*[*A*2] *are UP-monomorphisms, and*

- a UP-biisomorphism if f[*A*1] *and f*[*A*2] *are UP-isomorphisms.*

Proposition 3.2 ([\[5\]](#page-3-6), Theorem 4.3). Let $A = A_1 \oplus A_2$ be a UP-bialgebra with two binary operations \cdot and \ast , and let $B = B_1 \oplus B_2$ be a *UP-bialgebra with two binary operations* \cdot *and* \cdot *and let* $f : A \longrightarrow B$ *be a UP-bihomomorphism. Then the following statements hold:* $(33) f(0_A) = 0_B$

(34) if $x \le y$ under \cdot (resp., $x \le y$ under \ast), then $f_{[A_1]}(x) \le f_{[A_1]}(y)$ (resp., $f_{[A_2]}(x) \le f_{[A_2]}(y)$) for all $x, y \in A$, and (35) $Ker(f) = \{0_A\}$ *if and only if f is an injective mapping.*

In light of the Assertion 2.1, we have reformulated Theorem 4.4 and Theorem 4.6 in the article [\[5\]](#page-3-6) in the following way:

Proposition 3.3. Let $A = A_1 \oplus A_2$ *be a UP-bialgebra with two binary operations* · *and* *, *and* let $B = B_1 \oplus B_2$ *be a UP-bialgebra with two binary operations* \cdot and \cdot and let $f : A \longrightarrow B$ be a UP-bihomomorphism. Then the following statements hold: (36) *if S is a UP-bisubalgebra of A, then the image f*(*S*) *is a UP-bisubalgebra of B; and*

(37) if $S = S_1 \cup S_2$ is a UP-biideal of A, and S_1 and S_2 are subsets of A_1 and of A_2 , respectively, with $Ker(f) \subseteq S_1 \cap S_2$, then the image $f(S)$ *is a UP-biideal of B.*

Proposition 3.4. Let $A = A_1 \oplus A_2$ be a UP-bialgebra with two binary operations \cdot and \ast , and $B = B_1 \oplus B_2$ be a UP-bialgebra with two *binary operations* \cdot' *and* \ast' *and let* $f : A \longrightarrow B$ *be a UP-bihomomorphism. Then the following statements hold:* (38) *if* D is a UP-bisubalgebra of B, then the inverse image $f^{-1}(D)$ is a UP-bisubalgebra of A;

(39) if D is a UP-biideal of B, then the inverse image $f^{-1}(D)$ is a UP-biideal of A.

In this section, we formulate and prove the first isomorphism theorem between UP-bialgebras. To this direction, we need the following lemmas.

Lemma 3.5. Let $A = A_1 \oplus A_2$ be a UP-bialgebra with two binary operations \cdot and \ast , and let $B = B_1 \oplus B_2$ be a UP-bialgebra with two binary operations \cdot' and \ast' and let $f:A\longrightarrow B$ be a UP-bihomomorphism. Then the set $Ker(f)=Ker(f_{[A_1]})\cup Ker(f_{[A_2]})$ is a UP-biideal of A

Proof. According to (10) and Proposition 2.9.

Lemma 3.6. Let $A = A_1 \oplus A_2$ be a UP-bialgebra with two binary operations \cdot and \ast , and let $B = B_1 \oplus B_2$ be a UP-bialgebra with two binary operations \cdot' and \ast' and let f : A \longrightarrow B be a UP-bihomomorphism. Then the set A/Ker(f) = A₁/Ker(f_{A_1}) \cup A₂/Ker(f_{A_2}) is a UP-bialgebra *with two binary operation* $\left[\circ \right]$ *and* $\left[\circ \right]$ *and there exists the unique UP-biepimorphism* $\pi : A \longrightarrow A \setminus Ker(f)$.

Proof. Let $A = A_1 \oplus A_2$ be a UP-bialgebra with two binary operations \cdot and \ast , and let $B = B_1 \oplus B_2$ be a UP-bialgebra with two binary operations \cdot and \cdot and let $f : A \longrightarrow B$ be a UP-bihomomorphism. By Definition [3.1](#page-2-1) the restrictions f_{A_1} and f_{A_2} are UP-homomorphisms between UP-algebras. Thus there exists the unique UP-epimorphism $\pi_1 : A_1 \longrightarrow A_1/Ker(f_{[A_1]})$ and there exists the unique UP-epimorphism $\pi_2: A_2 \longrightarrow A_2/Ker(f_{A_2})$ by Theorem 2.1 in [\[2\]](#page-3-1) (or by Theorem 2.4 in [\[4\]](#page-3-2)). Then, the mapping $\pi: A \longrightarrow A/Ker(f)$ defined by $\pi_{A_1} = \pi_1$ and $\pi_{[A_2]} = \pi_2$ is the unique UPB-epimorphism by Definition [3.1.](#page-2-1)

It is easy and directly verified that the set $A/Ker(f)$ is a UP-bialgebra with two binary operations \odot and \otimes defined by

 $(\forall [x]_{\pi_1}, [y]_{\pi_1} \in A_1/Ker(f_{[A_1]}))([x]_{\pi_1} \odot [y]_{\pi_1} = [x \cdot y]_{\pi_1})$ and

 $(\forall [x]_{\pi_2}, [y]_{\pi_2} \in A_2/Ker(f_{[A_2]}))([x]_{\pi_2} \circledast [y]_{\pi_2} = [x * y]_{\pi_2})$

since $A_1/Ket(f_{[A_1]})$ and $A_2/Ker(f_{[A_2]})$ are UP-algebras according to the claim (4) of Theorem 3.7 in the article [\[1\]](#page-3-0).

Theorem 3.7. Let $A = A_1 \oplus A_2$ be a UP-bialgebra with two binary operations \cdot and \ast , and let $B = B_1 \oplus B_2$ be a UP-bialgebra with two binary *operations* · 0 *and* ∗ 0 *and let f* : *A* −→ *B be a UP-bihomomorphism. Then there exists the unique UP-bihomomorphism g* : *A*/*Ker*(*f*) −→ *B such that f* = $g \circ \pi$ *. In addition, for the UP-bisubalgebra f(A) of B holds A/Ket(f)* \cong *f(A).*

Proof. Let $A = A_1 \oplus A_2$ be a UP-bialgebra with two binary operations · and ∗, and let $B = B_1 \oplus B_2$ be a UP-bialgebra with two binary operations \cdot and \cdot and let $f : A \longrightarrow B$ be a UP-bihomomorphism. First, the restrictions f_{A_1} and f_{A_2} are UP-homomorphisms. Then, by Theorem 2.2 in [\[2\]](#page-3-1) (or by Theorem 2.5 in [\[4\]](#page-3-2)), there exists the unique UP-homomorphism $g_1 : A_1 / Ker(f_{A_1}] \to B_1$ such that $f_{[A_1]} = g_1 \circ \pi_1$ and there exists the unique UP-homomorphism $g_2: A_2/Ker(f_{A_2}) \longrightarrow B_2$ such that $f_{A_2} = g_2 \circ \pi_2$. The mapping $g: A/Ker(f) \longrightarrow B_2$ defined by $g_{[A_1/Ker(f_{[A_1]}]} = g_1$ and $g_{[A_2/Ker(f_{[A_2]}]} = g_2$ is a UPB-homomorphism by Definition [3.1.](#page-2-1) Therefore, the following $f = g \circ \pi$ holds. \Box

Final Observation

The concept of UP-algebras introduced and first results on them given by Iampan 2017 [\[1\]](#page-3-0). This author took part in analyzing the properties of UP-algebras and their substructures, also [\[6,](#page-3-7) [7,](#page-3-3) [8\]](#page-3-4). Algebraic bi-structures was analyzed by Vasantha Kandasamy in 2003 [\[3\]](#page-3-5). The concept of UP-bialgebras introduced and the first results were given by Mosrijai and Iampan at the beginning of 2019 [\[5\]](#page-3-6). Using by the concept of UP-bihomorphisms, introduced in [\[5\]](#page-3-6), in this text, Section 3, the theorem (Theorem 3.1) is considered, which can be viewed as the First isomorphism theorem between the UP-bialgebras. Before this result, we have previously formulated and proved the two necessary lemmas. In order for ideas, concepts and evidence presented in this article to be consistent, in Section 2 we formulated and proved three assertions that relate to the properties of the ideals in the UP-bialgebra.

Of course, there remains an open possibility of formulating and trying to prove another theorems on isomorphisms between the UP-bialgebra.

Acknowledgement

The author thanks the referees for the useful suggestions whose incorporation significantly improved the consistency of this text.

References

- [1] A. Iampan. A new branch of the logical algebra: UP-algebras. *J. Algebra Relat Top.*, 5(1)(2017), 35-–54.
- [2] A. Iampan. The UP-isomorphism theorems for UP-algebras. *Discuss. Math. General Al. Appl.*, 39(1)(2019), 113–123.
- [3] W. B. V. Kandasamy. *Bialgebraic structures and Smarandache bialgebraic structures*. India: American Research Press, 2003.
- [4] P. Mosrijai, A. Satirad and A. Iampan. The new UP-isomorphism theorems for UP-algebras in the meaning of the congruence determined by a UP-homomorphism, *Fund. J. Math. Appl.,* 1(1)(2018), 12–17.
- [5] P. Mosrijai and A. Iampan. A new branch of bialgebraic structures: UP-bialgebras. *J. Taibah University Sci.*, 13(1)(2019), 450-–459.
- [6] D. A. Romano. Proper UP-filters in UP-algebra. *Universal J. Math. Appl.*, 1(2)(2018), 98–100.
- [7] D. A. Romano. Some properties of proper UP-filters of UP-algebras. *Fund. J. Math. Appl.*, 1(2)(2018), 109–111. [8] D. A. Romano. Notes on UP-ideals in UP-algebras. *Comm. Adv. Math. Sci.*, 1(1)(2018), 35–38.

 \Box

 \Box