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Abstract

In this paper, for 1 < p < ∞ we define the vp and v∗p-topologies on the space of bounded linear operators between Banach spaces, and by
way of these topologies we introduce the properties v∗pD and Bv∗pD for the dual space E

′
. Under the assumption of the property v∗pD on

the dual space E
′
, we obtain a solution of the duality problem for the p-CAP with 2 < p < ∞. We show that, if M is a closed subspace of

a Banach space E such that M⊥ is complemented in the dual space E
′
, then M has the p-CAP (respectively, BCAP) whenever E has the

p-CAP (respectively, BCAP) and the dual space M
′

has the v∗pD (respectively, Bv∗pD).
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1. Introduction

As a stronger form of a relatively compact set Sinha and Karn [19] introduced a relatively p-compact set concept, which was motivated
by the well-known Grothendieck’s characterization of a relatively compact set [14]. Then it has appeared plenty of papers related to the
relatively p-compact set concept in different directions. We mention [1], [2], [3], [8], [9], [11], [12], [13], [16], [18] and [20].
Let 1≤ p≤ ∞. A Banach space E is said to have the p-approximation property (in short, p-AP) if identity map IE of E can be uniformly
approximated by finite rank operators on p-compact sets, i.e., there is a net (Sα )α of finite rank operators on E such that Sα −→ IE uniformly
on p-compact subsets of E [19]. If identity map IE can be uniformly approximated by compact operators on p-compact subsets of E, i.e.,
there is a net (Sα )α of compact operators on E such that Sα −→ IE uniformly on p-compact subsets of E, then E is said to have the p-compact
approximation property (in short, p-CAP) [8]. Note that every Banach space has the p-AP for 1≤ p≤ 2 [19, Theorem 6.4]. It is clear that
every Banach space with the p-AP has the p-CAP, but the converse is not true in general. Choi and Kim [8, Theorem 5.2] constructed a
Banach space having the the p-CAP, which fails to have the p-AP for every p > 2.
A Banach space E is said to have the p-weak approximation property (in short, p-WAP) if every compact operator from E to E can be
uniformly approximated by finite rank operators on p-compact subsets of E, i.e., for each compact operator S : E −→ E there is a net (Sα )α

of finite rank operators on E such that Sα −→ S uniformly on p-compact subsets of E [9]. Changjing and Xiaochun [9] show that a Banach
space E has the p-AP if and only if E has both the p-CAP and p-WAP for 1 ≤ p ≤ ∞. So, by [8, Theorem 5.2] there is a Banach space
without the p-WAP for every p > 2.
Let λ ≥ 1. A Banach space E is said to have the λ -bounded approximation property (in short, λ -BAP) if there is a net (Sα )α of finite rank
operators on E such that ‖Sα‖ ≤ λ and Sα −→ IE uniformly on compact subsets of E. If E has the λ -BAP for some λ , then E is said to have
the bounded approximation property (in short, BAP)[4], [17]. In this definition if the compact sets are replaced by p-compact sets for any
1≤ p < ∞, then definition of the p-λ -bounded approximation property (in short, p-λ -BAP) is obtained. On the other hand, it is well known
that in the definition of λ -BAP, instead of compact sets, it is enough to take finite sets only (see, e.g., [17, pp. 37]). Since each p-compact set
is a compact set, then it follows that the p-λ -BAP is equivalent to the λ -BAP. That is, the p-λ -BAP is nothing more than the λ -BAP for any
1≤ p < ∞.
A Banach space E is said to have the λ -bounded compact approximation property (in short, λ -BCAP) if there is a net (Sα )α of compact
operators on E such that ‖Sα‖ ≤ λ and Sα −→ IE uniformly on compact subsets of E. If E has the λ -BCAP for some λ , then E is said to
have the bounded approximation property (in short, BCAP) [4]. In this definition if the compact sets are replaced by p-compact sets for any
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1≤ p < ∞, then definition of the p-λ -bounded compact approximation property (in short, p-λ -BCAP) is obtained. But as similar to the
above, the p-λ -BCAP is equivalent to the λ -BCAP for any 1≤ p < ∞.
In this paper, we get some characterizations of the λ -BAP (respectively, λ -CAP) and the p-CAP. Also, for 1 < p < ∞ we define the vp and
v∗p-topologies on the space of bounded linear operators from a Banach space E to E and from the dual space E

′
to E

′
, respectively. By means

of these topologies we introduce the properties v∗pD and Bv∗pD for the dual space E
′
. Under the assumption of the property v∗pD on the dual

space E
′
, we get a solution of the duality problem for the p-CAP, that is, for 2 < p < ∞ if the dual space E

′
has the p-CAP and the v∗pD, then

so does E . If M is a closed subspace of a Banach space E such that M⊥ is complemented in the dual space E
′
, then we show that M has the

p-AP whenever E has the p-AP, and also we show that M has the p-CAP (respectively, BCAP) whenever E has the p-CAP (respectively,
BCAP) and the dual space M

′
has the v∗pD (respectively, Bv∗pD).

2. Notation and preliminaries

The symbols E and F will always denote complex Banach spaces. Let M be a subset of E. The symbol IM will denote the identity mapping
on M, and for any topology τ on E, Mτ will denote the τ-closure of M in E. The symbol BE represents the closed unit ball of E. The Banach
space of all linear continuous operators from E to F with usual operator norm ‖,‖ is denoted by L(E,F). When F =C we write E

′
instead of

L(E,C). An operator T in L(E,F) is called compact if T (BE) is a relatively compact subset of F . The subspace of all compact (respectively,
finite rank) operators of L(E,F) is denoted by K(E,F) (respectively, F(E,F)). Let λ ≥ 1. The space of all compact (respectively, finite
rank) operators with the norm ≤ λ is denoted by Kλ (E,E) (respectively, Fλ (E,E)). The space of all compact (respectively, finite rank) and
weak∗-to-weak∗ continuous operators with the norm ≤ λ is denoted by Kλ

w∗(E
′
,E
′
) (respectively, Fλ

w∗(E
′
,E
′
)). Let 1≤ p < ∞. The symbol

lp(E) (respectively, l∞(E)) will denote Banach space of all sequences (xn)
∞
n=1 in E with ∑

∞
n=1 ‖xn‖p < ∞ (respectively, sup

n∈N
‖xn‖< ∞). The

notation c0(E) will denote Banach space of all null sequences (xn)
∞
n=1 in E. Then a subset K of E is said to be relatively p-compact if there

exists a sequence (xn)
∞
n=1 ∈ lp(E) (1 ≤ p < ∞) ((xn)

∞
n=1 ∈ c0(E) if p = ∞) such that K ⊂ {

∞

∑
n=1

αnxn : (αn)
∞
n=1 ∈ Blq}, where 1

p + 1
q = 1

[19]. Note that the relatively ∞-compact sets are the relatively compact sets and also the relatively p-compact sets are relatively compact
[19]. A relatively p-compact and closed set will be called p-compact.
Throughout the paper the notations τ and τp denote the topologies of uniform convergence on the compact subsets and p-compact subsets,
respectively. Recall that the τ and τp are locally convex topologies by generated the family of seminorms [8], [19]. Choi and Kim [8,
Proposition 2.2] proved that (L(E,F),τp) is complete for any 1 ≤ p ≤ ∞, and gave a representation of the dual space (L(E,F),τp)

′ for
1 < p < ∞ [8, Theorem 2.5].

Theorem 2.1. [8, Theorem 2.5] Let 1 < p < ∞. Then

(L(E,F),τp)
′

= { f : f (S) =
∞

∑
j=1

∞

∑
n=1

λ
j

n y
′
j(Sxn), (y

′
j)

∞
j=1 ⊂ F

′
, (xn)

∞
n=1 ∈ lp(E) and z j = (λ

j
n )

∞
n=1 ∈ lq f or each j ∈ N satisfying

∞

∑
j=1
‖z j‖q‖y

′
j‖< ∞}.

Changjing and Xiaochun [9] obtained the following characterization of the p-WAP.

Theorem 2.2. [9] Let E be a Banach space and let 2 < p < ∞. E has the p-WAP if and only if for every (xn)
∞
n=1 ∈ lp(E), (x

′
j)

∞
j=1 ⊂ E

′
and

z j = (λ
j

n )
∞
n=1 ∈ lq for every j ∈ N with

∞

∑
j=1
‖z j‖q‖x

′
j‖ < ∞ and

∞

∑
j=1

∞

∑
n=1

λ
j

n x
′
j(Sxn) = 0 for all S ∈ F(E,E), we have

∞

∑
j=1

∞

∑
n=1

λ
j

n x
′
j(Sxn) = 0

for all S ∈ K(E,E).

3. Characterizations of the λ -BAP (respectively, λ -CAP) and the p-CAP

In this section, we will obtain some characterizations of the λ -BAP (respectively, λ -CAP) and the p-CAP. A characterization for the λ -BAP
is given by Çalışkan [10]. The following proposition gives another characterization of the λ -BAP (respectively, λ -CAP) and it can be proved
easily by using Theorem 2.1.

Proposition 3.1. Let E be a Banach space and let λ ≥ 1 and 1 < p < ∞. Then the following are equivalent.
(a) E has the λ -BAP (respectively, λ -CAP).

(b) For every c > 0, every (xn)
∞
n=1 ∈ lp(E), (x

′
j)

∞
j=1 ⊂ E

′
and z j = (λ

j
n )

∞
n=1 ∈ lq for each j ∈ N with

∞

∑
j=1
‖z j‖q‖x

′
j‖ < ∞, and satisfying∣∣∣∣∣ ∞

∑
j=1

∞

∑
n=1

λ
j

n x
′
j(Sxn)

∣∣∣∣∣≤ c for every S ∈ Fλ (E,E) (respectively, S ∈ Kλ (E,E)), we have

∣∣∣∣∣ ∞

∑
j=1

∞

∑
n=1

λ
j

n x
′
j(xn)

∣∣∣∣∣≤ c.

Proof. (a)⇒ (b) Assume that E has the λ -BAP. Let c > 0, (xn)
∞
n=1 ⊂ lp(E), (x

′
j)

∞
j=1 ⊂ E

′
and z j = (λ

j
n )

∞
n=1 ∈ lq for each j ∈ N with

∞

∑
j=1
‖z j‖q‖x

′
j‖ < ∞, such that

∣∣∣∣∣ ∞

∑
j=1

∞

∑
n=1

λ
j

n x
′
j(Sxn)

∣∣∣∣∣ ≤ c for every S ∈ Fλ (E,E). We will show that

∣∣∣∣∣ ∞

∑
j=1

∞

∑
n=1

λ
j

n x
′
j(xn)

∣∣∣∣∣ ≤ c, or equivalently,

by Theorem 2.1, for a given ϕ ∈ (L(E,E),τp)
′

with |ϕ(S)| ≤ c for every S ∈ Fλ (E,E), we will show that |ϕ(IE)| ≤ c. Indeed, since by

hypothesis IE ∈ Fλ (E,E)
τp

, there exists a net (Sα )α ⊂ Fλ (E,E) such that Sα

τp−→ IE . Hence ϕ(Sα )−→ ϕ(IE). Since |ϕ(Sα )| ≤ c for all

α , then |ϕ(IE)|= limα |ϕ(Sα )| ≤ c, or

∣∣∣∣∣ ∞

∑
j=1

∞

∑
n=1

λ
j

n x
′
j(xn)

∣∣∣∣∣≤ c.
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(b)⇒ (a) By Theorem 2.1, (b) says that for every ϕ ∈ (L(E,E),τp)
′ with |ϕ(S)| ≤ c for every S ∈ Fλ (E,E), we have |ϕ(IE)| ≤ c. We

assume, for a contradiction, that IE ∈ (L(E,E),τp)\Fλ (E,E)
τp

. Then, by Hahn-Banach separation theorem there exists a ψ ∈ (L(E,E),τp)
′

such that |ψ(IE)|> sup
S∈Fλ (E,E)

|ψ(S)|. If we define a functional φ by φ(S) := cψ(S)
sup

S∈Fλ (E,E)
|ψ(S)| for all S ∈ L(E,E), then φ ∈ (L(E,E),τp)

′

and sup
S∈Fλ (E,E)

|φ(S)|= c. But φ(IE)|= c|ψ(IE )|
sup

S∈Fλ (E,E)
|ψ(S)| > c, which is a contradiction. Thus, the proof for λ -BAP is completed.

The proof for the λ -CAP can be done as similar.

By using the standard methods and Theorem 2.1 we obtain the following characterization for the p-CAP.

Proposition 3.2. Let E be a Banach space and let 2 < p < ∞. Then the following are equivalent.
(a) E has the p-CAP.
(b) K(E, E) is τp-dense in L(E,E).
(c) K(F, E) is τp-dense in L(F,E) for every Banach space F.
(d) K(E, F) is τp-dense in L(E,F) for every Banach space F.

(e) For every (xn)
∞
n=1 ∈ lp(E), (x

′
j)

∞
j=1 ⊂E

′
and z j = (λ

j
n )

∞
n=1 ∈ lq for each j ∈N with

∞

∑
j=1
‖z j‖q‖x

′
j‖<∞, and satisfying

∞

∑
j=1

∞

∑
n=1

λ
j

n x
′
j(Sxn) =

0 for every S ∈ K(E,E), we have
∞

∑
j=1

∞

∑
n=1

λ
j

n x
′
j(xn) = 0.

Proof. It is easy to show that (a)⇔ (b), (b)⇔ (c) and (a)⇔ (d). The proof of (a)⇔ (e) can be follow from the proof of [8, Theorem
5.1].

4. Some topologies on the space of linear operators

Let 1 < p < ∞. In this section, by defining two topologies (vp and v∗p-topologies) on the space of bounded linear operators, we introduce the
properties v∗pD and Bv∗pD for the dual space E

′
. We show that E has the p-CAP whenever the dual space E

′
has the p-CAP and the v∗pD

(2 < p < ∞). Later, we show that if M is a complemented subspace of a Banach space E, then the pair (E,M) have the three space property
for the p-CAP (respectively, p-AP). If M is a closed subspace of a Banach space E such that M⊥ is complemented in the dual space E

′
, then

we show that M has the p-AP whenever E has the p-AP, and also we show that M has the p-CAP (respectively, BCAP) whenever E has the
p-CAP (respectively, BCAP) and the dual space M

′
has the v∗pD (respectively, Bv∗pD).

Definition 4.1. (See [6, Definition 2.3] Let 1 < p < ∞. For a net (Sα )α and an operator S in L(E,E) it is said to be the net (Sα )α converges

to S according to the vp-topology, or Sα

vp−→ S iff

∞

∑
j=1

∞

∑
n=1

λ
j

n (x
′
j)(Sα xn)→

∞

∑
j=1

∞

∑
n=1

λ
j

n (x
′
j)(Sxn)

for every (xn)
∞
n=1 ∈ lp(E), (x

′
j)

∞
j=1 ⊂ E

′
and z j = (λ

j
n )

∞
n=1 ∈ lq for each j ∈ N satisfying

∞

∑
j=1
‖z j‖q‖x

′
j‖< ∞.

By Theorem 2.1 we can see that the τp-topology on the space L(E,E) is stronger than the vp-topology.
By using Theorem 2.2, Proposition 3.1, Proposition 3.2 (e), Definition 4.1 and standard methods, we get easily the following characterizations.

• Let 2 < p < ∞. E Banach space has the p-AP iff IE ∈ F(E,E)
vp .

• Let 1 < p < ∞. E Banach space has the λ -BAP iff IE ∈ Fλ (E,E)
vp

.
• Let 2 < p < ∞. E Banach space has the p-CAP iff IE ∈ K(E,E)

vp .
• Let 1 < p < ∞. E Banach space has the λ -CAP iff IE ∈ Kλ (E,E)

vp
.

• Let 2 < p < ∞. E Banach space has the p-WAP iff K(E,E)⊂ F(E,E)
vp .

Definition 4.2. (See [6, Definition 2.4]) Let 1 < p < ∞. For a net (Tα )α and an operator T in L(E
′
,E
′
) it is said to be the net (Tα )α

converges to T according to the v∗p-topology, or Tα

v∗p−→ T iff

∞

∑
j=1

∞

∑
n=1

λ
j

n (Tα x
′
j)(xn)→

∞

∑
j=1

∞

∑
n=1

λ
j

n (T x
′
j)(xn)

for every (xn)
∞
n=1 ∈ lp(E), (x

′
j)

∞
j=1 ⊂ E

′
and z j = (λ

j
n )

∞
n=1 ∈ lq for each j ∈ N satisfying

∞

∑
j=1
‖z j‖q‖x

′
j‖< ∞.

Remark 4.3. For any 1 < p < ∞, on the space L(E
′
,E
′
) the v∗p-topology is weaker than the vp-topology. If E is a reflexive Banach space,

then these topologies coincide. Also, we denote that for S and a net (Sα )α in L(E,E)

Sα

vp−→ S iff S
′
α

v∗p−→ S
′
.

Choi and Kim [6, Definiton 2.5] introduced the properties weak∗ density (in short, W∗D) and bounded weak∗ density (in short, BW∗D) for
compact operators on the dual space E

′
. Similar to these properties we introduce the following notions.
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Definition 4.4. Let E be a Banach space and let 1 < p < ∞.

(a) If K(E
′
,E
′
)⊂ Kw∗(E

′
,E ′)

v∗p , then E
′

is said to have the v∗pD.

(b) If K1(E
′
,E
′
)⊂ Kλ

w∗(E
′
,E ′)

v∗p
for some λ > 0, then E

′
is said to have the Bv∗pD.

It is well known that the τ-topology is stronger than the τp-topology [8]. By this property and Remark 4.3, we obtain the following lemma
due to Lindenstrauss and Tzafriri [17] and Choi and Kim [7], which will be used in the proofs of Proposition 4.7 and Theorem 4.12.

Lemma 4.5. (See [17, Lemma 1.e.17], [7, Lemma 3.11]) Let E be a Banach space and let 1 < p < ∞. Then the following are satisfied.

(a) F(E
′
,E
′
)⊂ Fw∗(E

′
,E ′)

τp ⊂ Fw∗(E
′
,E ′)

v∗p .

(b) Fλ (E
′
,E
′
)⊂ Fλ

w∗(E
′
,E ′)

τp
⊂ Fλ

w∗(E
′
,E ′)

v∗p
for all λ > 0.

Remark 4.6. Let 2 < p < ∞. Choi and Kim [8, Theorem 2.7] showed that if the dual E
′

of a Banach space E has p-AP, then E has the p-AP.
The proof of this theorem can be shortened by using Remark 4.3 and Lemma 4.5. Actually, if E

′
has p-AP, then IE ′ ∈ F(E ′ ,E ′)

τp
. By Lemma

4.5 (a), IE ′ ∈ Fw∗(E
′
,E ′)

v∗p . Therefore, by Remark 4.3 IE ∈ F(E,E)
vp which shows that E has the p-AP.

By modification [6, Proposition 2.7] we get the following proposition.

Proposition 4.7. For a Banach space E, we have the following statements.
(a) If E

′
is reflexive, then E

′
has the v∗pD and Bv∗pD. But, the conserve is not true in general.

(b) If E
′

has the p-WAP, then E
′

has the v∗pD.
(c) If E

′
has the BAP, then E

′
has the Bv∗pD.

Proof. Since the proof is similar to the proof of [6, Proposition 2.7], it is omitted.

The duality problem for the CAP are not resolved yet (see [4, Problem 8.5]), but Choi and Kim [6, Theorem 3.1] have solved this problem
under the extra assumption. However, the duality problem for the p-AP has a positive solution with 2 < p < ∞ [8, Theorem 2.7]. We will
show in the following theorem that under extra assumption on the dual space, the duality problem for the p-CAP has a positive solution with
2 < p < ∞.

Theorem 4.8. E has the p-CAP whenever the dual space E
′

has the p-CAP and the v∗pD.

Proof. Suppose that the dual space E
′

has the p-CAP and the v∗pD, then

IE ′ ∈ K(E ′ ,E ′)
vp and K(E

′
,E
′
)⊂ Kw∗(E

′
,E ′)

v∗p
.

By Remark 4.3, since the vp-topology is stronger than the v∗p-topology on the L(E
′
,E
′
), we have IE ′ ∈ Kw∗(E

′
,E ′)

v∗p . Thus IE ∈ K(E,E)
vp
.

This shows that E has the p-CAP.

As a result of Proposition 4.7 (a) and Theorem 4.8, we can say that the duality problem of the p-CAP for reflexive Banach spaces has a
positive solution.

Corollary 4.9. Let E be a reflexive Banach space and let 2 < p < ∞. If E
′

has the p-CAP, then E has the p-CAP.

The following theorem will be important in order to show that existence of a Banach space without the Bv∗pD.

Theorem 4.10. E has the BCAP whenever the dual space E
′

has the BCAP and the Bv∗pD.

Proof. If the dual space E
′

has the BCAP and the Bv∗pD, then

IE ′ ∈ Kλ (E ′ ,E ′)
vp

and K1(E
′
,E
′
)⊂ Kµ

w∗(E
′
,E ′)

v∗p

for some λ and µ > 0. On the other hand, Kλ (E
′
,E
′
)⊂ Kλ µ

w∗ (E
′
,E ′)

v∗p
. Since IE ′ ∈ Kλ (E ′ ,E ′)

v∗p , we have IE ′ ∈ Kλ µ

w∗ (E
′
,E ′)

v∗p
. Thus, by

Remark 4.3 we obtain IE ∈ Kλ µ (E,E)
vp

, which proves that E has the BCAP.

It is well known that there exists a Banach space E such that E has not the BCAP whenever the dual space E
′

has the BCAP [5, Theorem
2.5]. So, by Theorem 4.10 E cannot have the Bv∗pD. However, it is not known whether every the dual space E

′
has the v∗pD or not.

By a modification [6, Proposition 4.1] we get the solution of there space problems for p-CAP (respectively, p-AP) in terms of complemented
subspace of a Banach space.

Proposition 4.11. Let E be a Banach space and M be a closed subspace of E. If M is complemented in E, then the pair (E,M) have the
there space property for the p-CAP (respectively, p-AP).
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Proof. Let M be a complemented subspace of E. Then there exists an onto projection P1 : E→M. Let i1 : M ↪→ E be the inclusion mapping.
First we will show that M has the p-CAP whenever E has the p-CAP. Since E has the p-CAP, there exists (Sα )α ⊂ K(E,E) such that
Sα

vp−→ IE . Let us define Tα := P1 Sα i1 , so that (Tα )α ⊂ K(M,M). If (mn)
∞
n=1 ∈ lp(M), (m

′
j)

∞
j=1 ⊂M

′
and z j = (λ

j
n )

∞
n=1 ∈ lq for each j ∈ N

with
∞

∑
j=1
‖z j‖q‖m

′
j‖< ∞, then

∞

∑
j=1

∞

∑
n=1

λ
j

n m
′
j(Tα mn)→

∞

∑
j=1

∞

∑
n=1

λ
j

n (m
′
jP1)(i1 mn) =

∞

∑
j=1

∞

∑
n=1

λ
j

n m
′
j(mn).

Since
∞

∑
j=1
‖z j‖q‖m

′
jP1‖< ∞ and (i1 mn)

∞
n=1 ∈ lp(M), thus Tα

vp−→ IM and M has the p-CAP.

Now, we will show that E/M has the p-CAP whenever E has the p-CAP. Since M is a complemented subspace, there is a closed subpace N of
E such that N is complementary of M and the spaces E/M and N are isomorphic. By the above argument, we know that every complemented
subspace of E has the p-CAP. Thus since N has the p-CAP, E/M has the p-CAP.
Finally, we will show that E has the p-CAP whenever the spaces M and E/M have the p-CAP. Note that E is the direct sum of M and N
(where, the spaces E/M and N are isomorphic). Hence there is an onto projection P2 : E→ N and an inclusion i2 : N ↪→ E. Let K be a given
p-compact subset of E and let ε > 0. Since M and N have the p-CAP, there exist R1 ∈ K(M,M) and R2 ∈ K(N,N) such that

‖R1 P1 x−P1 x‖< ε and ‖R2 P2 x−P2 x‖< ε

for all x ∈ K. Let T x := i1 R1 P1 x+ i2 R2 P2 x for all x ∈ E. Thus T ∈ K(E,E) and

‖T x− x‖= ‖i1(R1 P1 x−P1 x)+ i2(R2 P2 x−P2 x)‖< 2ε

for all x ∈ K. Then E has the p-CAP.

Now let M be a closed subspace of E. It is known that if M is a complemented subspace of E, then so is M⊥ in E
′
. But the converse, in

general, is not true. So if we change the hypothesis of Proposition 4.11 with M⊥ is complemented in E
′
, by a modification [6, Theorem 4.2]

we get the following proposition, which gives conditions for the subspace M to have the p-AP, the p-CAP and the BCAP.

Theorem 4.12. Let E be a Banach space with a closed subspace M such that M⊥ is complemented in E
′
.

(a) M has the p-AP whenever E has the p-AP.
(b) M has the p-CAP whenever E has the p-CAP and M

′
has the v∗pD.

(c) M has the BCAP whenever E has the BCAP and M
′

has the Bv∗pD.

Proof. Since M⊥ is a complemented subspace of E
′
, there exists an onto projection P : E

′ →M⊥. Let i : M ↪→ E be the inclusion mapping.
Define the bounded linear operator U from M

′
to E

′
by the formula U(m

′
) = x

′ −Px
′
, where x

′ ∈ E
′

with x
′
(m) = m

′
(m) for all m ∈M. Note

that (Um
′
)m = m

′
(m) for all m

′ ∈M
′

(see, [15, Lemma 3.6]).

(a) Since E has the p-AP, there exists a net (Sα )α in F(E,E) such that Sα

vp−→ IE . By Remark 4.3 S
′
α

v∗p−→ I
′
E . On the other hand,

i
′
S
′
αU ∈ F(M

′
,M

′
) and if (mn)

∞
n=1 ∈ lp(M), (m

′
j)

∞
j=1 ⊂ M

′
and z j = (λ

j
n )

∞
n=1 ∈ lq for each j ∈ N satisfying

∞

∑
j=1
‖z j‖q‖m

′
j‖ < ∞, then

∞

∑
j=1
‖z j‖q‖Um

′
j‖< ∞ and since S

′
α

v∗p−→ I
′
E , we have

∞

∑
j=1

∞

∑
n=1

λ
j

n (i
′
S
′
αUm

′
j)(mn)→

∞

∑
j=1

∞

∑
n=1

λ
j

n (I
′
EUm

′
j)(mn) =

∞

∑
j=1

∞

∑
n=1

λ
j

n m
′
j(mn).

Thus I
′
M ∈ F(M′

,M′
)
v∗p . By Lemma 4.5 (a), we have I

′
M ∈ Fw∗(M

′
,M′

)
v∗p . Hence by Remark 4.3 IM ∈ F(M,M)

vp . This proves that M has
the p-AP.

(b) Suppose that E has the p-CAP and M
′

has the v∗pD. Then there exists a net (Sα )α in K(E,E) such that Sα

vp−→ IE . By Remark 4.3,

S
′
α

v∗p−→ I
′
E . On the other hand, i

′
S
′
αU ∈ K(M

′
,M

′
). Thus, similar to (a) we get that I

′
M ∈ K(M′

,M′
)
v∗p . By hypothesis, since M

′
has the v∗pD,

I
′
M ∈ Kw∗(M

′
,M′

)
v∗p , and hence IM ∈ K(M,M)

vp , which shows that M has the p-CAP.

(c) Suppose that E has the BCAP and M
′

has the Bv∗pD. Then IE ∈ Kλ (E,E)
vp

and K1(M
′
,M

′
)⊂ Kµ

w∗(M
′
,M′

)
v∗p

for some µ > 0. Hence, by
the method given in the proof of (b) we get i

′
S
′
αU ∈ K(M

′
,M

′
) such that

‖i
′
S
′
αU‖ ≤ λ‖U‖.

Then I
′
M ∈ Kµλ‖U‖

w∗ (M′
,M′

)
v∗p

, or equivalently IM ∈ Kµλ‖U‖(M,M)
vp

. This proves that M has the BCAP.
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