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Abstract

In the present paper, a known theorem on absolute summability factors of infinite series has been generalized for |A, p,; 6|, summability by
using matrix transformation.
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1. Introduction

Let Y ay, be an infinite series with its partial sums (s,) and A = (ayy) be a normal matrix; i.e., a lower triangular matrix of nonzero diagonal
entries. The series Y ay, is said to be summable |A, p,; 8|, k > 1 and 8 > 0, if (see [8])

</ p o\ Sktk-l .
n
Y () oA <o
n=1 \Pn

where (pp) is a sequence of positive numbers such that

n
P,,:va—wo as n—oo, (P_j=p_;i=0, i>1)
v=0

and As = (A, (s)) is defined by

n
An(s) = Z apysy, n=0,1,...
v=0

If we take a,, = %, |A, pn; 8|x summability reduces to |N, p,; 8|; summability (see [4]). For § =0, |A, p,; 8|; summability reduces to
|A, pn|r summability (see [17]). Additionally, the series ¥ ay is said to be bounded [N, p,; 8], k > 1 and § > 0, if (see [3])

n P Sk
Yy (—V) polso|F=0(P,) as n— oo. (1.1)
v=1 \Pv

It should be noted that, for § = 0, [N, py; 8], boundedness is the same as [N, p,], boundedness (see [1]).

2. Known Results

Some works dealing with absolute summability and absolute matrix summability can be found in [1-3,5-7,9-13, 15, 16]. Among them,
in [5], Bor has proved a theorem as follows.
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Theorem 2.1. Let the series Y an be [N, py; 8], bounded. If the conditions

Pn+1 = 0(pn) as n-— oo,

m

an\ln|:0(l) as m—» oo,
n=1
Pu|Adn| = O(pim|Aml|) as  m — oo,

) Sk—1 Sk
Z P 1 P, 1
( y ) =9 ( y )
n=y+1 \Pn Pa—1 Pv P,

pk>1and0< 8 <1/k.

are satisfied, then the series Y. ayPyAy is summable |N, p,; &

Lemma 2.2. [2] If the sequences (A,) and (py,) satisfy the conditions (2.2) and (2.3) of Theorem 2.1, then we have

PulAm| =0(1) as m— co.

3. Main Result

Q2.1

2.2)

(2.3)

2.4)

(2.5)

The goal of the paper is to get a general theorem concerning absolute matrix summability. Now, we should give some notations. Let A = (ay,)

be a normal matrix, two lower semimatrices A = (@,,) and A = (d,,) are defined by:

n
apy = Zani, n,v=0,1,...

i=v

Ao = doo = agp,  Gpy = Gy — p—1,y, n=1,2,...

and

n n
An(s) = Z AnySy = Z AnyQy
v=0 v=0

n
AA,(s) = Z Apvay .
v=0

Theorem 3.1. Let A = (ayy) be a positive normal matrix such that

a=1,n=0,1,...,

An—1,y = Quy, forn>v+1,

app = 0 (%:) .
If the conditions (1.1), (2.1)-(2.3) and

m+l /p Sk P, Sk—1
Z (—") |Avény| =0 <—L> as m—» oo,
n=v+1 \Pn bv

m+1 Pn ok . Pv Sk
Z — |Gny+1] =0 — as m—>oo
n—=y+1 \Pn Pv

are satisfied, then the series Y anPyAy is summable |A, py; 0|, k> 1and 0 < § < 1/k.

Proof of Theorem 3.1. Let (M) be the sequence of A-transform of the series Y a,P,A,. Then, by (3.3) and (3.4), we have

n
A, = Y anaP.
v=1

3.1)

3.2)

(3.3)

34

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)
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Operating Abel’s transformation for above sum, we get

gl
Il
T i

apyay Py Ay

v n
= Av(dnvPv/'Lv) Z ar+ aAnnPn)Vn Z ay
r=1 v=1

Il
-

3 <
|

= Av(dnvPvafv)Sv + dnnpnlnsn

_
Il
R

= auPulnsn + Z A anv V)L'vsv+ Z an v+lP AAysy

n—1

v=1

- Z aAn,erlperl}Verlsv

v=1

= My1+My2+My3+M,g4.

To prove Theorem 3.1, it is sufficient to show that

o Sk+k—1
P
Y (*) My, |F <o, for r=1,2,3,4.

Pn

On account of (3.7), (2.5), (1.1), (2.3) and (2.2), we achieve

Sk+k—1
m P
()"

n—=1 \Pn

Now, operating Holder’s inequality, we obtain

pl‘l

n=2

Sk+k—1
( ) oy PE A F 5l

—") Bal AV ol

ok
P
l) Pl lsul*
p

Pr Sk .
|Mn\2(p—> Pl 4001 |am|z( ) Pl

m+l / p Sk+k—1 m+l / p Sk+k—1 k
Y (—) Mol < Y <—> Z 180 (@) | Py 2] 3]
n=2 Pn

By virtue of (3.2) and (3.1), we have

Av(dnv) = dpy — Apy+1 = Gy — Ap—1 v~ Any+1 tap—1y+1 = any —

Above equality implies that

n—1
Z |Av (dnv
v=1

by using (3.6), (3.1) and (3.5).

n—1

)| = Z (anfl.v _anv) < anp,

v=1

n—1

m+1 Ok+k—1 [n—1 —
< Z Li] Z\A )| P A |5, ¢
h =2 \Pn ' v=1

an—1v-

Y 1Ay (am)
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Also by (3.7), (3.8) and (2.5), we get

k+k—
b (P")s+ Mnalt
n’

n—2 \Pn

IN

asin M, ;.
Now, we have

IN

n=2 \Pn

IN

Here, the conditions (2.3) and (2.2) imply

k+k—
mil(Pn)5+ 1|M 3‘]{ B
. =

n—2 \Pn

By (3.2), (3.1), (3.5) and (3.6), it is obvious that

aAn,erl = 5n,v+l - ﬁnfl,erl

So, we can write

m+1 P, Sk+k—1 i n—1 . . . '
Y (- dun X 180 (@) | B ([ s, |
v=1

n=2 \Pn

m . ' km+1 P, Sk
o) Y. Pa sl Y (p—) Ay
vV

=1 n=v+1 n

m Sk
oy (ﬁ) Bl pul Al v

v

K—0(1) as m— oo,

Sy

oy, (If:)akpvmv|

v=1

ml o p o\ Skth-1 mtl g p N Sk+k=1 (n_1 k
n n A
y (—) TG (—) Y lanei PO 51
v=1
k—1
m+1 & Sk+k—1 [/n—1 . ‘ ‘ A n—1
Z |any11%[sv]" Py Ady | ZPV|A2'V| .
v=1

v=1

m+1 P Sk+k—1 [n—1
y (f) (2 an,mV‘1|an,v+1|sv|’<ﬂmv> .

v=1

n n—1
= Z Anj — Z Ap—1,i

i=v+1 i=v+1
n v n—1 v
= Zani_zani_ Zanfl,i'i'zanfl.i
i=0 i=0 i=0 i=0

\4 4
= 1-Yau—1+Y ap1;
i=0 i=0

\4

= Z(anfl,i_ani) > 0.

i=0

n—1

|dn,v+1| =dpy+1 —Ap—1y+1 =dnn + Z (ani _an—l,i) < dam

i=v+1

by (3.2), (3.1) and (3.6). Thence, from (3.10), (3.7), (3.9) and (2.3), we get

m—+1 P Ok+k—1
Z ( n) ‘Mn,3|k =

n=2 \Pn

= 0

mil /o p NSk ] .
0(]) Z ( ) Ay Z ‘&n,v+1|‘sv‘ PV‘A;LV|
v=1

n=2 \Pn

m . m+1 P, Sk
WY I Blan] Y (p—) .
v=1

n=v+1 n

m Sk
= 0(1)2(?) pldlsyf=0(1) as m— oo,

asin M, ;.

v=1 v

Finally, using (2.1) and operating Holder’s inequality, we obtain

m+l 7 p o\ Sktk-1 ) ml 7 p N\ Sktk=1 fn_1 k
n n A

Z(—) Ml < Z(—) Y s Aot [50]pvo

n=2 \Pn n=2 \Pn v=1

A

mil g p N\ Sktkol fn_] o n—1 k=1
- 0<1>Z(f) it eIl ) (T pol
Pn v=1 y=1

Sktk—1 /n_1 n—1 k-1
n A —_ A
—) amor I amet 152l ) [T peltal |
Pn =1 v=1

m+1

= 0(1)2(

n=2

P

(3.10)
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Now, using (3.10) and (2.2), we get

m+1 P, Sk+k—1 L m+1 P, Ok+k—1 o n—1 '
z( ) Mol = o<1>2( ) i [T lann e polinl )

n=2 \Pn n=2 \Pn v=1

Then, using (3.7) and (3.9), we get

m+1 P, Ok+k—1 ' m ‘ m+1 P, ok
Z(—) Ml = o) Y pulhlist Y (p—) (s

n=2 \Pn v=1 n=v+1 n
Sk
2P
= onY (7) ol 5ol
v=1 \Pv
= O0(1) as m—r oo,
as in M,, 1. Therefore the proof of Theorem 3.1 is completed. O

If we take a,, = py/P, in Theorem 3.1, we get Theorem 2.1. Additionally, if we take § = 0 in Theorem 3.1, then we deduce a known
theorem on |A, py| « summability of infinite series (see [14]).
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