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Abstract

In the present paper, a known theorem on absolute summability factors of infinite series has been generalized for |A, pn;δ |k summability by
using matrix transformation.
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1. Introduction

Let ∑an be an infinite series with its partial sums (sn) and A = (anv) be a normal matrix; i.e., a lower triangular matrix of nonzero diagonal
entries. The series ∑an is said to be summable |A, pn;δ |k, k ≥ 1 and δ ≥ 0, if (see [8])

∞

∑
n=1

(
Pn

pn

)δk+k−1
|An(s)−An−1(s)|k < ∞,

where (pn) is a sequence of positive numbers such that

Pn =
n

∑
v=0

pv→ ∞ as n→ ∞, (P−i = p−i = 0, i≥ 1)

and As = (An(s)) is defined by

An(s) =
n

∑
v=0

anvsv, n = 0,1, ...

If we take anv =
pv
Pn

, |A, pn;δ |k summability reduces to |N̄, pn;δ |k summability (see [4]). For δ = 0, |A, pn;δ |k summability reduces to
|A, pn|k summability (see [17]). Additionally, the series ∑an is said to be bounded [N̄, pn;δ ]k, k ≥ 1 and δ ≥ 0, if (see [3])

n

∑
v=1

(
Pv

pv

)δk
pv|sv|k = O(Pn) as n→ ∞. (1.1)

It should be noted that, for δ = 0, [N̄, pn;δ ]k boundedness is the same as [N̄, pn]k boundedness (see [1]).

2. Known Results

Some works dealing with absolute summability and absolute matrix summability can be found in [1–3, 5–7, 9–13, 15, 16]. Among them,
in [5], Bor has proved a theorem as follows.
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Theorem 2.1. Let the series ∑an be [N̄, pn;δ ]k bounded. If the conditions

pn+1 = O(pn) as n→ ∞, (2.1)

m

∑
n=1

pn|λn|= O(1) as m→ ∞, (2.2)

Pm|∆λm|= O(pm|λm|) as m→ ∞, (2.3)

∞

∑
n=v+1

(
Pn

pn

)δk−1 1
Pn−1

= O

((
Pv

pv

)δk 1
Pv

)
(2.4)

are satisfied, then the series ∑anPnλn is summable |N̄, pn;δ |k, k ≥ 1 and 0≤ δ < 1/k.

Lemma 2.2. [2] If the sequences (λn) and (pn) satisfy the conditions (2.2) and (2.3) of Theorem 2.1, then we have

Pm|λm|= O(1) as m→ ∞. (2.5)

3. Main Result

The goal of the paper is to get a general theorem concerning absolute matrix summability. Now, we should give some notations. Let A = (anv)
be a normal matrix, two lower semimatrices Ā = (ānv) and Â = (ânv) are defined by:

ānv =
n

∑
i=v

ani, n,v = 0,1, ... (3.1)

â00 = ā00 = a00, ânv = ānv− ān−1,v, n = 1,2, ... (3.2)

and

An(s) =
n

∑
v=0

anvsv =
n

∑
v=0

ānvav (3.3)

∆̄An(s) =
n

∑
v=0

ânvav. (3.4)

Theorem 3.1. Let A = (anv) be a positive normal matrix such that

an0 = 1, n = 0,1, ..., (3.5)

an−1,v ≥ anv, f or n≥ v+1, (3.6)

ann = O
(

pn

Pn

)
. (3.7)

If the conditions (1.1), (2.1)-(2.3) and

m+1

∑
n=v+1

(
Pn

pn

)δk
|∆vânv|= O

((
Pv

pv

)δk−1
)

as m→ ∞, (3.8)

m+1

∑
n=v+1

(
Pn

pn

)δk
|ân,v+1|= O

((
Pv

pv

)δk
)

as m→ ∞ (3.9)

are satisfied, then the series ∑anPnλn is summable |A, pn;δ |k, k ≥ 1 and 0≤ δ < 1/k.

Proof of Theorem 3.1. Let (Mn) be the sequence of A-transform of the series ∑anPnλn. Then, by (3.3) and (3.4), we have

∆̄Mn =
n

∑
v=1

ânvavPvλv.
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Operating Abel’s transformation for above sum, we get

∆̄Mn =
n

∑
v=1

ânvavPvλv

=
n−1

∑
v=1

∆v(ânvPvλv)
v

∑
r=1

ar + ânnPnλn

n

∑
v=1

av

=
n−1

∑
v=1

∆v(ânvPvλv)sv + ânnPnλnsn

= annPnλnsn +
n−1

∑
v=1

∆v(ânv)Pvλvsv +
n−1

∑
v=1

ân,v+1Pv∆λvsv

−
n−1

∑
v=1

ân,v+1 pv+1λv+1sv

= Mn,1 +Mn,2 +Mn,3 +Mn,4.

To prove Theorem 3.1, it is sufficient to show that

∞

∑
n=1

(
Pn

pn

)δk+k−1
|Mn,r|k < ∞, f or r = 1,2,3,4.

On account of (3.7), (2.5), (1.1), (2.3) and (2.2), we achieve

m

∑
n=1

(
Pn

pn

)δk+k−1
|Mn,1|k =

m

∑
n=1

(
Pn

pn

)δk+k−1
ak

nnPk
n |λn|k|sn|k

= O(1)
m

∑
n=1

(
Pn

pn

)δk
(Pn|λn|)k−1 pn|λn| |sn|k

= O(1)
m

∑
n=1

(
Pn

pn

)δk
pn|λn||sn|k

= O(1)
m−1

∑
n=1
|∆λn|

n

∑
r=1

(
Pr

pr

)δk
pr |sr|k +O(1) |λm|

m

∑
n=1

(
Pn

pn

)δk
pn |sn|k

= O(1)
m−1

∑
n=1

Pn |∆λn|+O(1)Pm |λm|

= O(1)
m−1

∑
n=1

pn|λn|+O(1)Pm |λm|

= O(1) as m→ ∞.

Now, operating Hölder’s inequality, we obtain

m+1

∑
n=2

(
Pn

pn

)δk+k−1
|Mn,2|k ≤

m+1

∑
n=2

(
Pn

pn

)δk+k−1
(

n−1

∑
v=1
|∆v(ânv)|Pv |λv| |sv|

)k

≤
m+1

∑
n=2

(
Pn

pn

)δk+k−1
(

n−1

∑
v=1
|∆v(ânv)|Pk

v |λv|k |sv |
k

)(
n−1

∑
v=1
|∆v(ânv)|

)k−1

.

By virtue of (3.2) and (3.1), we have

∆v(ânv) = ânv− ân,v+1 = ānv− ān−1,v− ān,v+1 + ān−1,v+1 = anv−an−1,v.

Above equality implies that

n−1

∑
v=1
|∆v(ânv)|=

n−1

∑
v=1

(an−1,v−anv)≤ ann,

by using (3.6), (3.1) and (3.5).
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Also by (3.7), (3.8) and (2.5), we get

m+1

∑
n=2

(
Pn

pn

)δk+k−1
|Mn,2|k ≤

m+1

∑
n=2

(
Pn

pn

)δk+k−1
ak−1

nn

(
n−1

∑
v=1
|∆v(ânv)|Pk

v |λv|k |sv |
k

)

= O(1)
m

∑
v=1

Pk
v |λv|k|sv|k

m+1

∑
n=v+1

(
Pn

pn

)δk
|∆v(ânv)|

= O(1)
m

∑
v=1

(
Pv

pv

)δk
(Pv|λv|)k−1 pv|λv| |sv|k

= O(1)
m

∑
v=1

(
Pv

pv

)δk
pv|λv| |sv|k = O(1) as m→ ∞,

as in Mn,1.
Now, we have

m+1

∑
n=2

(
Pn

pn

)δk+k−1
|Mn,3|k ≤

m+1

∑
n=2

(
Pn

pn

)δk+k−1
(

n−1

∑
v=1
|ân,v+1|Pv|∆λv||sv|

)k

≤
m+1

∑
n=2

(
Pn

pn

)δk+k−1
(

n−1

∑
v=1
|ân,v+1|k|sv|kPv|∆λv|

)(
n−1

∑
v=1

Pv|∆λv|

)k−1

.

Here, the conditions (2.3) and (2.2) imply

m+1

∑
n=2

(
Pn

pn

)δk+k−1
|Mn,3|k = O(1)

m+1

∑
n=2

(
Pn

pn

)δk+k−1
(

n−1

∑
v=1
|ân,v+1|k−1|ân,v+1||sv|kPv|∆λv|

)
.

By (3.2), (3.1), (3.5) and (3.6), it is obvious that

ân,v+1 = ān,v+1− ān−1,v+1 =
n

∑
i=v+1

ani−
n−1

∑
i=v+1

an−1,i

=
n

∑
i=0

ani−
v

∑
i=0

ani−
n−1

∑
i=0

an−1,i +
v

∑
i=0

an−1,i

= 1−
v

∑
i=0

ani−1+
v

∑
i=0

an−1,i

=
v

∑
i=0

(an−1,i−ani)≥ 0.

So, we can write

∣∣ân,v+1
∣∣= ān,v+1− ān−1,v+1 = ann +

n−1

∑
i=v+1

(ani−an−1,i)≤ ann (3.10)

by (3.2), (3.1) and (3.6). Thence, from (3.10), (3.7), (3.9) and (2.3), we get

m+1

∑
n=2

(
Pn

pn

)δk+k−1
|Mn,3|k = O(1)

m+1

∑
n=2

(
Pn

pn

)δk+k−1
ak−1

nn

(
n−1

∑
v=1
|ân,v+1||sv|kPv|∆λv|

)

= O(1)
m

∑
v=1
|sv|kPv|∆λv|

m+1

∑
n=v+1

(
Pn

pn

)δk
|ân,v+1|

= O(1)
m

∑
v=1

(
Pv

pv

)δk
pv|λv||sv|k = O(1) as m→ ∞,

as in Mn,1.
Finally, using (2.1) and operating Hölder’s inequality, we obtain

m+1

∑
n=2

(
Pn

pn

)δk+k−1
|Mn,4|k ≤

m+1

∑
n=2

(
Pn

pn

)δk+k−1
(

n−1

∑
v=1
|ân,v+1||λv+1||sv|pv+1

)k

= O(1)
m+1

∑
n=2

(
Pn

pn

)δk+k−1
(

n−1

∑
v=1
|ân,v+1|k|sv|k pv|λv|

)(
n−1

∑
v=1

pv|λv|

)k−1

= O(1)
m+1

∑
n=2

(
Pn

pn

)δk+k−1
(

n−1

∑
v=1
|ân,v+1|k−1|ân,v+1||sv|k pv|λv|

)(
n−1

∑
v=1

pv|λv|

)k−1

.
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Now, using (3.10) and (2.2), we get

m+1

∑
n=2

(
Pn

pn

)δk+k−1
|Mn,4|k = O(1)

m+1

∑
n=2

(
Pn

pn

)δk+k−1
ak−1

nn

(
n−1

∑
v=1
|ân,v+1||sv|k pv|λv|

)
.

Then, using (3.7) and (3.9), we get

m+1

∑
n=2

(
Pn

pn

)δk+k−1
|Mn,4|k = O(1)

m

∑
v=1

pv|λv||sv|k
m+1

∑
n=v+1

(
Pn

pn

)δk
|ân,v+1|

= O(1)
m

∑
v=1

(
Pv

pv

)δk
pv|λv| |sv|k

= O(1) as m→ ∞,

as in Mn,1. Therefore the proof of Theorem 3.1 is completed.

If we take anv = pv/Pn in Theorem 3.1, we get Theorem 2.1. Additionally, if we take δ = 0 in Theorem 3.1, then we deduce a known
theorem on |A, pn|k summability of infinite series (see [14]).
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[7] H. S. Özarslan, A note on |N̄, pn;δ |k summability factors, Indian J. Pure Appl. Math. Vol:33, No.3 (2002), 361-366.
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