On an Extension of Absolute Summability

Bağdagül Kartal ${ }^{\text {1* }}$
${ }^{1}$ Department of Mathematics, Faculty of Science, Erciyes University, 38039 Kayseri, TURKEY
*Corresponding author E-mail: bagdagulkartal@erciyes.edu.tr

Abstract

In the present paper, a known theorem on absolute summability factors of infinite series has been generalized for $\left|A, p_{n} ; \delta\right|_{k}$ summability by using matrix transformation.

Keywords: Absolute matrix summability; Hölder inequality; infinite series; Minkowski inequality; summability factors. 2010 Mathematics Subject Classification: 26D15, 40D15, 40F05, 40G99.

1. Introduction

Let $\sum a_{n}$ be an infinite series with its partial sums $\left(s_{n}\right)$ and $A=\left(a_{n v}\right)$ be a normal matrix; i.e., a lower triangular matrix of nonzero diagonal entries. The series $\sum a_{n}$ is said to be summable $\left|A, p_{n} ; \delta\right|_{k}, k \geq 1$ and $\delta \geq 0$, if (see [8])

$$
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|A_{n}(s)-A_{n-1}(s)\right|^{k}<\infty
$$

where $\left(p_{n}\right)$ is a sequence of positive numbers such that

$$
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty, \quad\left(P_{-i}=p_{-i}=0, \quad i \geq 1\right)
$$

and $A s=\left(A_{n}(s)\right)$ is defined by

$$
A_{n}(s)=\sum_{v=0}^{n} a_{n v} s_{v}, \quad n=0,1, \ldots
$$

If we take $a_{n v}=\frac{p_{v}}{P_{n}},\left|A, p_{n} ; \delta\right|_{k}$ summability reduces to $\left|\bar{N}, p_{n} ; \boldsymbol{\delta}\right|_{k}$ summability (see [4]). For $\delta=0,\left|A, p_{n} ; \boldsymbol{\delta}\right|_{k}$ summability reduces to $\left|A, p_{n}\right|_{k}$ summability (see [17]). Additionally, the series $\sum a_{n}$ is said to be bounded $\left[\bar{N}, p_{n} ; \delta\right]_{k}, k \geq 1$ and $\delta \geq 0$, if (see [3])

$$
\begin{equation*}
\sum_{v=1}^{n}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} p_{v}\left|s_{v}\right|^{k}=O\left(P_{n}\right) \quad \text { as } \quad n \rightarrow \infty \tag{1.1}
\end{equation*}
$$

It should be noted that, for $\delta=0,\left[\bar{N}, p_{n} ; \delta\right]_{k}$ boundedness is the same as $\left[\bar{N}, p_{n}\right]_{k}$ boundedness (see [1]).

2. Known Results

Some works dealing with absolute summability and absolute matrix summability can be found in $[1-3,5-7,9-13,15,16]$. Among them, in [5], Bor has proved a theorem as follows.

Theorem 2.1. Let the series $\sum a_{n}$ be $\left[\bar{N}, p_{n} ; \delta\right]_{k}$ bounded. If the conditions

$$
\begin{gather*}
p_{n+1}=O\left(p_{n}\right) \text { as } n \rightarrow \infty, \tag{2.1}\\
\sum_{n=1}^{m} p_{n}\left|\lambda_{n}\right|=O(1) \text { as } m \rightarrow \infty, \tag{2.2}\\
P_{m}\left|\Delta \lambda_{m}\right|=O\left(p_{m}\left|\lambda_{m}\right|\right) \quad \text { as } \quad m \rightarrow \infty, \tag{2.3}\\
\sum_{n=v+1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1} \frac{1}{P_{n-1}}=O\left(\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} \frac{1}{P_{v}}\right) \tag{2.4}
\end{gather*}
$$

are satisfied, then the series $\sum a_{n} P_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n} ; \delta\right|_{k}, k \geq 1$ and $0 \leq \delta<1 / k$.
Lemma 2.2. [2] If the sequences $\left(\lambda_{n}\right)$ and (p_{n}) satisfy the conditions (2.2) and (2.3) of Theorem 2.1, then we have

$$
\begin{equation*}
P_{m}\left|\lambda_{m}\right|=O(1) \quad \text { as } \quad m \rightarrow \infty . \tag{2.5}
\end{equation*}
$$

3. Main Result

The goal of the paper is to get a general theorem concerning absolute matrix summability. Now, we should give some notations. Let $A=\left(a_{n v}\right)$ be a normal matrix, two lower semimatrices $\bar{A}=\left(\bar{a}_{n v}\right)$ and $\hat{A}=\left(\hat{a}_{n v}\right)$ are defined by:

$$
\begin{gather*}
\bar{a}_{n v}=\sum_{i=v}^{n} a_{n i}, \quad n, v=0,1, \ldots \tag{3.1}\\
\hat{a}_{00}=\bar{a}_{00}=a_{00}, \quad \hat{a}_{n v}=\bar{a}_{n v}-\bar{a}_{n-1, v}, \quad n=1,2, \ldots \tag{3.2}
\end{gather*}
$$

and

$$
\begin{gather*}
A_{n}(s)=\sum_{v=0}^{n} a_{n v} s_{v}=\sum_{v=0}^{n} \bar{a}_{n v} a_{v} \tag{3.3}\\
\bar{\Delta} A_{n}(s)=\sum_{v=0}^{n} \hat{a}_{n v} a_{v} . \tag{3.4}
\end{gather*}
$$

Theorem 3.1. Let $A=\left(a_{n v}\right)$ be a positive normal matrix such that

$$
\begin{gather*}
\bar{a}_{n 0}=1, n=0,1, \ldots, \tag{3.5}\\
a_{n-1, v} \geq a_{n v}, \text { for } n \geq v+1, \tag{3.6}\\
a_{n n}=O\left(\frac{p_{n}}{P_{n}}\right) . \tag{3.7}
\end{gather*}
$$

If the conditions (1.1), (2.1)-(2.3) and

$$
\begin{align*}
& \sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k}\left|\Delta_{v} \hat{a}_{n v}\right|=O\left(\left(\frac{P_{v}}{p_{v}}\right)^{\delta k-1}\right) \text { as } m \rightarrow \infty, \tag{3.8}\\
& \sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k}\left|\hat{a}_{n, v+1}\right|=O\left(\left(\frac{P_{v}}{p_{v}}\right)^{\delta k}\right) \text { as } m \rightarrow \infty \tag{3.9}
\end{align*}
$$

are satisfied, then the series $\sum a_{n} P_{n} \lambda_{n}$ is summable $\left|A, p_{n} ; \delta\right|_{k}, k \geq 1$ and $0 \leq \delta<1 / k$.
Proof of Theorem 3.1. Let $\left(M_{n}\right)$ be the sequence of A-transform of the series $\sum a_{n} P_{n} \lambda_{n}$. Then, by (3.3) and (3.4), we have

$$
\bar{\Delta} M_{n}=\sum_{v=1}^{n} \hat{a}_{n v} a_{v} P_{v} \lambda_{v}
$$

Operating Abel's transformation for above sum, we get

$$
\begin{aligned}
\bar{\Delta} M_{n}= & \sum_{v=1}^{n} \hat{a}_{n v} a_{v} P_{v} \lambda_{v} \\
= & \sum_{v=1}^{n-1} \Delta_{v}\left(\hat{a}_{n v} P_{v} \lambda_{v}\right) \sum_{r=1}^{v} a_{r}+\hat{a}_{n n} P_{n} \lambda_{n} \sum_{v=1}^{n} a_{v} \\
= & \sum_{v=1}^{n-1} \Delta_{v}\left(\hat{a}_{n v} P_{v} \lambda_{v}\right) s_{v}+\hat{a}_{n n} P_{n} \lambda_{n} s_{n} \\
= & a_{n n} P_{n} \lambda_{n} s_{n}+\sum_{v=1}^{n-1} \Delta_{v}\left(\hat{a}_{n v}\right) P_{v} \lambda_{v} s_{v}+\sum_{v=1}^{n-1} \hat{a}_{n, v+1} P_{v} \Delta \lambda_{v} s_{v} \\
& -\sum_{v=1}^{n-1} \hat{a}_{n, v+1} p_{v+1} \lambda_{v+1} s_{v} \\
= & M_{n, 1}+M_{n, 2}+M_{n, 3}+M_{n, 4} .
\end{aligned}
$$

To prove Theorem 3.1, it is sufficient to show that

$$
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|M_{n, r}\right|^{k}<\infty, \quad \text { for } \quad r=1,2,3,4
$$

On account of (3.7), (2.5), (1.1), (2.3) and (2.2), we achieve

$$
\begin{aligned}
\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|M_{n, 1}\right|^{k} & =\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1} a_{n n}^{k} P_{n}^{k}\left|\lambda_{n}\right|^{k}\left|s_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k}\left(P_{n}\left|\lambda_{n}\right|\right)^{k-1} p_{n}\left|\lambda_{n}\right|\left|s_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k} p_{n}\left|\lambda_{n}\right|\left|s_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m-1}\left|\Delta \lambda_{n}\right| \sum_{r=1}^{n}\left(\frac{P_{r}}{p_{r}}\right)^{\delta k} p_{r}\left|S_{r}\right|^{k}+O(1)\left|\lambda_{m}\right| \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k} p_{n}\left|s_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m-1} P_{n}\left|\Delta \lambda_{n}\right|+O(1) P_{m}\left|\lambda_{m}\right| \\
& =O(1) \sum_{n=1}^{m-1} p_{n}\left|\lambda_{n}\right|+O(1) P_{m}\left|\lambda_{m}\right| \\
& =O(1) \text { as } m \rightarrow \infty .
\end{aligned}
$$

Now, operating Hölder's inequality, we obtain

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|M_{n, 2}\right|^{k} & \leq \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| P_{v}\left|\lambda_{v}\right|\left|s_{v}\right|\right)^{k} \\
& \leq \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| P_{v}^{k}\left|\lambda_{v}\right|^{k}\left|s_{v}\right|^{k}\right)\left(\sum_{v=1}^{n-1} \mid \Delta_{v}\left(\hat{a}_{n v}\right)\right)^{k-1}
\end{aligned}
$$

By virtue of (3.2) and (3.1), we have

$$
\Delta_{v}\left(\hat{a}_{n v}\right)=\hat{a}_{n v}-\hat{a}_{n, v+1}=\bar{a}_{n v}-\bar{a}_{n-1, v}-\bar{a}_{n, v+1}+\bar{a}_{n-1, v+1}=a_{n v}-a_{n-1, v}
$$

Above equality implies that

$$
\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|=\sum_{v=1}^{n-1}\left(a_{n-1, v}-a_{n v}\right) \leq a_{n n},
$$

by using (3.6), (3.1) and (3.5).

Also by (3.7), (3.8) and (2.5), we get

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|M_{n, 2}\right|^{k} & \leq \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1} a_{n n}^{k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| P_{v}^{k}\left|\lambda_{v}\right|^{k}\left|s_{v}\right|^{k}\right) \\
& =O(1) \sum_{v=1}^{m} P_{v}^{k}\left|\lambda_{v}\right|^{k}\left|s_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \\
& =\left.O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k}\left(P_{v}\left|\lambda_{v}\right|\right)^{k-1} p_{v}\left|\lambda_{v}\right| s_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} p_{v}\left|\lambda_{v}\right|\left|s_{v}\right|^{k}=O(1) \text { as } m \rightarrow \infty
\end{aligned}
$$

as in $M_{n, 1}$.
Now, we have

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|M_{n, 3}\right|^{k} & \leq \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right| P_{v}\left|\Delta \lambda_{v}\right|\left|s_{v}\right|\right)^{k} \\
& \leq \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|^{k}\left|s_{v}\right|^{k} P_{v}\left|\Delta \lambda_{v}\right|\right)\left(\sum_{v=1}^{n-1} P_{v}\left|\Delta \lambda_{v}\right|\right)^{k-1}
\end{aligned}
$$

Here, the conditions (2.3) and (2.2) imply

$$
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|M_{n, 3}\right|^{k}=O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|^{k-1}\left|\hat{a}_{n, v+1}\right|\left|s_{v}\right|^{k} P_{v}\left|\Delta \lambda_{v}\right|\right)
$$

By (3.2), (3.1), (3.5) and (3.6), it is obvious that

$$
\begin{aligned}
\hat{a}_{n, v+1}=\bar{a}_{n, v+1}-\bar{a}_{n-1, v+1} & =\sum_{i=v+1}^{n} a_{n i}-\sum_{i=v+1}^{n-1} a_{n-1, i} \\
& =\sum_{i=0}^{n} a_{n i}-\sum_{i=0}^{v} a_{n i}-\sum_{i=0}^{n-1} a_{n-1, i}+\sum_{i=0}^{v} a_{n-1, i} \\
& =1-\sum_{i=0}^{v} a_{n i}-1+\sum_{i=0}^{v} a_{n-1, i} \\
& =\sum_{i=0}^{v}\left(a_{n-1, i}-a_{n i}\right) \geq 0 .
\end{aligned}
$$

So, we can write

$$
\begin{equation*}
\left|\hat{a}_{n, v+1}\right|=\bar{a}_{n, v+1}-\bar{a}_{n-1, v+1}=a_{n n}+\sum_{i=v+1}^{n-1}\left(a_{n i}-a_{n-1, i}\right) \leq a_{n n} \tag{3.10}
\end{equation*}
$$

by (3.2), (3.1) and (3.6). Thence, from (3.10), (3.7), (3.9) and (2.3), we get

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|M_{n, 3}\right|^{k} & =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1} a_{n n}^{k-1}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|s_{v}\right|^{k} P_{v}\left|\Delta \lambda_{v}\right|\right) \\
& =O(1) \sum_{v=1}^{m}\left|s_{v}\right|^{k} P_{v}\left|\Delta \lambda_{v}\right| \sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k}\left|\hat{a}_{n, v+1}\right| \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} p_{v}\left|\lambda_{v}\right|\left|s_{v}\right|^{k}=O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

as in $M_{n, 1}$.
Finally, using (2.1) and operating Hölder's inequality, we obtain

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|M_{n, 4}\right|^{k} & \leq \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\lambda_{v+1}\right|\left|s_{v}\right| p_{v+1}\right)^{k} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|^{k}\left|s_{v}\right|^{k} p_{v}\left|\lambda_{v}\right|\right)\left(\sum_{v=1}^{n-1} p_{v}\left|\lambda_{v}\right|\right)^{k-1} \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|^{k-1}\left|\hat{a}_{n, v+1}\right|\left|s_{v}\right|^{k} p_{v}\left|\lambda_{v}\right|\right)\left(\sum_{v=1}^{n-1} p_{v}\left|\lambda_{v}\right|\right)^{k-1}
\end{aligned}
$$

Now, using (3.10) and (2.2), we get

$$
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|M_{n, 4}\right|^{k}=O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1} a_{n n}^{k-1}\left(\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|s_{v}\right|^{k} p_{v}\left|\lambda_{v}\right|\right)
$$

Then, using (3.7) and (3.9), we get

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|M_{n, 4}\right|^{k} & =O(1) \sum_{v=1}^{m} p_{v}\left|\lambda_{v}\right|\left|s_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k}\left|\hat{a}_{n, v+1}\right| \\
& =O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\delta k} p_{v}\left|\lambda_{v}\right|\left|s_{v}\right|^{k} \\
& =O(1) \text { as } m \rightarrow \infty
\end{aligned}
$$

as in $M_{n, 1}$. Therefore the proof of Theorem 3.1 is completed.
If we take $a_{n v}=p_{v} / P_{n}$ in Theorem 3.1, we get Theorem 2.1. Additionally, if we take $\delta=0$ in Theorem 3.1, then we deduce a known theorem on $\left|A, p_{n}\right|_{k}$ summability of infinite series (see [14]).

References

[1] H. Bor, On $\left|\bar{N}, p_{n}\right|_{k}$ summability factors of infinite series, Tamkang J. Math. Vol:16, No. 1 (1985), 13-20.
[2] H. Bor, On $\left|\bar{N}, p_{n}\right|_{k}$ summability factors, Proc. Amer. Math. Soc. Vol:94, No. 3 (1985), 419-422.
[3] H. Bor, Absolute summability factors of infinite series, Panamer. Math. J. Vol:2, No. 2 (1992), 33-38.
[4] H. Bor, On local property of $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability of factored Fourier series, J. Math. Anal. Appl. Vol:179, No. 2 (1993), 646-649.
[5] H. Bor, On absolute summability factors, Z. Anal. Anwendungen Vol:15, No. 2 (1996), 545-549.
[6] A. Karakaş, On absolute matrix summability factors of infinite series, J. Class. Anal. Vol:13, No. 2 (2018), 133-139.
[7] H. S. Özarslan, A note on $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability factors, Indian J. Pure Appl. Math. Vol:33, No. 3 (2002), 361-366.
[8] H. S. Özarslan and H. N. Öğdük, Generalizations of two theorems on absolute summability methods, Aust. J. Math. Anal. Appl. Vol:1, No. 2 (2004), 1-7.
[9] H. S. Özarslan and E. Yavuz, A new note on absolute matrix summability, J. Inequal. Appl. Vol:474 (2013), 1-7.
[10] H. S. Özarslan and E. Yavuz, New theorems for absolute matrix summability factors, Gen. Math. Notes Vol:23, No. 2 (2014), 63-70.
[11] H. S. Özarslan, A new application of generalized almost increasing sequences, Bull. Math. Anal. Appl. Vol:8, No.2 (2016), 9-15.
[12] H. S. Özarslan, A new study on generalized absolute matrix summability, Commun. Math. Appl. Vol:7, No. 4 (2016), 303-309.
[13] H. S. Özarslan, An application of δ-quasi monotone sequence, Inter. J. Anal. Appl. Vol:14, No. 2 (2017), 134-139.
[14] H. S. Özarslan and B. Kartal, A new theorem on boundedness and absolute summability, AIP Conf. Proc. Vol:2037, No.1 (2018), 1-5.
[15] H. Seyhan, A note on absolute summability factors, Far East J. Math. Sci. Vol:6, No. 1 (1998), 157-162.
[16] H. Seyhan, Factors for absolute summability methods, PanAmer. Math. J. Vol:9, No. 4 (1999), 23-27.
[17] W. T. Sulaiman, Inclusion theorems for absolute matrix summability methods of an infinite series. IV, Indian J. Pure Appl. Math. Vol:34, No.11 (2003), 1547-1557.

