# On the Generalization of Opial Type Inequality for Convex Function 

Mehmet Zeki Sarıkaya ${ }^{1}$<br>${ }^{1}$ Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey<br>*Corresponding author E-mail: sarikayamz@gmail.com


#### Abstract

In this article, by using new different approach method, we establish some generalization of Opial like inequality for convex mappings.


Keywords: Opial inequality, convex function.
2010 Mathematics Subject Classification: 26D15, $26 A 51$.

## 1. Introduction

We recall the following interesting Opial type inequalities in [1]:
Theorem 1.1. Let $x:[a, b] \subset \mathbb{R} \rightarrow \mathbb{R}$ is an absolutely continuous function such that $x^{\prime} \in L_{2}[a, b]$.
i) If $x(a)=x(b)=0$, then
$\int_{a}^{b}\left|x(t) x^{\prime}(t)\right| d t \leq \frac{b-a}{4} \int_{a}^{b}\left|x^{\prime}(t)\right|^{2} d t$
ii) If $x(a)=0($ or $x(b)=0)$, then
$\int_{a}^{b}\left|x(t) x^{\prime}(t)\right| d t \leq \frac{b-a}{2} \int_{a}^{b}\left|x^{\prime}(t)\right|^{2} d t$.

Therefore, some very interesting generalizations are given by B. G. Pachpatte who works with several functions in Opial type inequalities. We give the following case
$\int_{a}^{b}\left[\left|f^{\prime}(t)\right||g(t)|+\left|g^{\prime}(t)\right||f(t)|\right] d t \leq \frac{(b-a)}{2}\left(\int_{a}^{b}\left|f^{\prime}(t)\right|^{2}+\left|g^{\prime}(t)\right|^{2} d t\right)$
where $f, g \in C^{1}([a, b])$ with $f(a)=g(a)=0$ (see, [1], [10]).
Opial's inequality and its generalizations, extensions and discretizations, play a fundamental role in establishing the existence and uniqueness of initial and boundary value problems for ordinary and partial differential equations as well as difference equations. Over the last twenty years a large number of papers have been appeared in the literature which deals with the simple proofs, various generalizations and discrete analogues of Opial inequality and its generalizations, see [1]-[17]. Now, we give the following case that is one of them:

## 2. Main Results

Theorem 2.1. Let $f, g:[a, b] \subset \mathbb{R} \rightarrow \mathbb{R}$ be differentiable function such that $f(a)=g(a)=0($ or $f(b)=g(b)=0)$. Suppose that $\phi$ be convex and increasing functions on $[0, \infty)$ with $\phi(0)=0$, then we have the following inequality

$$
\begin{align*}
& \int_{a}^{b}\left[\phi^{\prime}(|f(t)|)\left|f^{\prime}(t)\right| \phi(|g(t)|)+\phi^{\prime}(|g(t)|)\left|g^{\prime}(t)\right| \phi(|f(t)|)\right] d t  \tag{2.1}\\
\leq & \phi\left(\int_{a}^{b}\left|f^{\prime}(t)\right| d t\right) \phi\left(\int_{a}^{b}\left|g^{\prime}(t)\right| d t\right)
\end{align*}
$$

Proof. Consider the following functions, for $t \in[a, b]$ and $f(a)=g(a)=0$,
$y(t)=\int_{a}^{t}\left|f^{\prime}(s)\right| d s, \quad z(t)=\int_{a}^{t}\left|g^{\prime}(s)\right| d s$
such that we also define the functions
$F(t)=\phi(y(t))=\phi\left(\int_{a}^{t}\left|f^{\prime}(s)\right| d s\right), G(t)=\phi(z(t))=\phi\left(\int_{a}^{t}\left|g^{\prime}(s)\right| d s\right)$
such that $y^{\prime}(t)=\left|f^{\prime}(t)\right|, z^{\prime}(t)=\left|g^{\prime}(t)\right|, y(t) \geq|f(t)|$ and $z(t) \geq|g(t)|$. Thus, by chain rule of differentiation and by using the convexity of $\phi$, we get
$F^{\prime}(t)=\phi^{\prime}(y(t))\left|f^{\prime}(t)\right| \geq \phi^{\prime}(|f(t)|)\left|f^{\prime}(t)\right|$
and
$G^{\prime}(t)=\phi^{\prime}(z(t))\left|g^{\prime}(t)\right| \geq \phi^{\prime}(|g(t)|)\left|g^{\prime}(t)\right|$.
Multiplying both sides of (2.2) and (2.3) by $G(t)$ and $F(t)$, respectivly, and adding side by side, we get $F^{\prime}(t) G(t)+F(t) G^{\prime}(t) \geq \phi^{\prime}(|f(t)|)\left|f^{\prime}(t)\right| \phi(z(t))+\phi^{\prime}(|g(t)|)\left|g^{\prime}(t)\right| \phi(y(t))$.
and then integrating both sides of this inequality (2.4) over $[a, b]$ with respect to $t$, we obtain that

$$
\begin{aligned}
& \int_{a}^{b}\left[F^{\prime}(t) G(t)+F(t) G^{\prime}(t)\right] d t \\
= & F(b) G(b)-F(a) G(a) \\
= & \phi(y(b)) \phi(z(b))-\phi(y(a)) \phi(z(a)) \\
\geq & \int_{a}^{b}\left[\phi^{\prime}(|f(t)|)\left|f^{\prime}(t)\right| \phi(z(t))+\phi^{\prime}(|g(t)|)\left|g^{\prime}(t)\right| \phi(y(t))\right] d t
\end{aligned}
$$

Since $\phi(0)=0$ and $\phi$ is an increasing function, we have

$$
\begin{aligned}
& \int_{a}^{b}\left[\phi^{\prime}(|f(t)|)\left|f^{\prime}(t)\right| \phi(|g(t)|)+\phi^{\prime}(|g(t)|)\left|g^{\prime}(t)\right| \phi(|f(t)|)\right] d t \\
\leq & \phi\left(\int_{a}^{b}\left|f^{\prime}(t)\right| d t\right) \phi\left(\int_{a}^{b}\left|g^{\prime}(t)\right| d t\right)
\end{aligned}
$$

which completes the proof. Similar to the above proof, choosing the following functions for $t \in[a, b]$ and $f(b)=g(b)=0$
$y_{1}(t)=\int_{t}^{b}\left|f^{\prime}(s)\right| d s, \quad z_{1}(t)=\int_{t}^{b}\left|g^{\prime}(s)\right| d s$
such that then we have
$F_{1}(t)=\phi\left(y_{1}(t)\right)=\phi\left(\int_{t}^{b}\left|f^{\prime}(s)\right| d s\right), G_{1}(t)=\phi\left(z_{1}(t)\right)=\phi\left(\int_{t}^{b}\left|g^{\prime}(s)\right| d s\right)$
such that $y_{1}^{\prime}(t)=-\left|f^{\prime}(t)\right|, z_{1}^{\prime}(t)=-\left|g^{\prime}(t)\right|, y_{1}(t) \geq|f(t)|$ and $z_{1}(t) \geq|g(t)|$. It follows that
$-\left[F_{1}^{\prime}(t) G_{1}(t)+F_{1}(t) G_{1}^{\prime}(t)\right] \geq \phi^{\prime}(|f(t)|)\left|f^{\prime}(t)\right| \phi\left(z_{1}(t)\right)+\phi^{\prime}(|g(t)|)\left|g^{\prime}(t)\right| \phi\left(y_{1}(t)\right)$.
This completes the proof of the inequality (2.1).

Remark 2.2. If we choose $f(t)=g(t)$ in Theorem 2.1, we have
$\int_{a}^{b} \phi^{\prime}(|f(t)|)\left|f^{\prime}(t)\right| \phi(|f(t)|) d t \leq \frac{1}{2}\left[\phi\left(\int_{a}^{b}\left|f^{\prime}(t)\right| d t\right)\right]^{2}$.
If we take $\phi(t)=t$ in the inequality (2.6), then we have the following inequality
$\int_{a}^{b}\left|f^{\prime}(t)\right||f(t)| d t \leq \frac{1}{2}\left(\int_{a}^{b}\left|f^{\prime}(t)\right| d t\right)^{2}$.
By using Cauchy-Schwarz inequality, it follows that
$\int_{a}^{b}\left|f^{\prime}(t)\right||f(t)| d t \leq \frac{(b-a)}{2} \int_{a}^{b}\left|f^{\prime}(t)\right|^{2} d t$
which is the inequality (1.2).
Remark 2.3. If we take $\phi(t)=t$ in the inequality (2.1), then we have the following inequality
$\int_{a}^{b}\left[\left|f^{\prime}(t)\right||g(t)|+\left|g^{\prime}(t)\right||f(t)|\right] d t \leq\left(\int_{a}^{b}\left|f^{\prime}(t)\right| d t\right)\left(\int_{a}^{b}\left|g^{\prime}(t)\right| d t\right)$.
By using Cauchy-Schwarz inequality in the right hand sides of inequality (2.7), it follows that
$\int_{a}^{b}\left[\left|f^{\prime}(t)\right||g(t)|+\left|g^{\prime}(t)\right||f(t)|\right] d t \leq(b-a) \sqrt{\left(\int_{a}^{b}\left|f^{\prime}(t)\right|^{2} d t\right)\left(\int_{a}^{b}\left|g^{\prime}(t)\right|^{2} d t\right) .}$
By using AGM inequality, we get
$\int_{a}^{b}\left[\left|f^{\prime}(t)\right||g(t)|+\left|g^{\prime}(t)\right||f(t)|\right] d t \leq \frac{(b-a)}{2}\left(\int_{a}^{b}\left|f^{\prime}(t)\right|^{2}+\left|g^{\prime}(t)\right|^{2} d t\right)$
which is proved by Pacpatte in [10].
Remark 2.4. If we take $\phi(t)=\frac{t^{p}}{p}$ for $1 \leq p<\infty$ in the inequality (2.1), then we have the following inequality

$$
\begin{aligned}
& \int_{a}^{b}\left[|f(t)|^{p-1}\left|f^{\prime}(t)\right||g(t)|^{p}+|g(t)|^{p-1}\left|g^{\prime}(t)\right||f(t)|^{p}\right] d t \\
\leq & \frac{1}{p}\left(\int_{a}^{b}\left|f^{\prime}(t)\right| d t\right)^{p}\left(\int_{a}^{b}\left|g^{\prime}(t)\right| d t\right)^{p} .
\end{aligned}
$$

It follows from the Hölder's inequality with indices $p$ and $\frac{p}{p-1}$, in the right hand sides of above inequality, and by using AGM inequality we get

$$
\begin{aligned}
& \int_{a}^{b}\left[|f(t)|^{p-1}\left|f^{\prime}(t)\right||g(t)|^{p}+|g(t)|^{p-1}\left|g^{\prime}(t)\right||f(t)|^{p}\right] d t \\
\leq & \frac{(b-a)^{2 p-2}}{p}\left(\int_{a}^{b}\left|f^{\prime}(t)\right|^{p} d t\right)\left(\int_{a}^{b}\left|g^{\prime}(t)\right|^{p} d t\right) \\
\leq & \frac{(b-a)^{2 p-2}}{p}\left(\int_{a}^{b}\left[\left|f^{\prime}(t)\right|^{p}+\left|g^{\prime}(t)\right|^{p}\right] d t\right)^{2} .
\end{aligned}
$$

Theorem 2.5. Let $f, g:[a, b] \subset \mathbb{R} \rightarrow \mathbb{R}$ be differentiable function such that $f(a)=f(b)=0$ and $g(a)=g(b)=0$. If $\phi$ is an convex and an increasing function on $[0, \infty)$ with $\phi(0)=0$, then we have the inequality

$$
\begin{align*}
& \int_{a}^{b}\left[\phi^{\prime}(|f(t)|)\left|f^{\prime}(t)\right| \phi(|g(t)|)+\phi^{\prime}(|g(t)|)\left|g^{\prime}(t)\right| \phi(|f(t)|)\right] d t  \tag{2.8}\\
\leq & \phi\left(\int_{a}^{\frac{a+b}{2}}\left|f^{\prime}(t)\right| d t\right) \phi\left(\int_{a}^{\frac{a+b}{2}}\left|g^{\prime}(t)\right| d t\right) \\
& +\phi\left(\int_{\frac{a+b}{2}}^{b}\left|f^{\prime}(t)\right| d t\right) \phi\left(\int_{\frac{a+b}{2}}^{b}\left|g^{\prime}(t)\right| d t\right) .
\end{align*}
$$

Proof. Consider the following functions, for $t \in[a, b]$ and $f(a)=f(b)=0$ and $g(a)=g(b)=0$,
$y(t)=\int_{a}^{t}\left|f^{\prime}(s)\right| d s, z(t)=\int_{a}^{t}\left|g^{\prime}(s)\right| d s$
$y_{1}(t)=\int_{t}^{b}\left|f^{\prime}(s)\right| d s, \quad z_{1}(t)=\int_{t}^{b}\left|g^{\prime}(s)\right| d s$,
$F(t)=\phi(y(t))=\phi\left(\int_{a}^{t}\left|f^{\prime}(s)\right| d s\right), G(t)=\phi(z(t))=\phi\left(\int_{a}^{t}\left|g^{\prime}(s)\right| d s\right)$
and
$F_{1}(t)=\phi\left(y_{1}(t)\right)=\phi\left(\int_{t}^{b}\left|f^{\prime}(s)\right| d s\right), G_{1}(t)=\phi\left(z_{1}(t)\right)=\phi\left(\int_{t}^{b}\left|g^{\prime}(s)\right| d s\right)$
such that
$y^{\prime}(t)=\left|f^{\prime}(t)\right|, z^{\prime}(t)=\left|g^{\prime}(t)\right|, y(t) \geq|f(t)|$ and $z(t) \geq|g(t)|$
and
$y_{1}^{\prime}(t)=-\left|f^{\prime}(t)\right|, z_{1}^{\prime}(t)=-\left|g^{\prime}(t)\right|, y_{1}(t) \geq|f(t)|$ and $z_{1}(t) \geq|g(t)|$.
If we write the inequality (2.4) and (2.5) on the intervals $\left[a, \frac{a+b}{2}\right]$ and $\left[\frac{a+b}{2}, b\right]$, respectively we have

$$
\begin{aligned}
& \int_{a}^{\frac{a+b}{2}}\left[F^{\prime}(t) G(t)+F(t) G^{\prime}(t)\right] d t \\
= & F\left(\frac{a+b}{2}\right) G\left(\frac{a+b}{2}\right)-F(a) G(a) \\
= & \phi\left(y\left(\frac{a+b}{2}\right)\right) \phi\left(z\left(\frac{a+b}{2}\right)\right)-\phi(y(a)) \phi(z(a)) \\
\geq & \int_{a}^{\frac{a+b}{2}}\left[\phi^{\prime}(|f(t)|)\left|f^{\prime}(t)\right| \phi(z(t))+\phi^{\prime}(|g(t)|)\left|g^{\prime}(t)\right| \phi(y(t))\right] d t .
\end{aligned}
$$

and

$$
\begin{aligned}
& -\int_{\frac{a+b}{2}}^{b}\left[F_{1}^{\prime}(t) G_{1}(t)+F_{1}(t) G_{1}^{\prime}(t)\right] d t \\
= & -F_{1}(b) G_{1}(b)+F_{1}\left(\frac{a+b}{2}\right) G_{1}\left(\frac{a+b}{2}\right) \\
= & -\phi\left(y_{1}(b)\right) \phi\left(z_{1}(b)\right)+\phi\left(y_{1}\left(\frac{a+b}{2}\right)\right) \phi\left(z_{1}\left(\frac{a+b}{2}\right)\right) \\
\geq & \int_{\frac{a+b}{2}}^{b}\left[\phi^{\prime}(|f(t)|)\left|f^{\prime}(t)\right| \phi\left(z_{1}(t)\right)+\phi^{\prime}(|g(t)|)\left|g^{\prime}(t)\right| \phi\left(y_{1}(t)\right)\right] d t .
\end{aligned}
$$

Since $\phi(0)=0$ and $\phi$ is an increasing function, we have

$$
\begin{align*}
& \int_{a}^{\frac{a+b}{2}}\left[\phi^{\prime}(|f(t)|)\left|f^{\prime}(t)\right| \phi(|g(t)|)+\phi^{\prime}(|g(t)|)\left|g^{\prime}(t)\right| \phi(|f(t)|)\right] d t  \tag{2.9}\\
\leq & \phi\left(\int_{a}^{\frac{a+b}{2}}\left|f^{\prime}(t)\right| d t\right) \phi\left(\int_{a}^{\frac{a+b}{2}}\left|g^{\prime}(t)\right| d t\right)
\end{align*}
$$

and

$$
\begin{align*}
& \int_{\frac{a+b}{2}}^{b}\left[\phi^{\prime}(|f(t)|)\left|f^{\prime}(t)\right| \phi(|g(t)|)+\phi^{\prime}(|g(t)|)\left|g^{\prime}(t)\right| \phi(|f(t)|)\right] d t  \tag{2.10}\\
\leq & \phi\left(\int_{\frac{a+b}{2}}^{b}\left|f^{\prime}(t)\right| d t\right) \phi\left(\int_{\frac{a+b}{2}}^{b}\left|g^{\prime}(t)\right| d t\right) .
\end{align*}
$$

Adding to inequalities (2.9) and (2.10), we obtain the required inequality (2.8).

Remark 2.6. If we choose $f(t)=g(t)$ in Theorem 2.5, we have
$2 \int_{a}^{b} \phi^{\prime}(|f(t)|)\left|f^{\prime}(t)\right| \phi(|f(t)|) d t \leq\left[\phi\left(\int_{a}^{\frac{a+b}{2}}\left|f^{\prime}(t)\right| d t\right)\right]^{2}+\left[\phi\left(\int_{\frac{a+b}{2}}^{b}\left|f^{\prime}(t)\right| d t\right)\right]^{2}$.
If we take $\phi(t)=t$ in the inequality (2.11), then we have the following inequality
$2 \int_{a}^{b}\left|f^{\prime}(t)\right||f(t)| d t \leq\left(\int_{a}^{\frac{a+b}{2}}\left|f^{\prime}(t)\right| d t\right)^{2}+\left(\int_{\frac{a+b}{2}}^{b}\left|f^{\prime}(t)\right| d t\right)^{2}$.
By using Cauchy-Schwarz inequality, it follows that
$\int_{a}^{b}\left|f^{\prime}(t)\right||f(t)| d t \leq \frac{(b-a)}{4} \int_{a}^{b}\left|f^{\prime}(t)\right|^{2} d t$
which is the inequality (1.1).
Remark 2.7. If we take $\phi(t)=t$ in the inequality (2.8), then we have the following inequality

$$
\begin{align*}
& \int_{a}^{b}\left[\left|f^{\prime}(t)\right||g(t)|+\left|g^{\prime}(t)\right||f(t)|\right] d t  \tag{2.12}\\
\leq & \left(\int_{a}^{\frac{a+b}{2}}\left|f^{\prime}(t)\right| d t\right)\left(\int_{a}^{\frac{a+b}{2}}\left|g^{\prime}(t)\right| d t\right)+\left(\int_{\frac{a+b}{2}}^{b}\left|f^{\prime}(t)\right| d t\right)\left(\int_{\frac{a+b}{2}}^{b}\left|g^{\prime}(t)\right| d t\right) .
\end{align*}
$$

By using Cauchy-Schwarz inequality in the right hand sides of inequality (2.12) and using AGM inequality, it follows that

$$
\begin{aligned}
& \int_{a}^{b}\left[\left|f^{\prime}(t)\right||g(t)|+\left|g^{\prime}(t)\right||f(t)|\right] d t \\
\leq & \frac{(b-a)}{2}\left[\sqrt{\left(\int_{a}^{\frac{a+b}{2}}\left|f^{\prime}(t)\right|^{2} d t\right)\left(\int_{a}^{\frac{a+b}{2}}\left|g^{\prime}(t)\right|^{2} d t\right)}+\sqrt{\left.\left(\int_{\frac{a+b}{2}}^{b}\left|f^{\prime}(t)\right|^{2} d t\right)\left(\int_{\frac{a+b}{2}}^{b}\left|g^{\prime}(t)\right|^{2} d t\right)\right]}\right. \\
\leq & \frac{(b-a)}{4}\left(\int_{a}^{b}\left|f^{\prime}(t)\right|^{2}+\left|g^{\prime}(t)\right|^{2} d t\right)
\end{aligned}
$$

which is provided by Pacpatte in(for $m=0$ in Theorem 4, [10]).
Remark 2.8. If we take $\phi(t)=\frac{t^{p}}{p}$ for $1 \leq p<\infty$ in the inequality (2.8), then we have the following inequality

$$
\begin{aligned}
& \int_{a}^{b}\left[|f(t)|^{p-1}\left|f^{\prime}(t)\right||g(t)|^{p}+|g(t)|^{p-1}\left|g^{\prime}(t)\right||f(t)|^{p}\right] d t \\
\leq & \frac{1}{p}\left(\int_{a}^{\frac{a+b}{2}}\left|f^{\prime}(t)\right| d t\right)^{p}\left(\int_{a}^{\frac{a+b}{2}}\left|g^{\prime}(t)\right| d t\right)^{p} \\
& +\frac{1}{p}\left(\int_{\frac{a+b}{2}}^{b}\left|f^{\prime}(t)\right| d t\right)^{p}\left(\int_{\frac{a+b}{2}}^{b}\left|g^{\prime}(t)\right| d t\right)^{p} .
\end{aligned}
$$

It follows from the Hölder's inequality with indices $p$ and $\frac{p}{p-1}$, in the right hand sides of above inequality, and by using AGM inequality we get

$$
\begin{aligned}
& \int_{a}^{b}\left[|f(t)|^{p-1}\left|f^{\prime}(t)\right||g(t)|^{p}+|g(t)|^{p-1}\left|g^{\prime}(t)\right||f(t)|^{p}\right] d t \\
\leq & \frac{(b-a)^{2 p-2}}{p 2^{2 p-2}}\left\{\left(\int_{a}^{\frac{a+b}{2}}\left|f^{\prime}(t)\right|^{p} d t\right)\left(\int_{a}^{\frac{a+b}{2}}\left|g^{\prime}(t)\right|^{p} d t\right)\right. \\
& \left.+\left(\int_{\frac{a+b}{2}}^{b}\left|f^{\prime}(t)\right|^{p} d t\right)\left(\int_{\frac{a+b}{2}}^{b}\left|g^{\prime}(t)\right|^{p} d t\right)\right\} \\
\leq & \frac{(b-a)^{2 p-2}}{p 2^{2 p-1}}\left\{\left(\int_{a}^{\frac{a+b}{2}}\left|f^{\prime}(t)\right|^{p} d t\right)^{2}+\left(\int_{a}^{\frac{a+b}{2}}\left|g^{\prime}(t)\right|^{p} d t\right)^{2}\right. \\
& \left.+\left(\int_{\frac{a+b}{2}}^{b}\left|f^{\prime}(t)\right|^{p} d t\right)^{2}+\left(\int_{\frac{a+b}{2}}^{b}\left|g^{\prime}(t)\right|^{p} d t\right)^{2}\right\} .
\end{aligned}
$$

By using Cauchy-Schwarz inequality

$$
\begin{align*}
& \int_{a}^{b}\left[|f(t)|^{p-1}\left|f^{\prime}(t)\right||g(t)|^{p}+|g(t)|^{p-1}\left|g^{\prime}(t)\right||f(t)|^{p}\right] d t  \tag{2.13}\\
\leq & \frac{(b-a)^{2 p-1}}{p 2^{2 p}} \int_{a}^{b}\left[\left|f^{\prime}(t)\right|^{2 p}+\left|g^{\prime}(t)\right|^{2 p}\right] d t
\end{align*}
$$

If we take $p=1$ in the inequality (2.13), then we have the following inequality
$\int_{a}^{b}\left[\left|f^{\prime}(t)\right||g(t)|+\left|g^{\prime}(t)\right||f(t)|\right] d t \leq \frac{(b-a)}{4} \int_{a}^{b}\left[\left|f^{\prime}(t)\right|^{2}+\left|g^{\prime}(t)\right|^{2}\right] d t$
which is presented by Pacpatte in(for $m=0$ in Theorem 4, [10]). If we take $p=2$ in the inequality (2.13), then we have the following inequality

$$
\int_{a}^{b}\left[|f(t)|\left|f^{\prime}(t)\right||g(t)|^{2}+|g(t)|\left|g^{\prime}(t)\right||f(t)|^{2}\right] d t \leq \frac{(b-a)^{3}}{32} \int_{a}^{b}\left[\left|f^{\prime}(t)\right|^{4}+\left|g^{\prime}(t)\right|^{4}\right] d t
$$

## References

[1] R.P. Agarwal and P.Y.H. Pang, Opial inequalities with applications in differential and difference equations, Mathematics and Its Applications book series (MAIA, volume 320), Kluwer Academic Publishers, London, 1995.
[2] W.S. Cheung, Some new Opial-type inequalities, Mathematika, 37 (1990), 136-142.
[3] W.S. Cheung, Some generalized Opial-type inequalities, J. Math. Anal. Appl., 162 (1991), 317-321.
[4] E.K. Godunova and V.l. Levin, On an inequality of Maroni, (Russian), Mat. Zametki 2(1967), 221-224.
[5] X. G. He, A short of a generalization on Opial's s inequailty,Journal of Mathematical Analysis and Applications, 182, (1994), 299-300.
[6] P. Maroni, Sur l'in'egalit'e d'Opial-Beesack, C. R. Acad. Sci. Paris Ser. A-B, 264 (1967), A62-A64.
[7] Hua L.K., On an inequality of Opial, Sci China., 14(1965), 789-790.
[8] C. Olech, A simple proof of a certain result of Z. Opial. Ann. Polon. Math. 8 (1960), 61-63.
[9] Z. Opial, Sur une inegaliti, Ann. Polon. Math. 8 (1960), 29-32.
[10] B. G. Pachpatte, On Opial-type integral inequalities , J. Math. Anal. Appl. 120 (1986), 547-556.
[11] B. G. Pachpatte, Some inequalities similar to Opial's inequality , Demonstratio Math. 26 (1993), 643-647.
[12] B. G. Pachpatte, A note on some new Opial type integral inequalities, Octogon Math. Mag. 7 (1999), 80-84.
[13] B. G. Pachpatte, On some inequalities of the Weyl type, An. Stiint. Univ. "Al.I. Cuza" Iasi 40 (1994), 89-95.
[14] S.H. Saker, M.D. Abdou and I. Kubiaczyk, Opial and Polya type inequalities via convexity, Fasciculi Mathematici, 60(1), 145-159, 2018.
[15] H. M. Srivastava, K.-L. Tseng, S.-J. Tseng and J.-C. Lo, Some weighted Opial-type inequalities on time scales, Taiwanese J. Math., 14 (2010), $107-122$.
[16] C.-J. Zhao and W.-S. Cheung, On Opial-type integral inequalities and applications. Math. Inequal. Appl. 17 (2014), no. 1, $223-232$.
[17] F. H. Wong, W. C. Lian, S. L. Yu and C. C. Yeh, Some generalizations of Opial's inequalities on time scales, Taiwanese Journal of Mathematics, Vol. 12, Number 2, April 2008, Pp. 463-471.

