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Bu calismada, ilk olarak 4-boyutlu Oklidyen uzayinda bir Monge hiperyiizeyinin ortalama ve Gaussian egriliklerini verdik.
Ardindan, farkli yogunluklara sahip E* uzayinda Monge hiperyiizeylerini cahistik. Bu baglamda, @. 8. ¥ ve u hepsi ayn1

anda sifir olmayan sabitler olmak iizere, e®**F¥*¥2*Ef (lineer yogunluk) ve e

R’I'+S_'|."+;.-'Z' +Hr

yogunluklu E*

uzayinda agirlikli minimal ve agirlikli flat Monge hiperyiizeylerini . 8. ¥ ve u sabitlerinin farkli segimleri yardimiyla

elde ettik.

Anahtar Kelimeler:Yogunluklu manifold, agirhkl ortalama egrilik, agirhklh gaussian egriligi, monge yiizeyleri.

Monge Hypersurfaces in Euclidean 4-Space with
Density

ABSTRACT

In the present study, firstly we give the mean and Gaussian curvatures of a Monge hypersurface in 4-dimensional Euclidean space.
After this, we study on Monge hypersurfaces in £ with different densities. In this context, we obtain the weighted minimal
and weighted flat Monge hypersurfaces in £ with densities e®**+5¥+¥2+£f ([inear density) and g +ByT+ra st \yith
the aid of different choices of constants cx. &. ¥ and g, where . 5. and & are not all zero constants.

Keywords: Manifold with density, weighted mean curvature, weighted gaussian curvature, monge hypersurfaces

1. INTRODUCTION

Minimal and flat surfaces have long been an important
topic of study by mathematicians and other scientists.
When we focus on the studies on this subject, some of
these studies can be given as follows: In the first two
decades of 1900s, Moore has studied rotational surfaces
and rotational surfaces with constant curvature in four-
dimensional space and he has given some relations for
them, [1,2]. Moor’s studies have examined by Ganchev
and Milousheva in Minkowski 4-space and some
relations have been expressed, [7]. In [3], complete
hypersurfaces in R* with constant mean curvature and
constant scalar curvature have been classified. In [5,6],
authors have studied generalized rotational surfaces and
translation surfaces in 4-dimensional Euclidean surfaces
and they have investigated curvature properties of these
surfaces and they have given some examples for them.
Also authors have proved that, a translation surface is flat
if and only if it is a hyperplane or a hypercylinder. Moruz
and Mounteanu have considered hypersurfaces in R*
defined as the sum of a curve and a surface whose mean

*Sorumlu Yazar (Corresponding Author)
e-posta : ahmet.kazan@inonu.edu.tr

curvature vanishes in [8]. Yoon has investigated the
rotational surfaces with finite type Gauss map in

Euclidean 4-space. He has proved that, the Gauss map is

of finite type if and only if rotatinal surface is a Clifford
torus [4]. Dursun and Turgay have studied general
rotational surfaces in E* whose meridian curves lie in
two-dimensional planes and they have found all minimal
general rotational surfaces by solving the differential
equation that characterizes minimal general rotational
surfaces. Also, they have determined all pseudo-
umbilical general rotational surfaces in E*, [9].
Kahraman and Yayli have studied Bost invariant surfaces
with pointwise 1-type Gauss map in Ef and they have
generalized rotational surfaces of pointwise 1-type Gauss
map in E5 [10,11]. Giiler and et al have defined helicoidal
hypersurface with the Laplace-Beltrami operator in four
space, [12]. Also, Giiler and et al have studied Gauss map
and the third Laplace-Beltrami operator of the rotational
hypersurface in 4-space, [13]. Since, the curvature of a
curve and the mean curvature of an n-dimensional
hypersurface are important invariants for curves and
surfaces, many authors have studied these notions for
different types of curves and surfaces for a long time in
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different spaces, such as Euclidean, Minkowski, Galilean
and pseudo-Galilean spaces.

Now, let us recall some fundamental notions in Euclidean
4-space.

Let X = (x,y1,21,t), ¥ = (’fzd’z'zz'tz) and _ Z=
(x3,¥3,23,t3) be three vectors in E*. Then, the inner
product and vector product of these vectors are given by

(X, 9) = x1%5 + V1V, + 217, + tt, (1.2
and
e, e, e; e,
Pxyxi=det| 2 7 ) (L2)
X3 Y3 Z3 I3
respectively. If
X:E3 — E*, (ug,up,u3) — X(uy, Uy, us) .3)

= (X1 (Uq, Uz, Uz), Xo (Ug, Ug, Us), X3 (Uq, Ug, Us), Xa (Ug, U, Us3))
is a hypersurface in Euclidean 4-space E*, then the
normal vector field, the matrix forms of the first and
second fundamental forms are

Xy XXy, XXy

N = (120 X Xau X X || (1.4)
(911 912 Yi3

gij =921 Y22 923l (1.5)
1931 Y932 Y33

and
[hi1 hiz hgs

hij =|hy1 haz has|, (1.6)
Lhs;  hsy  hss

respectively. Here, g;; = (Xui,Xuj), h;; = (Xuiu].,N),

ax a%x ..
Xui = a—ui, Xuiuj = m, {l,]} € {1,2,3}

Also, the shape operator of the hypersurface (1.3) is
-1

S = (a;) = (hy)-(94)

where (g;;)"" is the inverse matrix of (g;;).

With the aid of (1.5)-(1.7), the Gaussian curvature and
mean curvature of a hypersurface in E* are given by

1.7)

_ det(hij)

= Zetlon) (1.8)
and
3H = iz(S), (1.9)

respectively.

Furthermore, the notion of weighted manifold which is
an important topic for geometers and physicists has been
studied by many scientists, recently. Firstly, Gromov has
introduced the notion of weighted mean curvature (or ¢-
mean curvature) of an n-dimensional hypersurface as
1 de

H(p =H-— (n—l)ﬁ y (110)
where H is the mean curvature and N is the unit normal
vector field of the surface [14]. A hypersurface is called
weighted minimal (or ¢-minimal), if its weighted mean
curvature vanishes.

Also, Corvin and et al have introduced the notion of
generalized weighted Gaussian curvature on a manifold
as

Gp=G-Lo, (1.11)
where A is the Laplacian operator [15]. A hypersurface

is called weighted flat (or ¢-flat), if its weighted
Gaussian curvature vanishes.

After these definitions, lots of studies have been done by
differential geometers about weighted manifolds, for
instance [16-25].

2. MONGE HYPERSURFACES IN EUCLIDEAN
4-SPACE

In this section, we obtain the Gaussian and mean
curvatures of a Monge hypersurface in Euclidean 4-
space, by giving the normal vector field of it.

Let M be a surface in E* given by

M:X(x,y,z) = (x, v,z f(x,y, z)). (2.1)
Then we call this surface as Monge hypersurface in
Euclidean 4-space. For this surface, we have

X, =001, X, =(010,£,), X, = (0,0,1,£,)
X = (0,00, fur), Xyy = (0,00, fry),
X, = (0,0,0,f,), X, = (0,0,0, ),
Xy, = (0,00,£), Xz, = (0,00, f,,),

@.2)

X X af of .o
where X; =20 Xy =35 fi=on fy =55 (WIlE
{x,y}. From (2.2),
€1 € €3 €
1 0 0 f

XexXyxX,=lo 1 o f|=Uehfo—1) 23)
0 0 1 f

and so, from (1.2) and (1.4) the normal vector field of the
surface (2.1) is obtained as

_ _(hyfa1)

(147242 F

Also from (1.6), the matrix form of the second
fundamental form of the surface (2.1) is

N (2.4)

_fxx _fxy _fxz
(hij) = S _fxy _fyy _fyz (2.5)
RAECAL ALl _fxz _fzz
and its determinant is
- - 2 2 2
det(hl]) — fxxfyyfzz foyfyzfxz"'fxxfjgz/:'fyyfxz+fzzfxy. (26)

(1472 +12+12)
Now, we obtain the matrix of the metric g;;, its
determinant and inverse as

1+ ffy  fifs
gij = fxfy 1 +fy2 fyfz ’ 2.7
ff:  ffy 1+ f7

det(gij) = (1 + [ [(1+ f2)A +£2) - (£,£)]
— L5 A+ £ — fufy£2]
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+afolffofE — (L + F2)fef)

=1+ fF+f7+fF (2.8)
and
T+ 242 —ff, ~ff;
@D = Tmaa| b VHEHR R | (29)
R E A ~£f, 1+ 2+ f7

respectively. Hence, using (2.6) and (2.8) in (1.8), we
obtain the Gaussian curvature of the surface (2.1) as

K= ~Fexfezfyy=2Feyfyzfez)* Fex(fyz) 4 fyy )+ Frz(fiey)” 2.10)
- (142 +2+12)°? &

Let we take (a;;) = (hij) X (gij)_l. Then, since
(o) =
. A

S S i o
a+r+i7+:" 5 £ —f

(2.11)

1+ 2+ —ffy ~fef
~ffy 1+ +f ~hfs
~fefe ~ffy 1+ +5

from (1.9), we obtain the mean curvature of the surface
(2.1) as
{—fxx(1+fy2+fzz)—fyy(1+f,? +fF)~fzz(1+ 1% +fy2)}
+2(fxyfxfy+fxzfxfz+fyzfyfz)
3(1+f,§+f3§+fz)3/2

H =

. (2.12)

3. MONGE HYPERSURFACES IN E* WITH
LINEAR DENSITY

In the first subsection of this section, we investigate the
weighted minimal Monge hypersurfaces in Euclidean 4-
space with linear density e®**+Ay+vz+1t gnd in the second
subsection of this section, we investigate the weighted
flat Monge hypersurfaces in E* with this density.

3.1. Weighted Minimal Monge Hypersurfaces in E*
with Linear Density

Let M be a Monge hypersurface given by (2.1) in
Euclidean 4-space with linear density e®**By+yz+ut
where a, 8,y and u are not all zero constants. Then from
(1.10), the weighted mean curvature of this surface is
obtained as
( ~fex (L5 +12)~fyy (L+ 2 +17) )
4 ~fzz(L+FE+15)+ ¥
|L 2(fxyfxfy+fxzfxfz+fyzfyfz)_ )|

(afy+Bfy+y o)1+ 2+ fF+1)
3/2

H

3.1
¢ 3(1+£2+f2+f2) G.1)

So, we have

Proposition 1. Let M: X (x,y,z) = (x, v,z f(x,y, Z)) be
a Monge hypersurface in Euclidean 4-space with linear
density e®*+Fy+vz+it where a, 3,y and u are not all

zero constants. Then, this surface is weighted minimal if
and only if

2fayfely + Frafels + fyafyfe)=

fox(L+ 7+ F2) + oy (L f2 + D + f,(1+ 2+ £7)
+afy + By + v — (1 + 2+ f7 + fF) 3.2
satisfies.

Now, let we take

fle,y,z) =h(x) + g(y) + m(2),

where h, g and m are C? —differentiable functions. Thus,
we have

=N, =90, f,=m'(2),
fex = h" (x), fxy =0, fr =0,
fyy = g”(y)' fyz =0, frz = m'" (z).

Using (3.3) in (3.1), the weighted mean curvature of the
surface (2.1) is obtained as

(3.3)

( ') (1+g @)+m ) \
4 -9 A+ @ +m (2)*) $
| -m" (D)(1+h @ +g ) - i
o = \@ @+ 0ty - (L 049 04 )D) (3.4)
¢ 301+ ()2 +g )2+ (2)) 2 Y

Proposition 2. Let M:X(x,y,2z) = (x,y,2 h(x) +
gy + m(z)) be a Monge hypersurface in Euclidean 4-
space with linear density e®**+By+vz+ut where a, 3,y
and u are not all zero constants. Then, this surface is
weighted minimal if and only if

0=h"(x)A+g'()?+m'(2)?*) +

9" A+ R (x)*+m'(2)%) + (3.5
m"(2)(1+h'(x)*+g' () +
(ah'(x) + Bg' ) +ym'(2) — (A + ' (x)* + g'(¥)* +
m'(2)?) (3.5)

satisfies.

Next, we’ll obtain the weighted minimal Monge
hypersurfaces in E* with density e®*+By+vz+ut for
different choices of the not all zero constants «, 8,y and

u.
We note that, throughout this study we consider k; and
A;, i € N*, are real constants.

Case 1. Let the density be e**:
In this case, let us consider the Monge hypersurface
M:X(x,y,2z) = (x, v,z h(x) + gly) + m(z))

in Euclidean 4-space with linear density e®*. Then, this
surface is weighted minimal if and only if

0=h")A+g' (> +m () +
g" A+ 1 () +m'(2)*)+
m"(2)(1 +h'(x)* + g'()*)+
ah’(x)(1+h'(x)? + g')?* + m'(2)?)
satisfies. Here, by obtaining some special solutions for

the equation (3.6), we’ll construct the weighted minimal
Monge hypersurfaces in E* with linear density e®~.

Firstly, let us take the functions g(y) and m(z) are linear,
ie.g(y) =ky+k,m(z) =ksz+k,.
Then, the equation (3.6) becomes
R () (1 + (ky)? + (k3)?) =
—ah'() (1 + (h)? + (ky)? + (k3)?).
From (3.7),

(14 (k)? + (ks)>)
ah'(1+ (R)?2 + (k)2 + (k3)?)

(3.6)

3.7)

-1
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K hR
- — — = —
R (R + 1+ (k)? + (k3)?

= (v —%lnl(h’)z F1+ () + (e)?l) = —a
b
V)2 + 1+ (k) + (ks)?
b

B

V)2 + 1+ (ky)? + (ks)?
= K =e (W) + 1+ (ky)? + (k3)?
= (')? = e2¥ 2 ((W')? + 1+ (ky)? + (k3)?)
N (1 _ e—Zax+2/11)(h/)2 — e—2ax+2/11(1 + (k1)2 + (k3)2)
_ VI (k)P (ky)? et

=In =—ax+ 4,

—ax+q

=e

= h'
\/— -1 ax _ o2,
= h(x) = (14 (ky)? + (k3)2)ar:tan(e VeZax —g2h) i
(3.8)
Thus,
marctan(e—llm)
f(xl yr Z) =

a

is a solution of (3.7).
So, we can give the following Theorem:
Theorem 1. The weighted minimal Monge hypersurface
in Euclidean 4-space with linear density e™ for (a #
0) € R can be parametrized by
X(x,y,2)=(xy2z ky+ksz+k

\/(1+(k1)2+(k3)2)arctan(e‘)“1\/ez"‘x—e”l)

a

where k =k, + k, + 1,.
Secondly, taking the functions h(x) and m(z) are linear,
i.e. h(x) = ksx + kg, m(2) = kgz + k,, from (3.6), we
have

9"+ (ks)? + (k3)?) =

), (3.9)

—aks(1+ (g'())* + (ks)? + (k3)?). (3.10)
Solving this equation, we reach that
(g")?
"= —aks (1
= ( T (ke ¥ ()2
gll
=@y - s
1+ (ks)?+(k3)?
gll
Vi+(ks)?+(ks)? —aks
(g"? - 2 2
FeYPRYIORY: V1+ (ks)? + (k3)
(=
= arctan
V1+ (ks)? + (k)2
— —aksy +2
ViH(ks)2+(ka)? 3
= g' = J1+ (ks)? + (ks)2tan <$ + ,13)
1+ (ks)? + (k3)?

k
5+ Ag))(1+ (ks )P+ (k)P
1+(ks5)2+(k3)?

In(cos(

=g = +1,. (3.11)

Hence, we have

Theorem 2. The weighted minimal Monge hypersurface
in Euclidean 4-space with linear density e®™ for (a #
0) € R can be parametrized by

X, y,2) =(x,y,2,ksx + k3z+ k

In(cos(—=2%5Y 4 23))(1+(ks)?+(k3)?)
1+(ks)? +(k3)?

+ ), (3.12)

aks

aks

where k = k,+kg + A,
And now, taking the functions h(x) and g(y) are linear,
i.e. h(x) = ksx + kg, g(y) = kiy + k,, from (3.6), we
have

"(z) = — _m@?
m"(z) = —aks (1+ 1+(k5)2+(k1)2)' (3.13)
Solving (3.13) with the same procedure as above, we
have

In(cos(——2K5L 4 A))(1+(ks)2+(k1)?)

1+(ks)2+(k1)?

m(z) = + . (3.14)

aks
So, we get

Theorem 3. The weighted minimal Monge hypersurface
in Euclidean 4-space with linear density e® for (a #
0) € R can be parametrized by

X,y,z) =(x,y,2,ksx + kyy +k +

In(cos(——="K5% 1 25))(1+(ks)?+(k1)?)
1+(kg)2+(k1)?

), (3.15)

aks
where k = k¢ + k, + 4.
Case 2. Let the density be e5Y:
In this case, let us consider the Monge hypersurface
M:X(x,y,2z) = (x, v,z h(x) + gly) + m(z))

in Euclidean 4-space with linear density e#?. Then, this
surface is weighted minimal if and only if

0=h"()A+g'(?+m'(@)?

+9" (A + h'(x)* +m'(2)%)

+m"(2)(1+ h'(x)* + g' (1))

+B9' (A + ' (x)* + g'(1)* +m'(2)*)
satisfies. With the same procedure as first case, one can
obtain the following Theorem:

Theorem 4. The weighted minimal Monge hypersurface
in Euclidean 4-space with linear density ef” for (8 #
0) € R can be parametrized by

X, y,2) =(x,y,z2,ksx + kyy + k +

(3.16)

In(cos( ﬁ";z =+17)) (14 (k) + (k1)?)
1+ (k)2 +(k1)
, (8.17
- ). @.17)
X(x,y,2)=(x,y,2, kyy + kzz+ 1 +
In(cos(-—=LEE 4 19))(1+(k3)2+(k1)?)
1+(k3)2+(k1)?
3.18
- ) @19
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or
X(x,y,2)=(x,y, 2, ksx + ksz+n +

N (1+(k5)2+(k3)2)arctan(e_}‘11\/ e2By—e2111
3 ), (3.19)

where k = kg + k, + A5, L = ky + k, + A4, and
n=ke+k,+ 2,

Case 3. Let the density be e?%:

In this case, let us consider the Monge hypersurface
M:X(x,y,z) = (x,y, z,h(x) +g(y) + m(z))

in Euclidean 4-space with linear density e¥“. Then, this
surface is weighted minimal if and only if

0=h"(x)A+g'»)?+m'(2)?)
+9" A+ R (x)? +m'(2)*)
+m"(2)(1 + h'(x)* + g'()*)
+ym'(2)(1 + R’ (x)? + g'()? + m'(2)?)
satisfies. Hence, from (3.20) we have

Theorem 5. The weighted minimal Monge hypersurface
in Euclidean 4-space with linear density e?* for (y #
0) € R can be parametrized by

X(X,Y,Z) =(x'}’,Z:k13’+k3Z+k+

in(cos(——=L2% 1 2,3))(1+(k3)+(k1)?)

(3.20)

1+(k3)2+(k1)?
,(3.21
= ), (3.21)
XC,y,2)=(x,v,2,ksx + kyz+ 1+
n(cos(=LEY 4 2,5))(1+(k3)?+ (ks)?)
1+ (k3)2+(k1)?
) (3.22)

vk3
or
XC,y,2)=(x,y,z, ksx + k;y + n+

(1+(ks)2+(kp)2)arctan(e—t17+/e2vz_e2h17
5 - y( )), (3.23)

wherek=k, + k, 44, 1= kg + ky, +Agandn = kg +
k, + 45 .

Case 4. Let the density be e#t:

Here, let us consider the Monge hypersurface
M:X(x,y,z) = (x, v,z h(x) + gliy) + m(z))

in Euclidean 4-space with linear density e#t. Then, this
surface is weighted minimal if and only if

0=h"(x)(1+g'¥)?+m'(2)?)
+9" (A + h'(x)? +m'(2)?)
+m"(2)(1 + h'(x)* + g'()?)
—u@+ 1) +9' () +m(2)?)
satisfies. Thus,

Theorem 6. The weighted minimal Monge hypersurface
in Euclidean 4-space with linear density e#t for (u #
0) € R can be parametrized by
X(x,v,2)=(xy,2ky+ksz+k—

—— 1A+ (k3) %+ (k1))
1+ (k3)2+(kq)?

n

(3.24)

In(cos(

. (3.25)

X, v,2) =(x,y,2,ksx + kzz+ 1 —

— 1 21))(A+(ks)?+(k1)?)

In(cos(:
/1+(k5>2+(k1>2

- ) (3.26)

or
X, y,2)=(xy2ksx+k;y+n—
ZL +223)) (1+(k3)2+(ks)?)

1+(k3)2+(ks)?

p ), (3.27)

where k =k, +k, + 259, L =ke+k, +1,, and n =

ke + ky + Ay4.

3.2. Weighted Flat Monge Hypersurfaces in E* with

Linear Density

From (1.11), the weighted Gaussian curvature of the

Monge hypersurface in Euclidean 4-space with linear

density e®*+By+vz+ut i obtained as
R (g m'' (2)

WHh @ 4g )2am! ()T

So from (3.28), we can state the following theorems:

Theorem 7. Let M: X (x,y,2) = (x,y,2,h(x) + g(y) +

m(z)) be a Monge hypersurface in Euclidean 4-space

with linear density e By +yz+ut where o, 8,y and u are
not all zero constants. If one of the functions h(x), g(y)
and m(z) is linear, then M is weighted flat.

Theorem 8. If M:X(x,y,2) = (x,y,2,h(x) + g(y) +
m(z)) is a Monge hypersurface in Euclidean 4-space

with linear density e **+BY+yz+ut where o, 8,y and u are
not all zero constants, then its weighted Gaussian
curvature cannot be constant except for zero.

In(cos(:

K,=—

(3.28)

4. MONGE HYPERSURFACES IN E* WITH
DENSITY e +By*+yz* +ut?
In this section, we obtain the weighted minimal Monge

hypersurfaces and give a characterization for the
constancy of weighted Gaussian curvature of Monge

hypersurfaces in E4 with density e@*” +8y*+rz*+ut*
4.1. Weighted Minimal Monge Hypersurfaces in E*
with Density e®”+8y*+yz*+ut?
From (1.10) and (2.4), the weighted mean curvature of
the Monge hypersurface
M:X(x,y,2z) = (x,y, z, f(x,y, z))
in E* with density e®*+y*+vz*+ut* j5 obtained as
_fxx(l"'f}%+fzz)_fyy(1+fx2+fzz)
+f22 (12 +£7)
2(fxyfxfy+fxzfxfz+fyzfyfz)_

_ \ataxpurBysytvafmun) (42415 412))

H
3(1+f2+£2+£2)°

¢

@.1)

Thus, we get

Proposition 3. Let M: X(x,y, z) = (x, v,z f(x,y, z)) be
a Monge hypersurface in Euclidean 4-space with density
e +By*+yz*+ut? ‘where @, B,y and u are not all zero
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constants. Then, this surface is weighted minimal if and
only if
2 feyfuty + feafefs + fyatyfr)=
Fo(L+ 7+ £2) + iy U+ 2+ D+, (1+ 2+ f7)
+Haxf + Byfy +vzf, —uf) A+ 2+ 7 +fF) (4.2)
satisfies.
Here, if we take f(x,y,z) =h(x)+ g(y)+ m(2),
where h, g and m are C?2 —differentiable functions, then
using (3.3) in (4.2), the weighted mean curvature of the
Monge hypersurface
M:X(x,y,2) = (x,y,2 h(x) + g(y) + m(2))
is obtained as

( -h"' (0 (1+g' )2 +m' (2)?) )
[ -g" ) (+hr' (x)2+m’ (2)?) |
! —m @)(1+h (0% +g' ()?) '
i —2(axh’ ()+Byg’ W) +yzm' (2))- i
g, = Mg M@ Wirg ' @) g oy

@ 3(1+R' ()2 +g' )2 +m! (2)2)3/2
Proposition 4. Let M:X(x,y,2) = (x,y,2 h(x) +
gy + m(z)) be a Monge hypersurface in Euclidean 4-

space with density e®**+B¥*+rz*+ut® where o, 8,y and
u are not all zero constants. Then, this surface is
weighted minimal if and only if

0=h"()(1+g')?+m'(@)?)+
g" A+ R (@x)? +m'(2)*)+
m"(2) 1+ x)?* +9' () +
2(axh'(x) + Byg' ) + yzm' (2)) —
1(h(x) + g + M)A+ 1’ ()% + g'(1)? + m'(2)?)
satisfies.

(4.9

Now, we’ll obtain the weighted minimal Monge
hypersurfaces in E* with density e@x”+8y*+vz*+ut® for
different choices of the not all zero constants «, 8,y and
u.
Case 1. Let the density be e®*”:
In this case, let us consider the Monge hypersurface
M:X(x,y,z) = (x, v,z h(x) + gliy) + m(z))
in Euclidean 4-space with density e Then, this
surface is weighted minimal if and only if
0=h"(0)1A+g'()?*+m'(2)*) +

g"MQA+ 1 (x)?+m'(2)?) +

m"(2)(L+h'(x)* +g' () +

2xh' () (L + R (0)2 + g'(¥)> + m'(2)?) (4.5)
satisfies. Here, by obtaining some special solutions for
the equation (4.5), we’ll construct the weighted minimal

Monge hypersurfaces in E4 with density e®*”.
Firstly, let us take the functions g(y) and m(z) are linear,

ie. gO)=ky+k,m(z) =ksz+k, Then, the
equation (4.5) becomes

h"(1+ (k1)2 + (k3)2) =

—2axh'(1 + (h)* + (k)? + (k3)?). (4.6)

From (4.6), we have
(14 (k)* + (k3)?)
R'(1 4 (h)2 + (ky)? + (k3)?)
h” hllhl _
T T+ 1t ()t (k)

—2ax

—2ax

!

12 1 12 2 2
= (lnlh | - Ell’llh + 1+ (kl) + (k3) |) = —-2ax
Nty
= In
VAD? + 1+ (k)? + (k3)?
h
=
VD2 + 1+ (k)2 + (k3)?
= K = e—(xx2+/125\/(h/)2 +1+ (k1)2 T (k3)2
= h = e—(xx2+/125\/(h/)2 +1+ (k1)2 T (k3)2
= (hr)z — e—Z(xx2+2/125((h/)2 +1+ (kl)z + (k3)2)
1 (k)% + (k)2 e s

\/1 — (e—ax2+/125)2
=h=[ VI T+ (e e =9 +a2s

1_(e—ax2+/125)2

= —ax? + Ay

— e—ax2+/125

= h'

dx . @.7)

Thus,
fo,y,2)=[ W'E_WZfWZMZS d
\/1—(8“""2“1)
kiy+ksz+k,+k,
is a solution of (4.6).
So, we can give the following Theorem:
Theorem 9. The weighted minimal Monge hypersurface

in Euclidean 4-space with density e®** for (a+0)€ER
can be parametrized by

JTH(k)Z+(kg)2.e~ % 425
(k)% +(k3)%.e dx

1_(e—ax2+2125)2

X +

X(x,y,2) =(x,y,2, [

+kyy+ ksz +k, + ky). (4.8)
Secondly, taking the functions h(x) and m(z) are linear,
i.e. h(x) = ksx + kg, m(z) = kyz + k,, from (4.5), we
have
g" (1 + (ks)? + (k3)?)=
—2axks(1+ (g9")?* + (ks)? + (k3)?). 4.9)
The equation (4.9) satisfies for ks = 0 and g” (y) = 0.
Similarly, taking the functions h(x) and g(y) are linear,
i.e. h(x) = ksx + kg, g(y) = kyy + k,, from (4.5), we
have
m" (1 + (ks)* + (ky)*)=
—2axks(1+ (mM")? + (ks)? + (ky)?). (4.10)
The equation (4.10) satisfies for ks = 0 and m''(z) = 0.
So, we get
Theorem 10. The weighted minimal Monge hypersurface

in Euclidean 4-space with linear density e®*” for (a #
0) € R can be parametrized by
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XC,v,2) = (,y,2,kiy + kyz + k),
where k = k, + k, + k.
Case 2. Let the density be efY”:
In this case, let us consider the Monge hypersurface
M:X(x,y,z) = (x,y, z,h(x)+g(y) + m(z))
in Euclidean 4-space with linear density eP¥* . Then, this
surface is weighted minimal if and only if
0=h"()A+g' (> +m (2 +
+9" (A + R (x)? +m'(2)?)
+m"(2) (1 + R ()? + g'()?)
+2Byg' A+ h'()* + g'()?* + m'(2)*)
satisfies. With the same procedure as first case, one can
obtain the following Theorem:

Theorem 11. The weighted minimal Monge hypersurface

in Euclidean 4-space with linear density e?¥” for (8 #
0) € R can be parametrized by

X(x,y,2) = (x,v,2,ksx + ksz + ks + kg +
[ 1+ (k) T+ ()2 e =B +A26 dy) (4.13)

1_(e—ﬁy2+aze)2

(4.11)

4.12)

or
XC,y,2) = (x,y,z, ksx + k3z + k),
where k =k, + k, + kq.
Case 3. Let the density be e??’:
Here, let us consider the Monge hypersurface
M:X(x,y,z) = (x, v,z h(x) + giy) + m(z))
in Euclidean 4-space with linear density e?z* . Then, this
surface is weighted minimal if and only if
0=h"()1+g'(*+m(2)?)

+9" A+ R (x)?+m'(2)?)

+m" (@A +h()*+ g »)?)

+2ym'(2) (L + h'(x)? + g'()* + m'(2)?)
satisfies. Hence, we have
Theorem 12. The weighted minimal Monge hypersurface

in Euclidean 4-space with linear density e¥z” for r #
0) € R can be parametrized by

X, y,z) = (x,y,z, ksx + kiy + k, + k¢
g2
f LT e T T g 1)

1_(e—Y22+127)2

(4.14)

(4.15)

or

X, y,z) = (x,y,z,ksx + kyy + k),
where k =k, + k, + kq.

Case 4. Let the density be e#t”:

In this case, let us consider the Monge hypersurface
M:X(x,y,z) = (x, v,z h(x) + gly) + m(z))

in Euclidean 4-space with linear density e#t”. Then, this
surface is weighted minimal if and only if

2u(h() + g() +m2) A+ ' () + g'M? +m'(2)?)

4.17)
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=h"()A+g'(¥)* +m'(2)?)
+9"()(A + ' (x)* +m'(2)?)
+m"(2)(1 +h'(x)* + g'(¥)?)
satisfies.

4.2. The Constancy of Weighted Gaussian Curvature

of Monge Hypersurfaces in E* with Density
eax2+ﬁy2+yzz+ut2

(4.18)

From (1.11), the weighted Gaussian curvature of the
Monge hypersurface in Euclidean 4-space with density
e +By*+yz*+ut? js optained as

( W' (g m’ (2)- >

2(a+ﬁ+y+u)(1+h'(x)2+g'(y)2+m'(z)2)3/2

K =

P (4.19)

(144 02 +g 012 +m' @2)
So from (4.19), we can state the following Theorem:

Theorem 13. Let M:X(x,y,2) = (x,y,2z h(x) +
gy + m(z)) be a Monge hypersurface in Euclidean 4-
space with density e@x*+By*+rz*+ut* where o, 8,y and
u are not all zero constants. If one of the functions h(x),
9(y) and m(z) is linear and a + B +y + u = —, then
the weighted Gaussian curvature of M is constant .

5. CONCLUSION

Surface theory has an important place in 4-dimensional
spaces as in 3-dimensional spaces. So, in the peresent
study, we consider the Monge hypersurfaces in Euclidean
4-space with different densities and obtain the weighted
minimal and weighted flat Monge hypersurfaces in this
space. We think that, the results which are obtained in
this study are important for differential geometers who
are dealing with weighted surfaces and in the near future,
the results which are stated in this study can be handled
in different four or higher dimensional spaces.
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