
Kastamonu Eğitim Dergisi
Kastamonu Education Journal
Kasım 2019 Cilt:27 Sayı:6
kefdergi.kastamonu.edu.tr

 ⌠Araştırma Makalesi / Research Article⌡

Comparing Three Free to Use Visual Programming Environments for
Novice Programmers

Ücretsiz Üç Görsel Programlama Ortamının İncelenmesi ve
Karşılaştırılması

Kadir Yücel KAYA1, İsmail YILDIZ2

Öz

Bu çalışma popüler ücretsiz üç görsel programlama ortamının incelenmesini ve karşılaştırmasını hedeflemek-
tedir. Bahsedilen üç farklı ortamı diğer ücretsiz ortamlar arasından seçerken ücretsiz, popüler, ve üretken olması
ölçütleri dikkate alınmıştır. Birçok ortam incelendikten sonra MIT App Inventor, Scratch ve Microsoft Kodu Game
Lab seçilmiştir. App Inventor ve Scratch ücretsiz ve açık kaynak kodlu ortamlarken, Microsoft Kodu sadece ücretsiz-
dir. Seçilen üç ortam kullanılarak ve incelenerek araştırılmış, ayrıca araştırma alanyazın taraması ile desteklenmiştir.
Bu çalışmanın sonuçlarının öğretmen, eğitmen ve öğrencilerin ihtiyaçlarına uygun bir görsel programlama ortamı
seçmede yardımcı olabileceği düşünülmektedir. Ortamların incelenmesi, Kodu’nun ilkokul düzeyindeki öğrenciler
için daha uygun olduğu sonucunu ortaya koyarken, Scratch’in hedef kitlesinin benzer fakat daha üst yaş kitlesini
de içerdiğini göstermiştir. Bu ikisi arasındaki diğer bir fark Kodu’nun tek ürünü 3 boyutlu oyunlarken, Scratch 2 bo-
yutlu oyun ve animasyonlar üretebilmektedir. App Inventor ise ortaokul ve daha üst yaş kitlesini hedeflemekte ve
App Inventor’da Android işletim sistemi için mobil uygulamalar geliştirilebilmektedir. Scratch ve App Inventor aynı
blok tabanlı kütüphaneyi kullanmakta ve bu ikisi değişkenler, koşullu ifadeler, ve döngüler gibi temel programlama
kavramlarını öğretmeye daha uygun bulunmuştur. Seçilen üç ortamın kendilerine özel avantajları ve kendi hedef
kitlelerine yönelik özellikleri olduğu görülmüştür. Bu çalışma seçilen ortamların önemli farklılıkları ve özelliklerini
araştırmıştır.

Anahtar Kelimeler: app inventor, görsel programlama, kodu, scratch, ücretsiz programlama ortamları

Abstract

This study aims to examine and compare three popular free-to-use visual programming environments. While
choosing three environments among other visual programming environments, three criteria were taken into ac-
count which are being completely free, popular, and productive. After reviewing several environments, MIT’s App
Inventor, Scratch and Microsoft’s Kodu Game Lab were chosen. While App Inventor and Scratch are free and open
source environments, Microsoft’s Kodu is only free to use. Selected three environments were investigated through
using and examining the environments and literature review. Outcomes of this study can help teachers, instructors
and students to choose a relevant visual programming environment based on their needs. Review of the environ-
ments showed that while Kodu is more relevant for elementary students, Scratch’s target group are similar but also
includes higher age range. Another difference between them was that Kodu’s sole purpose is to develop games in
3D, Scratch is used for 2D games and animations. App Inventor, on the other hand, targets middle school and hig-
her age range to develop mobile applications for Android OS. Scratch and App Inventor uses the same block-based
library which is more relevant to teach basic programming concepts such as variables, conditional expressions, and
loops than Microsoft’s Kodu. Selected three environments have the advantages of their own and features specifi-
cally for their target audience and products. This study investigated the important differences and features of the
selected environments.

Keywords: app inventor, free programming environments, kodu, scratch, visual programming

1. Kastamonu Üniversitesi, Eğitim Fakültesi, Bilgisayar ve Öğretim Teknolojileri Eğitimi Bölümü, Kastamonu, Türkiye; https://orcid.org/0000-0001-7561-980X
2. Kastamonu Üniversitesi, Eğitim Fakültesi, Bilgisayar ve Öğretim Teknolojileri Eğitimi Bölümü, Kastamonu, Türkiye; https://orcid.org/0000-0003-3048-2840
Atıf / Citation: Kaya, K. Y. ve Yıldız, İ. (2019). Comparing Three free to use visual programming environments for novice programmers. Kastamonu Education Journal,

27(6), 2701-2712. doi:10.24106/kefdergi.3640

Başvuru Tarihi/Received: 06.03.2019
Kabul Tarihi/Accepted: 01.04.2019

DOI: 10.24106/kefdergi.3640

2702

|Kastamonu Eğitim Dergisi, 27(6), 2019|

Extended Abstract
Aim : This study aims to examine and compare three popular free-to-use visual programming environment. Th-

rough the examination of visual programming environments, important differences and features were aimed to be
specified.

Methodology : Purpose of this study is to examine and put forward characteristic similarities and differences
of the selected visual programming environments: Scratch, App Inventor, and Kodu. In this study, content analysis
methodology was used to get a detailed insight of the visual programming environments including their categori-
cally separated differences and similarities. In content analysis, researchers create categories and names from the
flow of the data instead of predetermined categories and names. Categories and findings are supported with litera-
ture review. Research question of this study is: What are the key characteristic similarities and differences between
three free visual programming environments?

Findings: After the literature review and examination of the environments some of the key characteristics emer-
ged and dissociated from each environment. Key characteristics includes resources, community and support, on-
line/offline capability, use of programming concepts, product range, and target group. Regarding resources, com-
munity, and support Scratch has the richest resources and community. Scratch is also more advantageous about
the accessibility which is usable through online and offline interface. Additionally, users can reach the products
through a web browser from nearly any modern computer operating system. Two of the important differences
between environments were programming expressions and working logics of programming concepts. While App
Inventor and Scratch uses similar but simpler version of traditional textual programming concepts with visualizati-
on, Kodu uses a different, event-driven only, tile-based programming language. Different than the other two envi-
ronments, programming was made with sequential events through When/Do rules. App Inventor and Scratch used
the same or similar logic with essential programming concepts like variables, conditional statements, and loops.
On the other hand, Kodu uses its own game elements that replaces those concepts. Instead of variables, scores;
instead of conditional statements, when/do statement; instead of loops, timers were used in Kodu. The last found
important difference between the environments are the product types they offer to the users. Kodu is a 3D game
development platform that only allows 3D games with provided game objects. Scratch was also limited to develop
2D games and animations. App Inventor, on the other hand, have a more flexible yet more complex product range
when compared with the others.

Implications and Future Studies : Rather than selecting an environment and hoping for the best, providing
proper guidance and explanation could be crucial for enhancing the learning of non-programmers for essential
programming concepts, especially the complex ones. Our examination showed that three popular visual program-
ming environments are separated based on some characteristics and features. Instructors should be aware that
advantages, disadvantages, and relevance of an environment for the target audience. Studies showed that each
environment has unique properties for a unique audience that could affect the learning outcome of the novice
programmers.

2703

|Kastamonu Eğitim Dergisi, 27(6), 2019|

1. Introduction

Learning textual programming languages such as C++, and Java is proven to be difficult (Dekhane, Xu, & Tsoi, 2013).
Additionally, learning syntax could be one of the barriers that novice programmers face while learning programming.
Winslow (1996) stated that novice programmers know the syntax and meaning of statements but they do not know
how to create program with this knowledge (cited in Robins, Rountree & Rountree, 2003). Novice programmers so-
metimes think programming is the production of program text rather than controlling computer’s actions at runtime
(Sorva, Lönnberg, & Malmi, 2013). Visual programming language is defined as “a programming language that lets users
to create programs by manipulating program elements graphically rather than specifying them textually” (Smutny,
2011, p. 358). Visual programming could solve some of the problems of non-programmers with its easy-to-learn and
intuitive nature by using drag-and-drop interaction (Hsu & Ching, 2013; Hsu, Lou, & Sun, 2016). These programming
environments offer a fun environment for students. (Weintrop & Wilensky, 2017). Immediate visual feedback of the
visual programming environments can enhance the motivation of the computing class students (Dekhane, Xu, & Tsoi,
p. 307). Visual programming can help novice programmers to avoid syntax errors and make programming a more
enjoyable experience (Hsu & Ching, 2013). Focusing on syntax and errors could increase the cognitive load of novice
learners. Students are frequently forgetting to write a semicolon or a parentheses and stuck in the same place without
knowing what to do (Bennedsen & Caspersen, 2012). Spohrer (1989) also suggest use of visual programming especially
for the novices (cited in Robins et al., 2003).

Visual programming languages holds the potential for effectively teaching the programming concepts that stu-
dents have problems. Studies shows that students find essential programming concepts difficult to understand such
as variables, loops, conditionals (Armoni, Meerbaum-Salant, & Ben-Ari, 2015; Guzdial, 2003). Additionally, learning
programming through visual design can reflect integrative, authentic, meaningful and concrete understanding in target
subjects (Baytak & Land. 2010). As the numbers of the visual programming environments are growing bigger, choosing
a relevant programming environment is getting harder. Although the programming environment is not the main focus,
students have to learn one and it plays an important role in the learning process (Mannila et al., 2006). Overcoming
the mistakes and creating error-free programs is a challenge and a struggle for non-majors who are taking introductory
programming courses (Wiedenbeck, 2005). Choosing a relevant programming environment could shorten the steps to
build an error-free program. Starting with a relevant programming environment as important as the other instructional
strategies, since it shapes the perspective of students towards programming and it impacts student-teacher dynamics
(Deek & McHugh, 1998; Felleisen, Findler, Flatt, & Krishnamurthi, 2004). This study sought to find the main differences
between three popular, free to use visual programming environments regarding their capability to present essential
information on programming, their features, and their relevancy for specific audience and purpose.

Visual Programming and Computational thinking

Computational thinking can be considered as a problem-solving toolset that goes beyond information technology
to different thinking styles that include algorithmic and parallel thinking (Yadav, Gretter, Good, & McLean, 2017). Com-
putational thinking “allows students to tackle problems, to break them into solvable chunks, and to devise algorithms
to solve them” (Mueller, Beckett, Hennessey, & Shodiev, 2017, p. 262). By using the non-syntax focused structure of
visual programming environments and the examples connected to real-world could help students embrace the novel
thinking styles. Mannila et al. (2006) discussed that for non-majors concentrating on algorithmic thinking and prog-
ramming is more important than concentrating on programming languages and syntax. To help students to embrace
the computational thinking, it should be provided constantly and through unconscious learning. Rather than defining
the computational thinking and its step, applying it through the development of programs through algorithms and the
steps of computational thinking such as abstraction is more essential for the development of learners (Sadik, Leftwich,
& Nadiruzzaman, 2017). Choosing a relevant environment would help instructors and teachers to apply computational
thinking principles without having to deal with syntax, or problems of the selected environment.

Block-based and Tile-based Programming Environments

Selected three environments in this study were App Inventor, Scratch and Kodu. Reviewing the logic and library of
the environments could be important, since it affects their ability to present certain programming concepts. While
selected Scratch and App-Inventor were block-based programming environments, Kodu was a tile-based programming
environment. Two of the most popular block-based visual programming environments are Scratch and App Inventor.
Both of the environments were developed by MIT. App Inventor and Scratch uses the same block-based programming
library: Blockly. Blockly is defined by Google (2018) as a visual code editor that uses interlocking, graphical blocks to
represent code concepts like variables, logical expressions, loops, and more which allows users to apply programming

2704

|Kastamonu Eğitim Dergisi, 27(6), 2019|

principles without having to worry about syntax.

Block-based programming environments offer a puzzle-like composition environment that helps individuals design
the relationships and process of the logical framework through the interlocking blocks. To perform these steps, the
environment helps the users with visual cues. The user can focus on the logical process instead of language rules and
syntax. Since App Inventor and Scratch uses same library programming interface and logic are very similar in both.
On the other hand, Kodu uses a tile-based programming logic in which actions and events were put in order by user
through the steps into the objects. Kodu is specifically designed for game development and offers special principles
derived from game scenarios. Kodu programming environment saves time for the user since there is no chance to make
mistakes in the language rules. Kodu’s programming interface and logic is entirely event-driven in which programming
is formed by sequential tiles through the events triggered by a condition or an action (Fowler, Fristce, & Maclauren,
2012). Its underlying structure and programming logic is different than the mentioned block-based programming envi-
ronments which will be mentioned in detail in this study.

Scratch

Scratch is an educational programming environment which lets users create interactive media rich projects, created
by MIT-media lab and Yasmin Kafai team from UCLA (Kwon, Yoon, & Lee, 2011; Maloney, Resnick, Rusk, Silverman, &
Eastmond, 2010). Scratch project publicly launched in 2007 and it is growing since then (Maloney et al., 2010). Scratch
is a useful and rich environment for novice programmers and learners. Novice programmers can learn programming
with interest while creating their own games or animations by using Scratch environment (Kwon, Yoon, & Lee, 2011).
Scratch is created mainly for K-12 students (Resnick et al., 2009; Wilson, Hainey, & Connoly, 2012;). Scratch has a site
that includes projects, tutorials, forums etc. Users can get help from other Scratch users and examines each other’s
projects through the Scratch community from the discussion pages. Core audience of the site is children between 8
and 16, however adults also participate to the site (Resnick, et al., 2009). From the release to 2013, more than 3 million
projects of 1.5 million registered members (Meerbaum-Salant, Armoni, & Ben-Ari, 2013) have been uploaded which
are open source and shared with other users. Latest figures showed that it is growing bigger, since in total nearly 39
million projects were shared, and more than 36 million users registered (Scratch 2019).

While creating their programs with Scratch, students also learn creative and systematic thinking, problem solving
skills, mathematical and computational concepts which are parts of computational thinking (Lee, 2011; Resnick, et
al., 2009). Scratch provides an easy to design environment in which user can even make changes while program is
running (Resnick, et al., 2009). In that way, it also encourages users to experiment. Scratch has recognized as a highly
potential first language for first-time programmers (Tangney, Oldham, Conneely, Barrett, & Lawlor, 2010). Mostly used
first example of programming, “Hello world” is just a two-piece puzzle in Scratch environment (Malan & Leitner, 2007).

Studies also show that students also find Scratch as a fun to use environment (Malan & Leitner, 2007; Maloney et al.,
2010). Scratch environment is coherent with the low threshold (easy to learn), high ceiling (ability to create complex pro-
jects) concept (Su, Yang, Hwang, Huang, & Tern, 2013). Wolsz et al. (2009) reported that “after initially learning Scratch,
the students’ transition to Java or C appeared to be easier” (cited in Meerbaum-Salant, Armoni, & Ben-Ari, 2013).

On the negative side some studies showed that Scratch does not always meet the need to be used as a learning tool for
the first step of programming. Maloney et al. (2008) put forward that some of the crucial programming concepts such as va-
riables, boolean logic, and random numbers need to be explained by instructors. Scratch has a very similar interface and logic
with AI. However, Scratch is designed and developed for children at its core and products of it are animations and games.

App Inventor

“MIT App Inventor (AI) is a drag-and-drop visual programming tool for designing and building fully functional mobile
apps for Android” (Pokress & Veiga, 2013, p.1). App Inventor (2013) was created for users without coding experience to
make simple apps for mobile phones which was released in 2010 (Bertea, 2011). According to its own website, App In-
ventor have over 400,000 unique monthly active users who come from 195 countries who have created almost 22 million
apps (MIT App Inventor, 2019). AI has two main components: designer part and blocks editor part (Pokress & Veiga, 2013).
While blocks editor is used for behavior of the application (programming part), designer let the user to design and place
the components to the screen. In designer screen, there are many components to use, including buttons, textboxes, GPS,
Bluetooth, sensors etc. User can just drag and drop those components to the screen and add behaviors to them in the
blocks editor (Bertea, 2011). AI’s blocks editor, on the other hand, focuses on the functionality of the application. Users
can create their applications intuitively without any programming knowledge just by exploring the components (Bertea,
2011; Pokress & Veiga, 2013). Visual cues that AI provides, reduces the chance of errors (Sandoval-Reyes et al., 2011).

2705

|Kastamonu Eğitim Dergisi, 27(6), 2019|

AI makes application development considerably easier than traditional programming language (Smutny, 2011). Smutny
(2011) lists key features of visual language of AI as; (1) has no syntax, (2) based on idea what happens when component
do certain action, (3) no need for a manual - drag and drop, (4) restrict users from making mistakes, (5) concrete, (6) has
a powerful library. Hsu and Ching (2013) states that AI has a great potential for novice programmers to develop apps
even for professional needs. AI could also provide an easy-to-use environment to let teachers to use as a tool to teach
computational thinking. Hsu and Ching (2013) stated that AI motivates students learn programming logic and to engage
in creative problem solving process. App Inventor is also relevant to teach in higher education. In Hsu and Ching’s (2013)
study, participants from higher education defined designing an app with AI as fun and useful. In the same study, even
the participants with programming experience find AI satisfying and incorporate it with Java language. Pokress and Veiga
(2013) states that college and high-school faculty have successfully used AI in their courses over the 4 years. As the advan-
tages, AI has also some disadvantages. One disadvantage of AI is the fact that, while simple applications are easy to make,
complex applications could need deeper knowledge (Bertea, 2011). Additionally, when programs get complicated, block
designer gets annoying as well (Hsu & Ching, 2013). If there was an option to switch from blocks editor to text editor, it
would be more helpful both for control the program and to be a step for advanced programming.

Kodu

Kodu is an easy-to-use visual programming environment that enables children and beginner programmers to de-
sign and construct their own digital games, learn logical thinking and setting ground for more advanced programming
(Nygård, Kolås, & Sigurdardottir, 2016; Stolee & Fristoe, 2011). Kodu is introduced in 2009 by Microsoft as a free game
creation tool especially for young audience which uses a tile-based system instead of codes or blocks (Nygård, Kolås, &
Sigurdardottir, 2016). Unlike Scratch and App Inventor, Kodu is specifically for game creation. Game design is an ideal
context to promote children’s thinking skills which can help them to make critical decisions and develop their prob-
lem-solving skills (Akcaoglu, 2014).

Main difference of Kodu from other two environments is being 3D and comprises some game development tools
like terrain editor, lay out tools, character menus (Arilesere, 2014). Coy (2013) states that Kodu’s being very high-level
language was one of their intentions when designing it to help it become more intuitive. Kodu is more accessible for
visually impaired people since it uses big tiles with large icons and using images as well as words make Kodu also a good
choice for non-English speakers (Coy, 2013). In a study, it is aimed to have an idea about how fourth and fifth grade
students developed their learning skills while learning the Kodu programming and the results showed that students
could read and understand the codes written by others and predict the behavior of the program when they learned the
rules of Kodu programming (Aggarwal & Gardner-McCune, 2018). It shows that tile-based language of Kodu could be
read and understood by others easily which proofs transferability of the easier logic of Kodu environment.

One of the advantage of Kodu to other two environments is the ability to develop 3D games easily and fast. In a
traditional 3D game development environment, it would take vast amount of time (if ever) to develop a functional
game for a novice programmer. However, a 3D game could be developed in just minutes without the extraneous load.
On the other hand, without dealing with the complexity of a 3D game development, users need to follow the rules and
scenarios provided by Kodu and it expects users to do them in certain ways (Kelly, 2013).

2. Methodology

Purpose of this study is to examine and put forward characteristic similarities and differences of the selected visual
programming environments: Scratch, App Inventor, and Kodu. In this study content analysis methodology were used to
get a detailed insight of the visual programming environments including their categorically separated differences and
similarities. In content analysis, researchers create categories and names from the flow of the data instead of prede-
termined categories and names (Hsieh & Shannon, 2005). Content analysis technique is “not restricted to the domain
of textual analysis, but may be applied to other areas” (Stemler, 2001, p. 1). Berg (2001) explained content analysis
as systematic examination and interpretation of particular body of materials to identify patterns, themes, biases, and
meanings. Categories and findings are supported with literature review. Through the content analysis, user interface,
programming logic, documentation, forums, and websites of the selected environments were investigated.

Our criteria to choose the environments were (a) being popular, (b) completely free to use, (c) easy to learn from
scratch, and (d) being able to program completely visual. In the beginning of the study, through the literature review
popular visual programming environments were listed. Among all, 6 programming environments came forward with
their visual only programming interface: Scratch, App Inventor, Alice, Kodu, GameSalad, and GameMaker. Examination
of the official websites of the environments showed that GameSalad and GameMaker are not free environments and

2706

|Kastamonu Eğitim Dergisi, 27(6), 2019|

they were eliminated from this study. Remaining four environments were examined according to their capabilities in
terms of programming capabilities, relevancies, and features. However, first examination demonstrated that Alice nee-
ds learners to know the conceptual programming information that are used in the coding part. Due to this reason Alice
was also excluded from this study.

As the final decision to examine and compare three free visual programming environments were App Inventor,
Scratch and Kodu Game Lab. To understand the environments and their characteristics and features, researchers used
the environment to create basic applications, animations and games. Each environment was examined through using
to develop basic programs, reviewing the documentation, and written information. After using the environments their
capability to teach programming logic was also investigated, and it was tried to be demonstrated with a basic example
in the findings part. Additionally, their categorical differences and unique properties were presented in a table.

Research question of this study is:

What are the key characteristic similarities and differences between three free visual programming environments?

3. Findings

After the literature review and examination of the environments some of the key characteristics emerged and disso-
ciated for each environment. Key characteristics includes resources, community and support, online/offline capability,
use of programming concepts, product range, and target group. These characteristics were examined and compared
among three selected environments. Comparison and characteristics of the environments could help teachers and
students to choose a relevant environment.

Resources, Community and Support

In terms of resources all three environments have enough resource and documentation that could easily be ac-
cessed online. However, when it comes to community and support Scratch is come forward among them. Role of
the discussion groups is crucial for new learners to seek support and find information (Alzahrani, 2017; Liu, Cheng &
Lin, 2013). While App Inventor uses Google Groups as the official discussion group, Scratch and Kodu use their own
forums. Number of topics and posts are not visible in App Inventor’s site, but it could be said that it is currently active
since at the time of writing of this paper there are a number of recent posts. Scratch, on the other hand, has the most
active discussion forum. Scratch has more than 240.000 topics, and 2.7 million posts in its discussion forum. On the
other hand, Kodu’s discussion forum is not very active. It has 375 topics in total, and latest post was made in 2016.
Information suggests that Scratch come forward among three, if novice programmers want to learn programming by
themselves, since the community support and knowledge repository is stronger.

Online and Offline Capability

Another aspect to be compared among three environments is online/offline development capabilities of develop-
ment environments. Having the capability of both offline and online development could be an advantage for different
settings and contexts. When the three visual programing environments was compared, online/offline development
capabilities of each environment was different than others. App Inventor is an online-only development environment,
therefore learners could not reach the development environment without an Internet connection. Users can develop
from any operating system through a modern web browser. Additionally, it was seen that due to Server-based live tes-
ting, projects were getting slower as the applications are getting more complex.

On the other hand, Kodu has an offline-only development environment. Users need to download and install the
setup file to their Windows computers. This restricts users to develop from an online interface. Even though, users can
reach other projects through the website of Kodu, they would need to download and install the Kodu setup file, not
only for editing the project but also for viewing the game.

The most advantageous one among three was Scratch. Since Scratch has both online and offline development interface,
users can develop games or animations through online or offline editor. Users also could view or play the games or anima-
tions through the online or offline interface. Users can also share their games or animations as they do in a social media
website, because Scratch has a social computing network for sharing projects (Meerbaum-Salant, Armoni, & Ben-Ari, 2013).

Use of Programming Concepts

An important part of a programming environment for novice programmers could be seen as the ability to use and
potential to teach essential computer programming concepts. While App Inventor and Scratch uses the same block-based

2707

|Kastamonu Eğitim Dergisi, 27(6), 2019|

programming interface, Kodu uses a different, tile-based, programming language. Since it involves a variable, a conditio-
nal, and a loop, a basic moving character example made with Scratch can be seen in figure 1 below. In the example below
a new variable was defined, after a key event was triggered a sprite was moved 10 times to right with a loop. Animation
was reset after the conditional statement has met. It showed that Scratch has an easy programming interface with fairly
enough programming concepts to be used and learned. A similar example has been tried to be made to compare with
the capability of other environments. Examination of programming concepts in Scratch showed that basic programming
concepts such as variables, conditional statements, loops etc. can be used effectively. Scratch simplified the essential
programming concepts with a colorful interface to provide scaffolding about the categorized differences between them.
However, studies showed that it does not necessarily mean that all programming concepts would be fully understood by
the students. Meerbaum-Salant, Armoni and Ben-Ari (2013) stated that while the post-test scores of students regarding
conditional loops (75%), bounded loops (57.5%), and message passing (62.5%) are acceptable, concepts of variables
(7.5%), initialization (17.5%), and concurrency (7.5%) scores are very low which need explicit instruction.

Figure 1. A sample block programming page from Scratch

A similar example prepared with App Inventor which can be seen in Figure 2 below. Since App Inventor uses the same
library with Scratch the outcome is very resembling. However, App Inventor needs users to add a canvas and an empty
imagesprite to the screen. Additionally, App Inventor has a bit more complex programming logic which resembles tra-
ditional programming languages. In App Inventor, there are not much ready-to-use media as Scratch offers to its users.
Users need to import any media they need and program to the App Inventor for using them in their application. Same
rule applies for the coding part. Each variable needs to be defined, and each event movement need to be made through
the mathematical coordinates. It could be said that App Inventor offers a more complex programming palette to use,
however, it could also be seen more complicated than other two environments by novice programmers. While Scratch
and Kodu could be learned through exploration, App Inventor would need more effort and explanation to be understood.

Figure 2. A sample block programming page from App Inventor

A similar example was made with Kodu, however due to the different nature of Kodu, it was not fully succeeded.
In the example seen below, first tile step was used for movement of the character added to the 3D environment. In
Kodu, users are only able to use “Scores” as the variables. In the second step, variable was incremented by one in each
time user press the right key on the keyboard. At the last step, a conditional statement was used in which when score

2708

|Kastamonu Eğitim Dergisi, 27(6), 2019|

variable equal to or greater than 10, game ends. Even though the aim was to create a similar program, Kodu restricts
us to apply the exact same programming logic. It uses timers as loops, however we could not connect it to change the
coordinate of the character, since it uses paths rather than the coordinates.

Figure 3. A sample tile programming page from Kodu

Stolee and Fristoe (2011) stated that Kodu has many computer science concepts can be taught by through using
Kodu’s entirely event-driven programming logic. “Students compose their programs, organized as sequences of WHEN/
DO rules, by selecting icons from a context-sensitive menu, making syntax errors impossible. Rather than using named
variables, Kodu uses scores, such as the “red score” and the “blue score,” which children intuitively understand from
playing computer games.” (Touretzky, Marghitu, Ludi, Bernstein, & Ni, 2013, p. 610). Kodu uses score as the only
variable which is more challenging to teach variable concept in programming. Stolee and Fristoe (2011) interpreted
the assigning and changing different attributes of an object as a local variable, and elements like score interpreted as
global variable in Kodu. Even though variables could be interpreted as such by a programmer, the information was not
explicitly presented by the environment. Touretzky et al. (2013) also stated that the only conditional statement (When/
Do) in Kodu environment could not replace and provide the logic of the conditional If/Then statement. The best way to
provide information about computer science concepts is to explain and make the connection about them.

Kodu might be relevant as a first step environment to change the attitude of elementary student towards program-
ming positively. Since it does not provide a similar implementation of a traditional programming language, it would not
be helpful to teach all of the programming concepts through a visual programming language.

In addition to programming concepts involved programming architecture of the environments could also affect the
learning and the products of the learners. As it was mentioned before, App Inventor and Scratch uses a block-based
library, and their language offers a simple but flexible language for the users. However, Kodu’s tile-based architecture
restricts the users to assign functions through events by selecting the relevant tile sequentially. After one step comp-
leted, user need to align the next step for the selected object or event. Even though this could be stated as a similarity
with object-oriented programming, it limits the flexibility of the desired product.

Product Range

App Inventor is the most flexible one among three environments in terms of products. In App Inventor users can de-
velop applications ranging from (nearly) any type of Android OS application, to games, or simply animations. It provides
access to phone sensors (orientation, proximity, gyroscope etc.) as well as extensions to be used for Lego Mindstorms.
The main limitation in terms of product range for App Inventor is that products are only for devices with Android OS. It
can be tested in computers through an emulator but the usable products are for Android OS only.

On the other hand, products of Scratch are usable for both Windows, MacOS and mobile operating systems if de-
signed relevantly for mobile devices. However, the products are limited to 2D games and animations. It also supports
extensions such as Lego Mindstorms.

However, with Kodu, users can only develop applications for Kodu. Since Kodu is only available for Windows, and
the products are only usable with Microsoft’s operating system. It limits the potential of reaching to learners who do
not have a Windows PC. Kodu’s products are also limited just with 3D games. Having only 3D games restricts users to
develop with only provided 3D objects, while others uses image sprites that could be replaced or created by the users.

2709

|Kastamonu Eğitim Dergisi, 27(6), 2019|

Target Group

In Kodu’s official website (www.kodugamelab.com), Kodu was explained as a visual programming language that lets
“kids” create games. “Kodu has an uncomplicated visual approach and is easy to master, even at the earliest stages of
grammar school” (Nygård, Kolås, & Sigurdardottir, 2016, p. 416). Kodu’s interface and general design is also found to
be more relevant for elementary school students after examination for this study, because it has a simpler interface,
and limited capability to advance.

Scratch’s simple yet powerful interface could be relevant for a broader audience than Kodu’s. Studies show that it is
suitable for both elementary, and middle school students (Meerbaum-Salant et al., 2013). Scratch’s website (Scratch,
2019) shows that statistically, age of their users are ranged from 8-18 (Figure 4). Even though there are users that re-
gistered at different ages, Scratch’s interface and products are more relevant for children who are between 8-16 years
old. Peak of the graphic consist of the 12 years old registered users which could be seen as an important indicator of
their target group

Figure 4. Ages of Registered Users (Scratch, 2019)

App Inventor has a more diverse target group since it was more flexible in terms of the interface and the product
range. However, for younger audience the interface could be a bit more confusing. Additionally, the interface was not
designed solely for the children. There are a number of studies that used App Inventor used from K-12 to Graduate
school (Hsu & Ching, 2013; Morelli et al. 2011; Wagner, Gray, Corley, & Wolber, 2013), however, our examination
showed that App Inventor would be more relevant for learner in middle school or above.

4. Implications and Future Studies

Rather than selecting an environment and hoping for the best, providing proper guidance and explanation could
be crucial for enhancing the learning of non-programmers for essential programming concepts, especially the complex
ones (Denner, Werner, and Ortiz, 2012). Our examination showed that three popular visual programming environ-
ments are separated based on some characteristics and features (Table 1). Instructors should be aware that advantages
and disadvantages, and relevance of an environment for the target audience.

Table 1. Comparison of the features of Visual Programming Environments

Features App Inventor Scratch Kodu
Online Development Yes Yes No
Offline Development No Yes Yes
Teaching Programming Concepts High-Complex Moderate-Essentials Low-Partial
Programming Architecture Block-Based Block-Based Tile-Based
Programming Structure Drag and Drop Puzzle Pieces Drag and Drop Puzzle Pieces Selectable Stepwise Functions
Extension Support Yes Yes No

2710

|Kastamonu Eğitim Dergisi, 27(6), 2019|

OS Support (Products) Android OS MacOS, Windows, Linux, and
mobile devices

Windows

Sharing Projects Yes Yes Yes
Reaching Source Code Yes Yes Yes (w/ Download)
Target Group K-12 and Higher K-8 K-5
Products Various (exc. 3D) 2D Animation and Games 3D Games
Discussion Forum Active Very Active Not Active
Language Support 12 40 24

This study put forward some similarities and differences of the visual programming environments. Study has shown
that each environment has an advantage of its own. While Kodu could be useful for causing a positive attitude change
towards programming by providing very simple yet very interactive products to the children, Scratch and App Inventor
could be better as a step for textual programming languages. Hsu, Lou, and Sun (2016) also listed some of the limita-
tions of displaying blocks in visual programming languages (1) the readability, (2) the program structure, and (3) the
re-use. Using additional tools to support visual programming can be used to overcome these limitations.

For the future studies an experimental comparison of the three environments could be useful. Additionally, a pra-
ctical implementation following this study could be providing textual programming examples that was provide in the
visual programming environments simultaneously. “Highly scaffolded programming environments offer novices a smo-
other path to early success in computing, but their limited expressiveness must inevitably lead to their abandonment
in favor of more powerful conventional languages.” (Touretzky et al., 2013, p. 609). In future studies, visual program-
ming environments could be tested to make a connection with textual programming to see their suitability as a step
for advanced programming languages. Using CS-Unplugged (Computer Science-Unplugged) activities to support visual
programming languages could be one of the useful strategies to enhance the programming understanding of the stu-
dents as Touretzky et al. (2013) suggested. Effectiveness of visual programming environments could be enhanced with
on-paper activities provided by the instructor.

5. References
Aggarwal, A., Touretsky, D. S., & Gardner-McCune, C. (2018). Demonstrating the Ability of Elementary School Students to Reason

about Programs. In Proceedings of the 49th ACM Technical Symposium on Computer Science Education (pp. 735-740). ACM.
Akcaoglu, M. (2014). Learning problem-solving through making games at the game design and learning summer program. Educa-

tional Technology Research and Development, 62(5), 583–600. http://doi.org/10.1007/s11423-014-9347-4
Arilesere, F. O. (2014). Kodu game lab - a tool for ensuring quality teaching-learning for pupils in primary schools: case study

(school in Northern Finland) (Master’s Thesis). Retrieved from Networked Digital Library of Theses & Dissertations. University
of Oulu, Finland.

Armoni, M., Meerbaum-Salant, O., & Ben-Ari, M. (2015). From Scratch to “Real” Programming. ACM Transactions on Computing
Education, 14(4), 1–15. https://doi.org/10.1145/2677087

Alzahrani, M. G. (2017). The Effect of Using Online Discussion Forums on Students’ Learning. Turkish Online Journal of Educational
Technology-TOJET, 16(1), 164-176.

Bennedsen, J., & Caspersen, M. E. (2012). Persistence of Elementary Programming Skills. Computer Science Education, 22(2), 81-107.
Berg, B. L. (2001). Qualitative research methods for the social sciences. Qualitative Research (Vol. Seventh Ed). https://doi.

org/10.2307/1317652
Bertea, A. F. (2011). Mobile Learning Applications Using Google App Inventor for Android. The International Scientific Conference

eLearning and Software for Education. Bucharest.
Coy, S. (2013). Kodu game lab, a few lessons learned. XRDS: Crossroads, The ACM Magazine for Students, 19(4), 44. http://doi.

org/10.1145/2460436.2460450
Denner, J., Werner, L., & Ortiz, E. (2012). Computer games created by middle school girls: Can they be used to measure un-

derstanding of computer science concepts? Computers and Education, 58(1), 240–249. https://doi.org/10.1016/j.compe-
du.2011.08.006

Deek, F. P., & McHugh, J. A. (1998). A survey and critical analysis of tools for learning programming. Computer Science Education,
8(2), 130–178.

Dekhane, S., Xu, X., & Tsoi, M. Y. (2013). Mobile app development to increase student engagement and problem solving skills.
Journal of Information Systems Education, 24(4), 299–308.

Felleisen, M., Findler, R. B., Flatt, M., & Krishnamurthi, S. (2004). The TeachScheme! Project: Computing and Programming for
Every Student. Computer Science Education, 14(1), 55–77.

2711

|Kastamonu Eğitim Dergisi, 27(6), 2019|

Fowler, A., Fristce, T., & Maclauren, M. (2012). Kodu Game Lab: a programming environment. The Computer Games Journal, 1(1),
17–28. Retrieved from www.computergamesjournal.com

Google, (2018). Introduction to blockly. Retrieved March 3, 2019 from https://developers.google.com/blockly/guides/overview
Hsieh, H.F., & Shannon, S. E. (2005). Three Approaches to Qualitative Content Analysis. Qualitative Health Research, 15(9), 1277-

1288. http://doi.org/10.1177/1049732305276687
Hickmott, D., & Prieto-Rodriguez, E. (2018). To Assess or Not to Assess: Tensions Negotiated in Six Years of Teaching Teachers

about Computational Thinking. Informatics in Education, 17(2), 229-244.
Hsu, Y. C., & Ching, Y.-H. (2013). Mobile App Design for Teaching and Learning: Educators’ Experiences in an Online Graduate

Course. The International Review of Research in Open and Distance Learning, 14(4), 117-139.
Kelly, J. F. (2013). Kodu for Kids: The Official Guide to Creating Your Own Video Games. Que Publishing.
Kwon, D., Yoon, I., & Lee, W. (2011). Design of Programming Learning Process using Hybrid Programming Environment for Com-

puting Education. KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 5(10), 1799-1812.
Lee, Y. J. (2011). Scratch: Multimedia Programming Environment for Young Gifted Learners. Gifted Child Today, 34(2), 26-31.
Liu, E. Z. F., Cheng, S. S., & Lin, C. H. (2013). The effects of using online q&a discussion forums with different characteristics as a

learning resource. The Asia-Pacific Education Researcher, 22(4), 667-675.
Malan, D. J., & Leitner, H. H. (2007). Scratch for Budding Computer Scientists. SIGCSE (pp. 223-227). Kentucky: ACM.
Maloney, J., Peppler, K., Kafai, Y. B., Resnick, M., & Rusk, N. (2008). Programming by Choice: Urban Youth Learning Programming

with Scratch. In SIGCSE ’08 (pp. 367–371). Portland, Oregon, USA.
Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The Scratch Programming Language and Environment.

ACM Transaction on Computing Education, 10(4), 16:1-16:15.
Mannila, L., Peltomäki, M., & Salakoski, T. (2006). What about a simple language? Analyzing the difficulties in learning to program.

Computer Science Education, 16(3), 211–227.
Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2013). Learning Computer Science Concepts with Scratch. Computer Science

Education, 23(3), 239-264.
MIT App Inventor, (2019). About us. Retrieved March 5, 2019 from http://appinventor.mit.edu/explore/about-us.html
Morelli, R., de Lanerolle, T., Lake, P., Limardo, N., Tamotsu, E., & Uche, C. (2011). Can Android App Inventor Bring Computational

Thinking to K-12? In SIGCSE’11. Dallas, Texas, USA.
Mueller, J., Beckett, D., Hennessey, E., & Shodiev, H. (2017). Assessing Computational Thinking Across the Curriculum. In Emerging

Research, Practice, and Policy on Computational Thinking (pp. 251–267). Cham: Springer International Publishing.
Nygård, S., Kolås, L., & Sigurdardottir, H. (2016). Teachers’ Experiences Using KODU as a Teaching Tool. Proceedings of the Euro-

pean Conference on Information Management & Evaluation, 416–422.
Pokress, S. C., & Veiga, J. D. (2013). MIT App Inventor: Enabling Personal Mobile Computing. ACM.
Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., Kafai, Y. (2009). Scratch: Programming for

All. Communications of the ACM, 52(11), 60-67.
Robins, A., Rountree, J., & Rountree, N. (2003). Learning and Teachin Programming: A Review and Discussion. Computer Science

Education, 13(2), 137-172.
Sadik, O., Leftwich, A.-O., & Nadiruzzaman, H. (2017). Computational Thinking Conceptions and Misconceptions: Progression of

Preservice Teacher Thinking During Computer Science Lesson Planning. In Emerging Research, Practice, and Policy on Compu-
tational Thinking (pp. 221–238). Cham: Springer International Publishing.

Sandoval-Reyes, S., Galicia-Galicia, P., & Gutierrez-Sanchez, I. (2011). Visual Learning Environments for Computer Programming.
Electronics, Robotics, and Automotive Mechanics Conference (pp. 439-444). Cuernavaca, Morelos: IEEE Computer Society.

Scratch, (2019). Age Distribution of New Scratchers. Retrieved March 5, 2019 from https://scratch.mit.edu/statistics/
Smutny, P. (2011). Visual Programming for Smartphones. International Carpathian Control Conference, (pp. 358 - 361). Velke Karlovice.
Sorva, J., Lönnberg, J., & Malmi, L. (2013). Students’ Ways of Experiencing Visual Program Simulation. Computer Science Educa-

tion, 23(3), 207-238.
Stemler, Steve (2001). An overview of content analysis. Practical Assessment, Research & Evaluation, 7(17).
Stolee, K. T., & Fristoe, T. (2011). Expressing computer science concepts through Kodu game lab. In Proceedings of the 42nd ACM

technical symposium on Computer science education (pp. 99-104). ACM.
Su, A. Y., Yang, S. J., Hwang, W.-Y., Huang, C. S., & Tern, M.-Y. (2013). Investigating the role of computer-supported annotation

in problem-solving-based teaching: An empirical study of a Scratch programming pedagogy. British Journal of Educational
Technology.

Tangney, B., Oldham, E., Conneely, C., Barrett, S., & Lawlor, J. (2010). Pedagogy and Process for a Computer Programming Outre-
ach Workshop - The Bridge to College Model. IEEE Transactions on Education, 53(1), 53-60.

2712

|Kastamonu Eğitim Dergisi, 27(6), 2019|

Wagner, A., Gray, J., Corley, J., & Wolber, D. (2013). Using app inventor in a K-12 summer camp. Proceeding of the 44th ACM Te-
chnical Symposium on Computer Science Education - SIGCSE ’13, 621. https://doi.org/10.1145/2445196.2445377

Wiedenbeck, S. (2005). Factors affecting the success of non-majors in learning to program. In Proceedings of the 2005 internatio-
nal workshop on Computing education research - ICER ’05 (pp. 13–24). New York, New York, USA: ACM Press.

Wilson, A., Hainey, T., & Connoly, T. (2012). Evaluation of Computer Games Developed by Primary School Children to Gauge Unders-
tanding of Programming Concepts. Proceedings of the European Conference on Games Based Learning, (pp. 549-558). Cork.

Weintrop, D., & Wilensky, U. (2017). Comparing block-based and text-based programming in high school computer science class-
rooms. ACM Transactions on Computing Education (TOCE), 18(1), 3.

Yadav, A., Gretter, S., Hambrusch, S., & Sands, P. (2017). Expanding computer science education in schools: Understanding teacher
experiences and challenges. Computer Science Education, 26(4), 235–254. https://doi.org/10.1080/08993408.2016.1257418

