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Abstract
There are two main motivations in this article. First, we give the new metrics and the metric spaces whose
unit spheres are Rectified Archimedean Solids. Then, using the general technique which is quite simple,
we show that isometry group of R3 endowed with these new metrics are the semi direct product of the
translation group T (3) of R3 with the Euclidean symmetry groups of Rectified Archimedean Solids.
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1. Introduction
The main idea of the geometric group theory is to treat finitely-generated groups as geometric objects. It is

understandable efforts to bring together geometry and algebra. Thus, one can easily analyze the mathematical
system thanks to transformations on this system. The transformation preserve designated features of the geometric
structure. The set of transformations compose the groups consisting of the symmetries of geometric objects. The
symmetry group for a physical object (or polyhedron) is the set of ways that object can be repositioned so that it
maintains its symmetry, or looks the same. Any object of any dimension has such a group of symmetries. The set of
three-dimensional objects called polyhedrons possess many beautiful symmetries and accordingly form interesting
symmetry groups under their rotations. So, the excellent symmetry of the polyhedrons (or solids) have made them
perfect models for the studying on symmetries. A polyhedron is called regular if all its faces are equal and regular
polygons. It is called semi-regular if all its faces are regular polygons and all its vertices are equal. An irregular
polyhedron is defined by polygons that are composed of elements that are not all equal. A regular polyhedron
is called Platonic solid, a semi-regular polyhedron is called Archimedean solid and an irregular polyhedron is
called Catalan solid. Archimedean solids are generally derived from Platonic solids by truncating. In geometry,
any polyhedron is associated with a second dual figure, where the vertices of one correspond to the faces of the
other and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other.
According to this information, a Catalan solid, or Archimedean dual, is a dual polyhedron to an Archimedean solid.
Similarly, rectified Archimedean solids been created by applying the rectify operation to one of the Archimedean
solids.

Polyhedrons have been studied by scientists and artists during many years, because their symmetries are very
interesting [8, 9]. The Platonic Solids have the greatest geometric symmetry of any shapes in existence. If one would
like compare the insights of today’s particle physics with any earlier philosophy, it could be only the philosophy
of Plato, since the particles of today’s physics are representations of symmetry groups – that is what quantum
theory teaches us – and hence the particles resemble the regular Platonic polyhedra [15]. Nowadays, modern
technology and multi-disciplinary studies have confirmed that many nanoparticles take on some Platonic solids
and other convex symmetric polyhedrons. [1], [4], [11], [14]. The classification including physical and chemical
properties of the elements in the nature is made by means of the periodic table well-known. The classification which
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includes physical properties of elementary particles in the sub-atomic world is not made of monotype table or
geometrical patterns. Untill 1960’ s, The question “Is there classification for elementary particles in the sub-atomic
world such as the periodic table in chemistry?” was investigated. There is not the monotype classification which
includes the physical properties (electric charge, mass, spin, etc. ) of elementary particles, but it is known that
different configurations so-called “eightfold way [1], [11]” determines geometrical patterns of elementary particles .
Therefore, convex symmetric polyhedrons and their metric structures which will be studied in the next section of
this article could provide new applications in various studies of the supermultiples based on the physical properties
of elementary particles [11]. In the light of the above, convex symmetric polyhedrons have been observed not only
in physical and geometric group theory studies, but also investigations on medicine, astronomy, architecture, etc...
For examples, Many viruses, such as the HIV, have the shape of a regular icosahedron (see Figure 1).

Figure 1: AIDS virus particle protein shell
https://www.sciencephoto.com/media/248680/view

In the following section, we give the new metrics which unit spheres of R3 furnishing by these metrics are
rectified truncated cube, rectified truncated octahedron, rectified truncated dodecahedron and rectified truncated
icosahedron in the three dimensional analytic space. We know that the set of solutions

P =

(x1, x2, . . . , xn) ∈ Rn :

a11x1 + · · ·+ a1nxn ≤ b1
...

...
...

am1x1 + · · ·+ amnxn ≤ bm


to a system

a11x1 + · · ·+ a1nxn ≤ b1
...

...
...

am1x1 + · · ·+ amnxn ≤ bm

of finitely many lineer inequalities (here aij and bi are real numbers for i = 1, . . . , n and j = 1, . . . ,m) is called
a polyhedron. Furthermore, each the equation ajixi = bj can be considered as the surface plane equations of the
polyhedron. So, the surface plane equations of the polyhedron must be determined to find the metric for any
polyhedron. However, to do this, the following steps are important:

Step 1 : The polyhedrons are placed to have the most appropriate symmetry in the coordinate system. Thus, the
corner points of the polyhedrons will be symmetrically coordinated.

Step 2 : Using the symmetrical corner points, surface plane equations of polyhedrons are found, which equations
of planes will be symmetrical.

Thanks to these two steps, the distance function for the polyedron will provide the axiom of symmetry in the
metric space.

Step 3 : Finally, it should be given general relation including equations of the planes containing faces of
polyhedrons. To ensure the non-negative axiom in the metric space, this general relation must be given with the aid
of the absolute value function.

Consequently, the given general relation will automatically provide the triangular inequality, thanks to these
three steps and because the polyhedron is convex and symmetrical.
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In functional analysis, for a convex symmetric polyhedron given in Rn, it is known that the existence of the
norm whose unit sphere is this convex symmetric polyhedron [17]. But, we do not know how this norm is defined.
In the next section, we give the new metrics in cartesian form which unit spheres of the spaces endowing with
these metrics are Rectified Truncated Cube, Rectified Truncated Octahedron, Rectified Truncated Dodecahedron and Rectified
Truncated Icosahedron, respectively.

2. Some Rectified Archimedean Solids

Rectified Archimedean Solids been created by applying the rectify operation to one of the Archimedean solids.
Rectification is a form of truncation where each vertex is truncated up to the midpoints of the edges meeting at that
vertex. This operation is typically applied to one of the Platonic solids, but it can also be applied to a non-regular
polyhedron as long as the midpoints of the edges meeting at each vertex are coplanar. If the non-regular polyhedron
is convex, then the resulting polyhedron will not intersect itself.

2.1 Rectified Truncated Cube
The rectified truncated cube is a polyhedron. It has 38 faces: 8 equilateral triangles, 24 isosceles triangles, and

6 octagons. Topologically, the triangles corresponding to the cube’s vertices are always equilateral, although the
octagons, while having equal edge lengths, do not have the same edge lengths with the equilateral triangles, having
different but alternating angles, causing the other triangles to be isosceles instead.

Figure 2: Truncated Cube and Rectified Truncated Cube

Corner Points of Rectified Truncated Cube: We will denote the corner points of Rectified Truncated Cube with
vi = (x, y, z) for i = 0, . . . , 35. These corner points can be coordinated as in the following table for c =

√
2/2;

x y z x y z x y z
v0 1 0 1 v12 c c 1 v24 −1 c c
v1 1 0 −1 v13 c c 1 v25 −1 c −c
v2 −1 0 1 v14 c −c 1 v26 −1 −c c
v3 −1 0 −1 v15 c −c 1 v27 −1 −c −c
v4 1 1 0 v16 −c c 1 v28 c 1 c
v5 1 −1 0 v17 −c c 1 v29 c 1 −c
v6 −1 1 0 v18 −c −c 1 v30 c −1 c
v7 −1 −1 0 v19 −c −c 1 v31 c −1 −c
v8 0 1 1 v20 1 c c v32 −c 1 c
v9 0 1 −1 v21 1 c −c v33 −c 1 −c
v10 0 −1 1 v22 1 −c c v34 −c −1 c
v11 0 −1 −1 v23 1 −c −c v35 −c −1 −c

Surface plane equations passing the corner points given above : It is known that the equation of a plane with

nonzero normal vector
−→
N = (A,B,C) in R3 is Ax+By + Cz +D = 0. However, in order to obtain a unit sphere,

D = −1 will be taken. We show that the normal vectors of the plane’s equations passing through the specified
corner points in the following table;. let be λ0 = −1 +

√
2, λ1 = 1/2;
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Corner Points A B C Corner Points A B C
v12, v20, v28 λ0 λ0 λ0 v0, v14, v22 λ1 −λ0λ1 λ1

v13, v29, v21 λ0 λ0 −λ0 v0, v20, v12 λ1 λ0λ1 λ1

v14, v30, v22 λ0 −λ0 λ0 v1, v13, v21 λ1 λ0λ1 −λ1

v15, v23, v31 λ0 −λ0 −λ0 v1, v23, v15 λ1 −λ0λ1 −λ1

v16, v32, v24 −λ0 λ0 λ0 v2, v16, v24 −λ1 λ0λ1 λ1

v17, v25, v33 −λ0 λ0 −λ0 v2, v26, v18 −λ1 −λ0λ1 λ1

v18, v26, v34 −λ0 −λ0 λ0 v3, v19, v27 −λ1 −λ0λ1 −λ1

v19, v35, v27 −λ0 −λ0 −λ0 v3, v25, v17 −λ1 λ0λ1 −λ1

v4, v21, v29 λ1 λ1 −λ0λ1 v8, v12, v28 λ0λ1 λ1 λ1

v4, v28, v20 λ1 λ1 λ0λ1 v8, v32, v16 −λ0λ1 λ1 λ1

v5, v22, v30 λ1 −λ1 λ0λ1 v9, v17, v33 −λ0λ1 λ1 −λ1

v5, v31, v23 λ1 −λ1 −λ0λ1 v9, v29, v13 λ0λ1 λ1 −λ1

v6, v24, v32 −λ1 λ1 λ0λ1 v10, v18, v34 −λ0λ1 −λ1 λ1

v6, v33, v25 −λ1 λ1 −λ0λ1 v10, v30, v14 λ0λ1 −λ1 λ1

v7, v27, v35 −λ1 −λ1 −λ0λ1 v11, v15, v31 λ0λ1 −λ1 −λ1

v7, v34, v26 −λ1 −λ1 λ0λ1 v11, v35, v19 −λ0λ1 −λ1 −λ1

v0, v12, v8, v16, v2, v18, v10, v14 0 0 1 v0, v22, v5, v23, v20, v1, v21, v4 1 0 0
v1, v15, v11, v19, v3, v17, v9, v13 0 0 −1 v2, v24, v6, v25, v3, v27, v7, v26 −1 0 0
v4, v29, v9, v33, v6, v32, v8, v28 0 1 0 v5, v30, v10, v34, v7, v35, v11, v31 0 −1 0

Surface plane equations of Rectified Truncated Cube, which normal vectors given in the above tables, can be
generalized as follows;

λ0 (|x|+ |y|+ |z|) =1, λ1 (|x|+ λ0 |y|+ |z|) =1, |x|=1, |y|=1
λ1 (λ0 |x|+ |y|+ |z|) =1, λ1 (|x|+ |y|+ λ0 |z|) =1, |z|=1

To bound the polyhedron to these planes, the maximum of these general relations (generalized plane equations)
must be taken. Thus, we define the distance function which the unit sphere of analytical space furnishing by this
metric is Rectified Truncated Cube containing all these surface plane equations. This distance function will be
denoted by dRTC.

Definition 2.1. Let X = (x1, y1, z1) and Y = (x2, y2, z2) be any two points in the R3, for brevity, X12 = |x1 − x2|,
Y12 = |y1 − y2| and Z12 = |z1 − z2|. Then dRTC : R3 × R3 → [0,∞) is defined by

dRTC (X,Y ) = max {Fi : i = 1, . . . , 7}

where
F1=λ1 (λ0X12+Y12+Z12) , F3=λ1 (X12+Y12+λ0Z12) , F5=X12, F6 = Y12

F2=λ1 (X12+λ0Y12+Z12) , F4=λ0 (X12+Y12+Z12) , F7 = Z12

such that λ0 = −1 +
√

2, λ1 = 1/2.

2.2 Rectified Truncated Octahedron
The rectified truncated octahedron is a polyhedron. It has 38 faces: 24 isosceles triangles, 6 squares, and 8

hexagons. Topologically, the squares corresponding to the octahedron’s vertices are always regular, although the
hexagons, while having equal edge lengths, do not have the same edge lengths with the squares, having different
but alternating angles, causing the triangles to be isosceles instead.

Figure 3: Truncated Octahedron and Rectified Truncated Octahedron
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Corner Points of Rectified Truncated Octahedron: We will denote the corner points of Rectified Truncated
Octahedron with vi = (x, y, z) for i = 0, . . . , 35. These corner points can be coordinated as in the following table for
c0 = 1/4 and c1 = 3/4;

x y z x y z x y z
v0 c0 c0 1 v12 −1 c0 c0 v24 c1 0 c1
v1 c0 c0 −1 v13 −1 c0 −c0 v25 c1 0 −c1
v2 c0 −c0 1 v14 −1 −c0 c0 v26 −c1 0 c1
v3 c0 −c0 −1 v15 −1 −c0 −c0 v27 −c1 0 −c1
v4 −c0 c0 1 v16 c0 1 c0 v28 c1 c1 0
v5 −c0 c0 −1 v17 c0 1 −c0 v29 c1 −c1 0
v6 −c0 −c0 1 v18 c0 −1 c0 v30 −c1 c1 0
v7 −c0 −c0 −1 v19 c0 −1 −c0 v31 −c1 −c1 0
v8 1 c0 c0 v20 −c0 1 c0 v32 0 c1 c1
v9 1 c0 −c0 v21 −c0 1 −c0 v33 0 c1 −c1
v10 1 −c0 c0 v22 −c0 −1 c0 v34 0 −c1 c1
v11 1 −c0 −c0 v23 −c0 −1 −c0 v35 0 −c1 −c1

The normal vectors
−→
N = (A,B,C) of surface plane equations passing the corner points given above: Let be

λ0 = 2/3, λ1 = 4/9 and λ2 = 8/9;

Corner Points A B C Corner Points A B C
v0, v2, v24 λ1 0 λ2 v12, v14, v26 −λ2 0 λ1

v0, v32, v4 0 λ1 λ2 v12, v30, v13 −λ2 λ1 0
v1, v5, v33 0 λ1 −λ2 v13, v27, v15 −λ2 0 −λ1

v1, v25, v3 λ1 0 −λ2 v14, v15, v31 −λ2 −λ1 0
v2, v6, v34 0 −λ1 λ2 v16, v20, v32 0 λ2 λ1

v3, v35, v7 0 −λ1 −λ2 v16, v28, v17 λ1 λ2 0
v4, v46, v6 −λ1 0 λ2 v17, v33, v21 0 λ2 −λ1

v5, v7, v27 −λ1 0 −λ2 v18, v19, v29 λ1 −λ2 0
v8, v9, v28 λ2 λ1 0 v18, v34, v22 0 −λ2 λ1

v8, v24, v10 λ2 0 λ1 v19, v23, v35 0 −λ2 −λ1

v9, v11, v25 λ2 0 −λ1 v20, v21, v30 −λ1 λ2 0
v10, v29, v11 λ2 −λ1 0 v22, v31, v23 −λ1 −λ2 0
v0, v4, v6, v2 0 0 1 v12, v13, v15, v14 −1 0 0
v1, v3, v7, v5 0 0 −1 v16, v17, v21, v20 0 1 0
v8, v10, v11, v9 1 0 0 v18, v22, v23, v19 0 −1 0

v0, v24, v8, v28, v16, v32 λ0 λ0 λ0 v4, v32, v20, v30, v12, v26 −λ0 λ0 λ0

v1, v33, v17, v28, v9, v25 λ0 λ0 −λ0 v5, v27, v13, v30, v21, v33 −λ0 λ0 −λ0

v2, v34, v18, v29, v10, v24 λ0 −λ0 λ0 v6, v26, v14, v31, v22, v34 −λ0 −λ0 λ0

v3, v25, v11, v29, v19, v35 λ0 −λ0 −λ0 v7, v35, v23, v31, v15, v27 −λ0 −λ0 −λ0

Surface plane equations of Rectified Truncated Octahedron, which normal vectors given in the above tables, can be
generalized as follows;

λ1 |x|+ λ2 |y| = 1, λ1 |y|+ λ2 |x| = 1, λ1 |z|+ λ2 |x| = 1
λ1 |x|+ λ2 |z| = 1, λ1 |y|+ λ2 |z| = 1, λ1 |z|+ λ2 |y| = 1
λ0 (|x|+ |y|+ |z|) = 1, |x| = 1, |y| = 1, |z| = 1,

Thus, we define the distance function which the unit sphere of analytical space furnishing by this metric is Rectified
Truncated Octahedron containing all these surface plane equations. This distance function will be denoted by dRTO.

Definition 2.2. Let X = (x1, y1, z1) and Y = (x2, y2, z2) be any two points in the R3, for brevity, X12 = |x1 − x2|,
Y12 = |y1 − y2| and Z12 = |z1 − z2|. Then dRTO : R3 × R3 → [0,∞) is defined by

dRTO (X,Y ) = max {Fi : i = 1, . . . , 10}
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where

F1 = λ1X12 + λ2Y12 F3 = λ1Y12 + λ2X12 F5 = λ1Z12 + λ2X12

F2 = λ1X12 + λ2Z12 F4 = λ1Y12 + λ2Z12 F6 = λ1Z12 + λ2Y12

F7 = λ0 (X12 + Y12 + Z12) F8 = X12, F9 = Y12, F10 = Z12

such that λ0 = 2/3, λ1 = 4/9 and λ2 = 8/9.

2.3 Rectified Truncated Dodecahedron

The rectified truncated dodecahedron is a polyhedron. It has 92 faces: 20 equilateral triangles, 60 isosceles
triangles, and 12 decagons. Topologically, the triangles corresponding to the dodecahedrons’s vertices are always
equilateral, although the decagons, while having equal edge lengths, do not have the same edge lengths with the
equilateral triangles, having different but alternating angles, causing the other triangles to be isosceles instead.

Figure 4: Truncated Dodecahedron and Rectified Truncated Dodecahedron

Corner Points of Rectified Truncated Dodecahedron: We will denote the corner points of Rectified Truncated
Dodecahedron with vi = (x, y, z) for i = 0, . . . , 89. These corner points can be coordinated as in the following table

for c0 =
−1 +

√
5

4
, c1 =

√
5

5
, c2 =

1

2
, c3 =

5 + 3
√

5

20
, c4 =

15−
√

5

20
, c5 =

1 +
√

5

4
, c6 =

2
√

5

5
, c7 =

5 + 2
√

5

10
, c8 = 1

and c9 =
−5 + 3

√
5

20
;

x y z x y z x y z
v0 0 0 c8 v15 c7 c9 −c0 v30 0 c1 c6
v1 0 0 −c8 v16 c7 −c9 c0 v31 0 c1 −c6
v2 c8 0 0 v17 c7 −c9 −c0 v32 0 −c1 c6
v3 −c8 0 0 v18 −c7 c9 c0 v33 0 −c1 −c6
v4 0 c8 0 v19 −c7 c9 −c0 v34 c6 0 c1
v5 0 −c8 0 v20 −c7 −c9 c0 v35 c6 0 −c1
v6 c9 c0 c7 v21 −c7 −c9 −c0 v36 −c6 0 c1
v7 c9 c0 −c7 v22 c0 c7 c9 v37 −c6 0 −c1
v8 c9 −c0 c7 v23 c0 c7 −c9 v38 c1 c6 0
v9 c9 −c0 −c7 v24 c0 −c7 c9 v39 c1 −c6 0
v10 −c9 c0 c7 v25 c0 −c7 −c9 v40 −c1 c6 0
v11 −c9 c0 −c7 v26 −c0 c7 c9 v41 −c1 −c6 0
v12 −c9 −c0 c7 v27 −c0 c7 −c9 v42 c0 c2 c5
v13 −c9 −c0 −c7 v28 −c0 −c7 c9 v43 c0 c2 −c5
v14 c7 c9 c0 v29 −c0 −c7 −c9 v44 c0 −c2 c5
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x y z x y z x y z
v45 c0 −c2 −c5 v60 c2 −c5 c0 v75 c4 c3 −c2
v46 −c0 c2 c5 v61 c2 −c5 −c0 v76 c4 −c3 c2
v47 −c0 c2 −c5 v62 −c2 c5 c0 v77 c4 −c3 −c2
v48 −c0 −c2 c5 v63 −c2 c5 −c0 v78 −c4 c3 c2
v49 −c0 −c2 −c5 v64 −c2 −c5 c0 v79 −c4 c3 −c2
v50 c5 c0 c2 v65 −c2 −c5 −c0 v80 −c4 −c3 c2
v51 c5 c0 −c2 v66 c3 c2 c4 v81 −c4 −c3 −c2
v52 c5 −c0 c2 v67 c3 c2 −c4 v82 c2 c4 c3
v53 c5 −c0 −c2 v68 c3 −c2 c4 v83 c2 c4 −c3
v54 −c5 c0 c2 v69 c3 −c2 −c4 v84 c2 −c4 c3
v55 −c5 c0 −c2 v70 −c3 c2 c4 v85 c2 −c4 −c3
v56 −c5 −c0 c2 v71 −c3 c2 −c4 v86 −c2 c4 c3
v57 −c5 −c0 −c2 v72 −c3 −c2 c4 v87 −c2 c4 −c3
v58 c2 c5 c0 v73 −c3 −c2 −c4 v88 −c2 −c4 c3
v59 c2 c5 −c0 v74 c4 c3 c2 v89 −c2 −c4 −c3

The normal vectors
−→
N = (A,B,C) of surface plane equations passing the corner points given above: Let be

λ0 =
−1 +

√
5

2
, λ1 =

−5 + 3
√

5

10
, λ2 =

−5 + 4
√

5

11
, λ3 =

5 + 7
√

5

22
, λ4 =

15−
√

5

22
, λ5 =

√
5

5
, λ6 =

2
√

5

5
,

λ7 =
5−
√

5

5
and λ8 =

5 +
√

5

10
;

Corner Points A B C Corner Points A B C
v0, v8, v44, v68, v52

v34, v50, v66, v42, v6
λ0 0 1

v3, v18, v54, v78, v62

v40, v63, v79, v55, v19
−1 λ0 0

v0, v10, v46, v70, v54

v36, v56, v72, v48, v12
−λ0 0 1

v3, v21, v57, v81, v65

v41, v64, v80, v56, v20
−1 −λ0 0

v1, v7, v43, v67, v51

v35, v53, v69, v45, v9
λ0 0 −1

v4, v23, v59, v83, v43

v31, v47, v87, v63, v27
0 1 −λ0

v1, v13, v49, v73, v57

v37, v55, v71, v47, v11
−λ0 0 −1

v4, v26, v62, v86, v46

v30, v42, v82, v58, v22
0 1 λ0

v2, v15, v51, v75, v59

v38, v58, v74, v50, v14
1 λ0 0

v5, v24, v60, v84, v44

v32, v48, v88, v64, v28
0 −1 λ0

v2, v16, v52, v76, v60

v39, v61, v77, v53, v17
1 −λ0 0

v5, v29, v65, v89, v49

v33, v45, v85, v61, v25
0 −1 −λ0

v0, v6, v10 0 λ1 1 v3, v19, v21 −1 0 −λ1

v0, v12, v8 0 −λ1 1 v3, v20, v18 −1 0 λ1

v1, v9, v13 0 −λ1 −1 v4, v22, v23 λ1 1 0
v1, v11, v7 0 λ1 −1 v4, v27, v26 −λ1 1 0
v2, v14, v16 1 0 λ1 v5, v25, v24 λ1 −1 0
v2, v17, v15 1 0 −λ1 v5, v28, v29 −λ1 −1 0
v6, v30, v10 0 λ2 λ3 v18, v20, v36 −λ3 0 λ2

v7, v11, v31 0 λ2 −λ3 v19, v21, v37 −λ3 0 −λ2

v8, v12, v32 0 −λ2 λ3 v22, v38, v23 λ2 λ3 0
v9, v13, v33 0 −λ2 −λ3 v24, v25, v39 λ2 −λ3 0
v14, v16, v34 λ3 0 λ2 v26, v27, v40 −λ2 λ3 0
v15, v17, v35 λ3 0 −λ2 v28, v41, v29 −λ2 −λ3 0
v66, v74, v82 −λ4 −λ4 −λ4 v70, v86, v78 λ4 −λ4 −λ4

v67, v83, v75 −λ4 −λ4 λ4 v71, v79, v87 λ4 −λ4 λ4

v68, v84, v76 −λ4 λ4 −λ4 v72, v80, v88 λ4 λ4 −λ4

v69, v77, v85 −λ4 λ4 λ4 v73, v89, v81 λ4 λ4 λ4
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Corner Points A B C Corner Points A B C
v6, v42, v30 λ1 λ5 λ6 v18, v36, v54 −λ6 λ1 λ5

v7, v43, v31 λ1 λ5 −λ6 v19, v55, v37 −λ6 λ1 −λ5

v8, v32, v44 λ1 −λ5 λ6 v20, v56, v36 −λ6 −λ1 λ5

v9, v45, v33 λ1 −λ5 −λ6 v21, v37, v57 −λ6 −λ1 −λ5

v10, v30, v46 −λ1 λ5 λ6 v22, v58, v38 λ5 λ6 λ1

v11, v47, v31 −λ1 λ5 −λ6 v23, v38, v59 λ5 λ6 −λ1

v12, v48, v32 −λ1 −λ5 λ6 v24, v39, v60 λ5 −λ6 λ1

v13, v33, v49 −λ1 −λ5 −λ6 v25, v61, v39 λ5 −λ6 −λ1

v14, v50, v34 λ6 λ1 λ5 v26, v40, v62 −λ5 λ6 λ1

v15, v35, v51 λ6 λ1 −λ5 v27, v63, v40 −λ5 λ6 −λ1

v16, v34, v52 λ6 −λ1 λ5 v28, v64, v41 −λ5 −λ6 λ1

v17, v53, v35 λ6 −λ1 −λ5 v29, v41, v65 −λ5 −λ6 −λ1

v42, v66, v82 λ5 −λ7 λ8 v54, v70, v78 −λ8 λ5 −λ7

v43, v83, v67 λ5 −λ7 −λ8 v55, v79, v71 −λ8 λ5 λ7

v44, v84, v68 λ5 λ7 λ8 v56, v80, v72 −λ8 −λ5 −λ7

v45, v69, v85 λ5 λ7 −λ8 v57, v73, v81 −λ8 −λ5 λ7

v46, v86, v70 −λ5 −λ7 λ8 v58, v82, v74 −λ7 λ8 λ5

v47, v71, v87 −λ5 −λ7 −λ8 v59, v75, v83 −λ7 λ8 −λ5

v48, v72, v88 −λ5 λ7 λ8 v60, v76, v84 −λ7 −λ8 λ5

v49, v89, v73 −λ5 λ7 −λ8 v61, v85, v77 −λ7 −λ8 −λ5

v50, v74, v66 λ8 λ5 −λ7 v62, v78, v86 λ7 λ8 λ5

v51, v67, v75 λ8 λ5 λ7 v63, v87, v79 λ7 λ8 −λ5

v52, v68, v76 λ8 −λ5 −λ7 v64, v88, v80 λ7 −λ8 λ5

v53, v77, v69 λ8 −λ5 λ7 v65, v81, v89 λ7 −λ8 −λ5

Surface plane equations of Rectified Truncated Dodecahedron, which normal vectors given in the above tables, can be
generalized as follows;

λ0 |x|+ |z| = 1, λ1 |x|+ |y| = 1, λ2 |x|+ λ3 |y| = 1
λ0 |y|+ |x| = 1, λ1 |y|+ |z| = 1, λ2 |y|+ λ3 |z| = 1
λ0 |z|+ |y| = 1, λ1 |z|+ |x| = 1, λ2 |z|+ λ3 |x| = 1
λ1 |x|+ λ5 |y|+ λ6 |z|=1, λ1 |y|+ λ5 |z|+ λ6 |x|=1, λ1 |z|+ λ5 |x|+ λ6 |y|=1
λ8 |x|+ λ7 |z|+ λ5 |y|=1, λ8 |z|+ λ7 |x|+ λ5 |y|=1, λ8 |z|+ λ7 |y|+ λ5 |x|=1
λ4 |x|+ λ4 |y|+ λ4 |z|=1

Thus, we define the distance function which the unit sphere of analytical space furnishing by this metric is Rectified
Truncated Dodecahedron containing all these surface plane equations. This distance function will be denoted by
dRTD.

Definition 2.3. Let X = (x1, y1, z1) and Y = (x2, y2, z2) be any two points in the R3, for brevity, X12 = |x1 − x2|,
Y12 = |y1 − y2| and Z12 = |z1 − z2|. Then dRTD : R3 × R3 → [0,∞) is defined by

dRTD (X,Y ) = max {Fi : i = 1, . . . , 16}

where

F1=λ0X12 + Z12, F4=λ1X12 + Y12, F7=λ2X12 + λ3Y12

F2=λ0Y12 + X12, F5=λ1Y12 + Z12, F8=λ2Y12 + λ3Z12

F3=λ0Z12 + Y12, F6=λ1Z12 + X12, F9=λ2Z12 + λ3X12

F10=λ4X12 + λ4Y12 + λ4Z12, F13=λ1Z12 + λ5X12 + λ6Y12, F16=λ8Z12+λ7Y12+λ5X12

F11=λ1X12 + λ5Y12 + λ6Z12, F14=λ8X12 + λ7Z12 + λ5Y12,
F12=λ1Y12 + λ5Z12 + λ6X12, F15=λ8Y12 + λ7X12 + λ5Z12,
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2.4 Rectified Truncated Icosahedron
The rectified truncated icosahedron is a polyhedron. It has 92 faces: 60 isosceles triangles, 12 regular pentagons,

and 20 regular hexagons. It is constructed as a rectified truncated icosahedron, rectification truncating vertices
down to mid-edges. As a near-miss Johnson solid, under icosahedral symmetry, the pentagons are always regular,
although the hexagons, while having equal edge lengths, do not have the same edge lengths with the pentagons,
having slightly different but alternating angles, causing the triangles to be isosceles instead.

Figure 5: Truncated Icosahedron and Rectified Truncated Icosahedron

Corner Points of Rectified Truncated Icosahedron: Let c0=
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any corner point of Rectified Truncated

Icosahedron be vi = (x, y, z) for i = 0, . . . , 89;

x y z x y z x y z
v0 0 0 1 v15 c6 c1 −c7 v30 c1 c8 c5
v1 0 0 −1 v16 c6 −c1 c7 v31 c1 c8 −c5
v2 1 0 0 v17 c6 −c1 −c7 v32 c1 −c8 c5
v3 −1 0 0 v18 −c6 c1 c7 v33 c1 −c8 −c5
v4 0 1 0 v19 −c6 c1 −c7 v34 −c1 c8 c5
v5 0 −1 0 v20 −c6 −c1 c7 v35 −c1 c8 −c5
v6 c1 c7 c6 v21 −c6 −c1 −c7 v36 −c1 −c8 c5
v7 c1 c7 −c6 v22 c7 c6 c1 v37 −c1 −c8 −c5
v8 c1 −c7 c6 v23 c7 c6 −c1 v38 c5 c1 c8
v9 c1 −c7 −c6 v24 c7 −c6 c1 v39 c5 c1 −c8
v10 −c1 c7 c6 v25 c7 −c6 −c1 v40 c5 −c1 c8
v11 −c1 c7 −c6 v26 −c7 c6 c1 v41 c5 −c1 −c8
v12 −c1 −c7 c6 v27 −c7 c6 −c1 v42 −c5 c1 c8
v13 −c1 −c7 −c6 v28 −c7 −c6 c1 v43 −c5 c1 −c8
v14 c6 c1 c7 v29 −c7 −c6 −c1 v44 −c5 −c1 c8
v45 −c5 −c1 −c8 v60 −c2 −c0 c4 v75 −c0 c4 −c2
v46 c8 c5 c1 v61 −c2 −c0 −c4 v76 −c0 −c4 c2
v47 c8 c5 −c1 v62 c4 c2 c0 v77 −c0 −c4 −c2
v48 c8 −c5 c1 v63 c4 c2 −c0 v78 0 c9 c3
v49 c8 −c5 −c1 v64 c4 −c2 c0 v79 0 c9 −c3
v50 −c8 c5 c1 v65 c4 −c2 −c0 v80 0 −c9 c3
v51 −c8 c5 −c1 v66 −c4 c2 c0 v81 0 −c9 −c3
v52 −c8 −c5 c1 v67 −c4 c2 −c0 v82 c3 0 c9
v53 −c8 −c5 −c1 v68 −c4 −c2 c0 v83 c3 0 −c9
v54 c2 c0 c4 v69 −c4 −c2 −c0 v84 −c3 0 c9
v55 c2 c0 −c4 v70 c0 c4 c2 v85 −c3 0 −c9
v56 c2 −c0 c4 v71 c0 c4 −c2 v86 c9 c3 0
v57 c2 −c0 −c4 v72 c0 −c4 c2 v87 c9 −c3 0
v58 −c2 c0 c4 v73 c0 −c4 −c2 v88 −c9 c3 0
v59 −c2 c0 −c4 v74 −c0 c4 c2 v89 −c9 −c3 0

The normal vectors
−→
N = (A,B,C) of surface plane equations passing the corner points given above: Let be
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Corner Points A B C Corner Points A B C
v78, v34, v10, v0, v6, v30 0 λ1 1 v84, v42, v18, v3, v20, v44 −1 0 λ1

v79, v31, v7, v1, v11, v35 0 λ1 −1 v85, v45, v21, v3, v19, v43 −1 0 −λ1

v80, v32, v8, v0, v12, v36 0 −λ1 1 v86, v47, v23, v4, v22, v46 λ1 1 0
v81, v37, v13, v1, v9, v33 0 −λ1 −1 v87, v48, v24, v5, v25, v49 λ1 −1 0
v82, v40, v16, v2, v14, v38 1 0 λ1 v88, v50, v26, v4, v27, v51 −λ1 1 0
v83, v39, v15, v2, v17, v41 1 0 −λ1 v89, v53, v29, v5, v28, v52 −λ1 −1 0

v0, v8, v6 λ0 0 1 v3, v18, v19 −1 λ0 0
v0, v10, v12 −λ0 0 1 v3, v21, v20 −1 −λ0 0
v1, v7, v9 λ0 0 −1 v4, v23, v27 0 1 −λ0

v1, v13, v11 −λ0 0 −1 v4, v26, v22 0 1 λ0

v2, v15, v14 1 λ0 0 v5, v24, v28 0 −1 λ0

v2, v16, v17 1 −λ0 0 v5, v29, v25 0 −1 −λ0

v70, v30, v54, v38, v62, v46 λ2 λ2 λ2 v74, v50, v66, v42, v58, v34 −λ2 λ2 λ2

v71, v47, v63, v39, v55, v31 λ2 λ2 −λ2 v75, v35, v59, v43, v67, v51 −λ2 λ2 −λ2

v72, v48, v64, v40, v56, v32 λ2 −λ2 λ2 v76, v36, v60, v44, v68, v52 −λ2 −λ2 λ2

v73, v33, v57, v41, v65, v49 λ2 −λ2 −λ2 v77, v53, v69, v45, v61, v37 −λ2 −λ2 −λ2

v78, v70, v22, v26, v74 0 λ3 λ4 v84, v60, v12, v10, v58 −λ4 0 λ3

v79, v75, v27, v23, v71 0 λ3 −λ4 v85, v59, v11, v13, v61 −λ4 0 −λ3

v80, v76, v28, v24, v72 0 −λ3 λ4 v86, v62, v14, v15, v63 λ3 λ4 0
v81, v73, v25, v29, v77 0 −λ3 −λ4 v87, v65, v17, v16, v64 λ3 −λ4 0
v82, v54, v6, v8, v56 λ4 0 λ3 v88, v67, v19, v18, v66 −λ3 λ4 0
v83, v57, v9, v7, v55 λ4 0 −λ3 v89, v68, v20, v21, v69 −λ3 −λ4 0

v30, v6, v54 2λ0 λ5 λ6 v30, v70, v78 λ0 2λ5 λ7

v31, v55, v7 2λ0 λ5 −λ6 v31, v79, v71 λ0 2λ5 −λ7

v32, v56, v8 2λ0 −λ5 λ6 v32, v80, v72 λ0 −2λ5 λ7

v33, v9, v57 2λ0 −λ5 −λ6 v33, v73, v81 λ0 −2λ5 −λ7

v34, v58, v10 −2λ0 −λ5 λ6 v34, v78, v74 −λ0 2λ5 λ7

v35, v11, v59 −2λ0 λ5 −λ6 v35, v75, v79 −λ0 2λ5 −λ7

v36, v12, v60 −2λ0 −λ5 λ6 v36, v76, v80 −λ0 −2λ5 λ7

v37, v61, v13 −2λ0 −λ5 −λ6 v37, v81, v77 −λ0 −2λ5 −λ7

v38, v14, v62 λ6 2λ0 λ5 v38, v54, v82 λ7 λ0 2λ5

v39, v63, v15 λ6 2λ0 −λ5 v39, v83, v55 λ7 λ0 −2λ5

v40, v64, v16 λ6 −2λ0 λ5 v40, v82, v56 λ7 −λ0 2λ5

v41, v17, v65 λ6 −2λ0 −λ5 v41, v57, v83 λ7 −λ0 −2λ5

v42, v66, v18 −λ6 2λ0 λ5 v42, v84, v58 −λ7 λ0 2λ5

v43, v19, v67 −λ6 2λ0 −λ5 v43, v59, v85 −λ7 λ0 −2λ5

v44, v20, v68 −λ6 −2λ0 λ5 v44, v60, v84 −λ7 −λ0 2λ5

v45, v69, v21 −λ6 −2λ0 −λ5 v45, v85, v61 −λ7 −λ0 −2λ5

v46, v22, v70 λ5 λ6 2λ0 v46, v62, v86 2λ5 λ7 λ0

v47, v71, v23 λ5 λ6 −2λ0 v47, v86, v63 2λ5 λ7 −λ0

v48, v72, v24 λ5 −λ6 2λ0 v48, v87, v64 2λ5 −λ7 λ0

v49, v25, v73 λ5 −λ6 −2λ0 v49, v65, v87 2λ5 −λ7 −λ0

v50, v74, v26 −λ5 λ6 2λ0 v50, v88, v66 −2λ5 λ7 λ0

v51, v27, v75 −λ5 λ6 −2λ0 v51, v67, v88 −2λ5 λ7 −λ0

v52, v28, v76 −λ5 −λ6 2λ0 v52, v68, v89 −2λ5 −λ7 λ0

v53, v77, v29 −λ5 −λ6 −2λ0 v53, v89, v69 −2λ5 −λ7 −λ0

Surface plane equations of Rectified Truncated Icosahedron, which normal vectors given in the above tables, can be
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generalized as follows;

λ0 |x|+ |z| = 1, λ1 |x|+ |y| = 1, λ3 |x|+ λ4 |y| = 1
λ0 |y|+ |x| = 1, λ1 |y|+ |z| = 1, λ3 |y|+ λ4 |z| = 1
λ0 |z|+ |y| = 1, λ1 |z|+ |x| = 1, λ3 |z|+ λ4 |x| = 1
λ2 (|x|+ |y|+ |z|) = 1, 2λ0 |z|+ λ5 |x|+ λ6 |y| = 1, λ0 |z|+2λ5 |x|+λ7 |y|=1
2λ0 |x|+ λ5 |y|+ λ6 |z| = 1, λ0 |x|+ 2λ5 |y|+ λ7 |z| = 1,
2λ0 |y|+ λ5 |z|+ λ6 |x| = 1, λ0 |y|+ 2λ5 |z|+ λ7 |x| = 1,

Thus, we define the distance function which the unit sphere of analytical space furnishing by this metric is Rectified
Truncated Icosahedron containing all these surface plane equations. This distance function will be denoted by dRTI.

Definition 2.4. Let X = (x1, y1, z1) and Y = (x2, y2, z2) be any two points in the R3, for brevity, X12 = |x1 − x2|,
Y12 = |y1 − y2| and Z12 = |z1 − z2|. Then dRTI : R3 × R3 → [0,∞) is defined by

dRTI (X,Y ) = max {Fi : i = 1, . . . , 16}

where

F1=λ0X12+Z12, F4=λ1X12+Y12, F7=λ3X12+λ4Y12

F2=λ0Y12+X12, F5=λ1Y12+Z12, F8=λ3Y12+λ4Z12

F3=λ0Z12+Y12, F6=λ1Z12+X12, F9=λ3Z12+λ4X12

F10=λ2 (X12+Y12+Z12) , F13=2λ0Z12+λ5X12+λ6Y12, F16=λ0Z12+2λ5X12+λ7Y12

F11=2λ0X12+λ5Y12+λ6Z12, F14=λ0X12+2λ5Y12vλ7Z12,
F12=2λ0Y12+λ5Z12+λ6X12, F15=λ0Y12+2λ5Z12+λ7X12,

such that λ0 =
−1 +

√
5

6
, λ1 =

3−
√

5

2
, λ2 =

−1 +
√

5

2
, λ3 =

27 + 3
√

5

38
, λ4 =

−3 + 6
√

5

19
, λ5 =

1

3
, λ6 =

3 +
√

5

6

and λ7 =

√
5

3
.

3. Isometric group of the space R3 according to different metrics

For the sake of simple, R3 fullfiled by the metrics dRTC, dRTO, dRTD and dRTI is denoted R3
RTC, R3

RTO, R3
RTD

and R3
RTI, respectively, in the rest of the article. Linear structure of these spaces is the same as three dimensional

Euclidean space, only the distance function is different.
In this section, we want to answer the question : " What are the isometry groups of the spaces R3

RTC, R3
RTO, R3

RTD

and R3
RTI, but we know from the theorem 12 in the reference [13] that if the unit ball C of (V, ‖·‖) does not intersect

a two-plane in an ellipse, then the group I (3) of isometries of (V, ‖·‖) is isomorphic to the semi-direct product of
the translation group T (3) of R3 with a finite subgroup of the group of linear transformations with determinant ±1.
After this theorem remains a single question. This question is that what is the relevant subgroup?

At the end of this section, we are going to show isometry groups of the spaces R3
RTC, R3

RTO, R3
RTD and R3

RTI

are the semi direct product of " Euclidean symmetry groups of Rectified Archimedean Solids " and " all Euclidean
translations of R3 ". Euclidean symmetry group of Rectifed truncated cube and octahedron is the octahedral group
Oh which is the group of symmetries of the cube and octahedron having order 48. Similarly, Euclidean symmetry
group of Rectifed truncated dodecahedron and icosahedron is the icosahedral group Ih which is the group of
symmetries of the dodecahedron and icosahedron having order 120. Generally, Oh and Ih consist of identity,
reflections, rotations, inversion, rotary reflections and rotary inversions (see details [5], [6], [7], [16]). Before we give
isometries of the spaces R3

RTC, R3
RTO, R3

RTD and R3
RTI, we briefly introduce elements of the sets Oh and Ih.

A transformation is any function mapping a set to itself in R3. A figure in R3 is any subset of R3. An isometry
of the spaces R3

RTC, R3
RTO, R3

RTD and R3
RTI is a transformation from R3 onto R3 that preserves distance. This

means d(X,Y ) = d(α(X), α(Y )) for each points X and Y in the spaces R3
RTC, R3

RTO, R3
RTD and R3

RTI, where α is
a transformation on these spaces. A symmetry of a figure F in R3 is an isometry mapping F onto itself—that is,
an isometry f : R3 → R3 such that f(F ) = F . The identity function I is a transformation is given I(X) = X for
each point X in R3. If ∆ represents a plane, then the reflection σ∆ across the plane ∆ fixes every point on ∆, and
takes every point X not on ∆ to Y , where ∆ is the perpendicular bisector of X and Y . A rotation is an isometric
transformation which can be written as the composition of two distinc reflections. That is, a rotation about axis l is
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defined by σ∆σΓ where two planes Γ and ∆ intersect at line l. A rotary reflection is an transformation which is the
combination of a rotation about an axis and a reflection in a plane. That is, a rotary reflection is defined by σΠσ∆σΓ

such that Γ and ∆ are two intersecting planes each perpendicular to plane Π. A inversion according to a point P
can be written as the σP (X) = Y such that P is the midpoint of X and Y for X , Y ∈ R3. Rotary inversion is the
combination of a rotation and an inversion in a point.

Definition 3.1. Let A and B be points in Rn
d. The minimum distance set of A, B is denoted by [AB]d and is defined

by
[AB]d = {X ∈ Rn : d (A,X) + d (X,B) = d (A,B)} ,

where d is the metric defined in Rn.

If the d metric is taken dRTC , then the minimum distance set [AB]dRTC
is an octagonal dipyramid (see Figure

6-b),
If the d metric is taken dRTO , then the minimum distance set [AB]dRTO

is a hexagonal dipyramid (see Figure
6-a),

If the d metric is taken dRTD , then the minimum distance set [AB]dRTD
is a decagonal dipyramid (see Figure

6-c),
If the d metric is taken dRTI , then the minimum distance set [AB]dRTI

is a hexagonal dipyramid (see Figure
6-a).

a b c
Figure 6

Theorem 3.1. If the function φ : R3
d → R3

d is an isometry, then

φ ([AB]d) = [φ (A)φ (B)]d .

Proof. Let Y ∈ φ ([AB]) . Then,

Y ∈ φ ([AB]d) ⇔ ∃X 3 Y = φ (X)
⇔ d (A,X) + d (X,B) = d (A,B)
⇔ d (φ (A) , φ (X)) + d (φ (X) , φ (B)) = d (φ (A) , φ (B))
⇔ Y = φ (X) ∈ [φ (A)φ (B)]d .

Corollary 3.1. Let the function φ : R3
d → R3

d be an isometry. Then the function φ maps vertices to vertices and preserves the
lengths of edges of [AB]d .

Proposition 3.1. Let f : R3
d → R3

d be an isometry such that f(O) = O. Then f is either in Oh when d =dRTC and
d = dRTO, or in Ih when d =dRTD and d =dRTI.

Proof. Consider the minimum distance set [OP ]dRTC
, for P = (2, 0, 0) . [OP ]dRTC

is the octagonal dipyramid whose
eight corner points are the corner points v0, v22, v5, v23, v20, v1, v21, v4 of the Rectified Truncated Cube with center
at origin and radius 1 (see Figure 7-a). The function φ maps points v0, v22, v5, v23, v20, v1, v21, v4 to the vertices of
a Rectified Truncated Cube by Corollary 3.1. Since φ preserve the lengths of edges of the [OP ]dRTC

, the corner
points of the set φ

(
[OP ]dRTC

)
must be on the corner points of octagonal faces of Rectified Truncated Cube. Thus, for

each octagonal face of Rectified Truncated Cube, φ
(
[OP ]dRTC

)
can be placed in 8 different ways, and also Rectified
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Truncated Cube has 6 octogonal faces. Consequently, total number of possibilities are 6 × 8 = 48 which implies
that the number of ( Euclidean ) symmetries of Rectified Truncated Cube. One can easily show that each of all
possibilities is one of the Euclidean symmetries Rectified Truncated Cube.

Consider the minimum distance set [OQ]dRTO
, for Q = (1, 1, 1) . [OQ]dRTO

is the hexagonal dipyramid whose
corner points are the corner points v0, v24, v8, v28, v16, v32 of the Rectified Truncated Octahedron with center at
origin and radius 1 (see Figure 7-b). The function φ maps points v0, v24, v8, v28, v16, v32 to the vertices of a Rectified
Truncated Octahedron by Corollary 3.1. Since φ preserve the lengths of edges the [OQ]dRTO

, the corner points of
the set φ

(
[OQ]dRTO

)
must be on the corner points of hexagonal faces of Rectified Truncated Octahedron. Thus, for

each hexagonal face of Rectified Truncated Octahedron, φ
(
[OQ]dRTO

)
can be placed in 6 different ways, and also

Rectified Truncated Octahedron has 8 hexagonal faces. Consequently, total number of possibilities are 8× 6 = 48
which implies that the number of ( Euclidean ) symmetries of Rectified Truncated Octahedron. One can easily show
that each of all possibilities is one of the Euclidean symmetries Rectified Truncated Octahedron.

Consider the minimum distance set [OR]dRTD
, for R =

(
5 +
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5

5
,

2
√

5

5
, 0

)
. [OR]dRTD

is the decagonal dipyra-

mid whose corner points are the corner points v2, v15, v51, v75, v59, v38, v58, v74, v50, v14 of the Rectified Truncated
Dodecahedron with center at origin and radius 1 (see Figure 7-c). The function φmaps points v2, v15, v51, v75, v59, v38,
v58, v74, v50, v14 to the vertices of a Rectified Truncated Dodecahedron by Corollary 3.1. Since φ preserve the lengths
of the [OR]dRTD

, the corner points of the set φ
(
[OR]dRTD

)
must be on the corner points of decagononal faces

of Rectified Truncated Dodecahedron. Thus, for each decagononal face of Rectified Truncated Dodecahedron,
φ
(
[OR]dRTD

)
can be placed in 12 different ways, and also Rectified Truncated Dodecahedron has 12 decagononal

faces. Consequently, total number of possibilities are 10× 12 = 120 which implies that the number of ( Euclidean )
symmetries of Rectified Truncated Dodecahedron. One can easily show that each of all possibilities is one of the
Euclidean symmetries Rectified Truncated Dodecahedron.

Consider the minimum distance set [OS]dRTI
, for S =

(
3 +
√

5

3
, 0,

2

3

)
. [OS]dRTI

is the hexagonal dipyramid

whose corner points are the corner points v82, v40, v16, v2, v14, v38 of the Rectified Truncated Icosahedron with center
at origin and radius 1 (see Figure 7-d). The function φ maps points v82, v40, v16, v2, v14, v38 to the vertices of a
Rectified Truncated Icosahedron by Corollary 3.1. Since φ preserve the lengths of the [OS]dRTI

, the corner points of
the set φ

(
[OS]dRTI

)
must be on the corner points of hexagonal faces of Rectified Truncated Icosahedron. Thus, for

each octagonal face of Rectified Truncated Icosahedron, φ
(
[OS]dRTI

)
can be placed in 6 different ways, and also

Rectified Truncated Icosahedron has 8 octagonal faces. Consequently, total number of possibilities are 20× 6 = 120
which implies that the number of ( Euclidean ) symmetries of Rectified Truncated Icosahedron. One can easily show
that each of all possibilities is one of the Euclidean symmetries Rectified Truncated Icosahedron.

a b c d
Figure 7

Theorem 3.2. Let the function f : R3
d → R3

d be an isometry. If the d metric is taken dRTC and dRTO, then there exists a
unique TA ∈ T (3) and g ∈ Oh such that f = TA ◦ g. Similarly, If the d metric is taken dRTD and dRTI, then there exists a
unique TA ∈ T (3) and g ∈ Ih such that f = TA ◦ g
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Proof. Let f(O) = A where A = (a1, a2, a3) . Define g = T−A ◦ f . We know that g is an isometry and g(O) = O.
Thus, g ∈ Oh or g ∈ Ih and f = TA ◦ g by Proposition 2. The proof of uniqueness is trivial.
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