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Abstract
This paper presents a multivariate Kolmogorov-Smirnov (MVKS) goodness of fit test for
multivariate normality. The proposed test is based on the difference between the empirical
distribution function and the theoretical distribution function. While calculating them in
multivariate case, the problem is that the variables cannot be distribution-free as in the
univariate case. Firstly, the variables are made independent to solve this problem and
the Rosenblatt transform is applied for independence of variates. Then the theoretical
and empirical distribution values are calculated and the MVKS test statistic is computed.
It provides an easy calculation for d-dimensional data by using the same algorithm and
critical table values. This paper demonstrates the effectiveness of the MVKS for differ-
ent dimensions with a simulation study which also includes the comparison of the MVKS
critical tables with univariate Kolmogorov-Smirnov (KS) critical table and the power com-
parisons of the MVKS (bivariate case) against with the existing bivariate normality tests.
Lastly, the MVKS is applied to two different multivariate data sets to confirm that it
achieves consistent, accurate and correct results.
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1. Introduction
The goodness of fit tests are used to test whether the data come from a given dis-

tribution. The most common goodness of fit test is normality test. The assumption of
normality is based on many statistical procedures. The t-test, the linear regression anal-
ysis, the discriminant analysis and the variance analysis are the well-known statistical
procedures. When the assumption of normality is violated, the interpretations and the
inferences may not be reliable or valid [37].

The goodness of fit tests have been developed for the univariate distributions [23, 30].
However, there are several studies for the multivariate distributions in the literature.
The adaptation of the chi-square test for multivariate data was performed by [9, 33]. A
multivariate skewness-kurtosis measure was used by [5,26,27,41,49]. Furthermore, Székely
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and Rizzo [46] and McAssey [31] used the Euclidean distance, Koziol [21] proposed the
radius and angle test, Baringhaus and Henze [4] and Fan [13] presented the empirical
characteristic function approaches for the multivariate goodness of fit test. The adaptation
of the univariate Kolmogorov-Smirnov goodness of fit test to the multi-dimension was
proposed by [6,14,18,25,36]. The other different studies were carried out by [1,2,8,11,15,
24,34,38,45,48].

The univariate empirical goodness of fit tests are based on the difference between the
empirical distribution function and the theoretical distribution function. The distribution
values must be independent from the distribution for the univariate empirical goodness of
fit tests [7]. However, the distribution values are uniformly distributed in the interval of
[0, 1] to satisfy the independence. Although these required conditions are sufficient for the
univariate goodness of fit tests in the previous studies, they cannot be precisely applied
to the multivariate tests. In addition, it is difficult to define the cumulative distribution
function while adapting the univariate normality tests to the multivariate normality test
in more than one dimension [25].

The empirical goodness of fit tests are generally based on the difference between the
empirical distribution function and the theoretical distribution function. The well-known
goodness of fit tests such as Kolmogorov-Smirnov [20,42], Lilliefors [23], Cramér-von Mises
[10, 47], Kuiper [22] methods are based on empirical distribution function. The proposed
method can be applied to different empirical goodness of fit tests. Therefore, Kolmogorov-
Smirnov test is choosen to show the applicability of it.

2. The Kolmogorov-Smirnov statistics
2.1. Univariate case

Let x1, x2, . . . , xn is a random sample in R of independent and identically distributed
(i.i.d.) random variables with the distribution function F .

The null hypothesis is H0 : F (x) = F0(x) and against the alternative hypothesis is
H1 : F (x) ̸= F0(x), where F0(x) is the desired theoretical distribution function. Also,
F0 is assumed to be a continuous distribution. In the univariate case, the Kolmogorov-
Smirnov statistic is computed as follows

Dn = sup
x

|Fn(x) − F0(x)|, (2.1)

where Fn(x) is the empirical distribution function. The basic approach used in the litera-
ture to calculate the empirical distribution function (Fn) is that the sample is divided by
the sample size. Also, it is calculated as left points (x ≤ xi) to the current point (x) by
the total number of sample size.

Fn (x) = 1
n

n∑
i=1

I (xi, x) (2.2)

I(., .) is the indicator function and is calculated as in Equation (2.3).

I (a, b) =
{

1, a ≤ b
0, otherwise

(2.3)

The empirical distribution values obtained from above approach will have an ideal
uniform distribution in the range of [0, 1]. Also, these values will be independent from the
distribution. On the other hand, if random values xi come from the distribution function
F0, the values ui obtained from the theoretical distribution function are independent and
uniformly distributed values in the range of [0, 1].

ui = F0 (xi) , (i = 1, 2, . . . , n) (2.4)
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Regardless of the distribution, if obtained random values uniformly distributed in the
interval [0, 1], it must satisfy that the theoretical distribution values are independent from
the distribution.

2.2. Multivariate case
Let x = {(x1i, x2i, . . . , xpi) , i = 1, 2, . . . , n} a random sample in Rp of i.i.d random

variables obtained from the p-variate joint distribution function F . The null hypothesis is
H0 : F (x) = F0(x) and against the alternative hypothesis is H1 : F (x) ̸= F0(x), where
F0(x) is Np(µ, Σ), a multivariate normal distribution with a known mean µ and a known
covariance matrix Σ. The extension of the univariate Kolmogorov-Smirnov statistic to the
multivariate case can be calculated in the following equation.

D̃(p)
n = sup

x
|Fn (x) − F0 (x)| (2.5)

Even though the empirical and the theoretical distribution function values in Equation
(2.5) are in the range of [0,1], they cannot be independent of the distribution and do
not also come from the uniform distribution. The methods [14, 18, 36] are improved to
calculate the test statistic independently from the distribution either yield approximate
results or have complex algorithms.

3. Computation of the test statistics
The problem in the multivariate case is that it cannot be independent from the distribu-

tion as in the univariate case. A simple transformation was proposed by [39] to solve this
problem [18]. Accordingly, p-variate random values are transformed into random values
which come from the univariate uniform distribution. This transformation is given in the
Theorem 3.1.

Theorem 3.1 (Rosenblatt). If X = (X1, . . . , Xp) are taken as a joint random density
vector, the joint distribution function can be written as follows

f0 (x1, . . . , xp) = f1 (x1) f2 (x2|x1) . . . fp (xp|x1, . . . , xp−1) . (3.1)

If Y = T (X) transformation is applied, the following equation is obtained.

Y1 = F1(X1)
Yk = Fk(Xk|X1, . . . ,Xk−1), k = 2, . . . , p

(3.2)

Yk is calculated as Equation (3.2). Moreover, Y1, . . . , Yp have uniform distribution in the
range of [0, 1] and they are independent variables by the help of conditional probability.
However, if the conditional probability was not performed, the joint distribution function
could be written as follows by using the marginal distribution instead of the conditional
distribution function.

F0 (x1, . . . , xp) = F1 (x1) F2(x2) · · · Fp(xp) (3.3)

A new random variable is obtained in Equation (3.4) by substituting a random variable
from the marginal distribution function.

Uk = Fk (Xk) , (k = 1, . . . , p) (3.4)
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3.1. Independence of variables for multivariate normal distributions
Covariance is a measure of the linear relationship between random variables [17]. It can

be given by the following equation [19].
X1
X2
. . .
Xp

 =


µ1
µ2
. . .
µp

 +


σ11 σ12 . . . σ1p

σ21 σ22 . . . σ2p

. . . . . . . . . . . .
σp1 σp2 . . . σpp




Z1
Z2
. . .
Zp

 (3.5)

Here, the variables Zk come from a distribution with the expected value 0 and the variance
1. The variables Xk are linearly related with the variables Zk. The covariance matrix of
Xk is calculated as follows

ΣX =


v11 v12 . . . v1p

v21 v22 . . . v2p

. . . . . . . . . . . .
vp1 vp2 . . . vpp

 . (3.6)

The calculation of the covariance matrix is performed by Equation (3.7).

vij =
p∑

k=1
σikσjk, (i, j = 1, 2, . . . , p) (3.7)

The following equation can be written by using Equations (3.5)-(3.7) [3, 16].
Z1
Z2
. . .
Zp

 =


v11 v12 . . . v1p

v21 v22 . . . v2p

. . . . . . . . . . . .
vp1 vp2 . . . vpp


− 1

2 
X1 − µ1
X2 − µ2

. . .
Xp − µp

 (3.8)

If (X1, X2, . . . , Xp) has distribution F0, then Z1, Z2, . . . , Zp in Equation (3.8) are
independent N(0, 1) random variables whose joint distribution will be denoted by F ∗

0 .
Let (z1i, z2i, . . . , zpi), i = 1, . . . , n denote the result of transforming the observations
(x1i, x2i, . . . , xpi), i = 1, . . . , n by Equation (3.8).

3.2. Computation of the empirical distribution values
Equation (3.9) is obtained when the approach used to calculate the univariate empirical

distribution function in the Section 2.1 is extended for the empirical distribution function
of the multivariate cases.

F̃n (z1i, z2i, . . . , zpi) = 1
n

n∑
j=1

p∏
k=1

I(zkj , zki) , (i = 1, 2, . . . , n) (3.9)

The distribution value obtained from Equation (3.9) depends on the distribution. This
eliminates the validity of the test. A different approach is proposed to make a more valid
calculation in Equation (3.10).

F ∗
n(z) = 1

n

n∑
j=1

I
(
F ∗

0 (z1j , z2j , . . . , zpj), F ∗
0 (z)

)
(3.10)

In this approach, the calculation is made according to the distribution values instead
of the points. The obtained values have a joint distribution which does not depend on F0,
so they are distribution-free. They have a uniform distribution in the range [0, 1]. Since
the distributions are monotone increasing function, the approach given in Equation (3.10)
yields the same result as Equation (3.4) in the case of the univariate empirical distribution
function.
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3.3. Computation of the theoretical distribution values
The theoretical distribution function, which is calculated with the help of being the

independent variables in Equation (3.8), is obtained by using definitions of Equations
(3.3)-(3.4) as follows

F ∗
0 (z) =

p∏
k=1

Uk. (3.11)

Uk are the independent random variables which are uniformly distributed in the range of
[0, 1]. The probability density function of the multiplication of Uk is defined as in Equation
(3.12).

f
(p)
U (u) = (−1)p−1

(p − 1)!
logp−1 (u) (3.12)

In addition, the distribution function is calculated as below

F
(p)
U (u) =

p∑
k=1

(−1)k−1

(k − 1)!
u logk−1(u). (3.13)

If the value of F ∗
0 is substituted in the function F

(p)
U (u) as follows, the theoretical distri-

bution function of the independent random values from the uniform distribution in the
range of [0, 1] is obtained.

T0(z) = F
(p)
U

(
F ∗

0 (z)
)

(3.14)

3.4. The proposed multivariate Kolmogorov-Smirnov statistic
After the theoretical distribution value and the empirical distribution value are calcu-

lated, the proposed multivariate Kolmogorov-Smirnov test statistic is obtained as follows

D(p)
n = sup

z

∣∣∣F ∗
n(z) − T0(z)

∣∣∣. (3.15)

F ∗
n(z) is calculated as Equation (3.10) and T0(z) is calculated as Equation (3.14).

3.5. Algorithm of the proposed multivariate Kolmogorov-Smirnov test
In this study, a new algorithm is developed for the multivariate Kolmogorov-Smirnov

test. It calculates the multivariate KS (MVKS) test statistics for d-dimensional data. The
decision rule is performed for the null hypothesis (H0) by comparing the calculated KS
test statistic

(
D

(p)
n

)
with the KS table value (Kn,1−α). Algorithm of the MVKS test is

introduced in the Algorithm 1.

4. Experimental results
Two different simulation studies are performed to test the accuracy and validity of

the proposed multivariate KS test statistic. In the first part of the simulation, the critical
table values of the proposed multivariate KS test method are obtained by the Monte Carlo
approach. Lastly, several bivariate KS tests in the literature and the proposed multivariate
KS test (bivariate case) statistics are compared in terms of type I error and power. The
simulation study is made on a computer that has Intel® Core (TM) i7-4740 CPU, 16 GB
of RAM. Also, Matlab® R17b software is used to make the power calculations.
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Algorithm 1 Algorithm of the MVKS Test
Determination of the initial parameter
Step 1. Determine the data (x) and the significant value (α),
Step 2. If the proposed Kolmogorov-Smirnov test is used, determine the mean

vector and the covariance matrix parameters of the distribution F0(x; θ, . . .),
Else, estimate the mean vector and the covariance matrix parameters from
the data (x) for the Lilliefors test.

Independence of variables
Step 3. Subtract the mean vector from x,
Step 4. Multiply the zero-mean data by the inverse of the square root of the covariance

matrix.
Calculation of the KS test statistics
Step 5. Evaluate F ∗

0 (z1i, z2i, . . . , zpi) for i = 1, 2, . . . , n.
Step 6. Calculate the empirical distribution value via Equation (3.10),
Step 7. Calculate the theoretical distribution value by Equation (3.14),
Step 8. Calculate the Kolmogorov-Smirnov statistic in Equation (3.15).
Comparison of the test statistics with the table value
Step 9. IF D

(p)
n < Kn,1−α, accept the H0 hypothesis,

ELSE reject the H0 hypothesis.

4.1. Calculation of the proposed KS test tables for multivariate case
In this section, the critical table values for the proposed multivariate KS test method are

obtained by using the Monte Carlo approach. Each of the tables is created with different
dimensions (d = 1, 5, 10) and different quantiles (0.8, 0.9, 0.95, 0.975, 0.99, 0.995, 0.999).
While the critical table values are calculated, the samples are generated from a normal
distribution considering that the samples are dependent. The mean vector and covariance
matrix of the multivariate normal distribution are selected randomly. Likewise, the same
critical table values can be obtained for different mean vectors and covariance matrices.
Also, the mean absolute percentage error (MAPE) which is widely known for performance
criteria is calculated for each table with Equation (4.1) [12,32,35].

MAPE = 1
NC

NC∑
i=1

|T S
i − T C

i |
T C

i

(4.1)

NC is the number of total cells. T S
i is ith critical table value calculated from the simulation

and T C
i is critical value of the univariate KS test using R program. While the MAPE is

calculated, the univariate KS test table is computed by the function "ks.test" in R is used.
Firstly, the proposed multivariate KS test statistics is calculated by generating samples

at different sample sizes from the univariate normal distribution with the mean (µ1 = 3)
and the variance (σ2

1 = 25) for the univariate case (d = 1). The univariate KS test table
values obtained from 100,000 replications are given in Table 1. The MAPE for Table 1 is
found as 0.0021. The similarity of Table 1 with critical table of the univariate KS test is
99.79%.

The quantiles of the univariate Kolmogorov-Smirnov statistics obtained with 100,000
replications are calculated with different means and variances. The critical table values
are obtained by selecting randomly the mean (µ1) from a uniform distribution in the
interval of [−1000, 1000] and the variance (σ2

1) from a uniform distribution in the interval
of [0,10000]. The average MAPE values at the end of 100 trials is calculated as 0.007.

However, comparisons of critical table values obtained from the simulation (T S) and
the univariate KS test using R program (T C) with different sample sizes for d = 1 is given
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in Figure 1 according to different quantiles. When the graphs are examined, it is observed
that the T S and T C have almost the same values for the given quantiles.

Table 1. Monte-Carlo approximation to the quantiles of the univariate
Kolmogorov-Smirnov statistics with 100,000 replications (d = 1)

HHHHHHn
1 − α 0.8 0.9 0.95 0.975 0.99 0.995 0.999

10 0.3221 0.3678 0.4093 0.4453 0.4874 0.5177 0.5829
11 0.3081 0.3525 0.3915 0.4270 0.4680 0.4969 0.5598
12 0.2949 0.3378 0.3748 0.4083 0.4491 0.4753 0.5354
13 0.2855 0.3261 0.3618 0.3950 0.4343 0.4603 0.5180
14 0.2748 0.3147 0.3486 0.3802 0.4155 0.4432 0.4945
15 0.2656 0.3032 0.3365 0.3675 0.4045 0.4296 0.4832
20 0.2312 0.2647 0.2945 0.3211 0.3527 0.3749 0.4229
25 0.2079 0.2373 0.2637 0.2877 0.3168 0.3367 0.3747
30 0.1899 0.2171 0.2415 0.2637 0.2901 0.3079 0.3498
40 0.1657 0.1893 0.2103 0.2297 0.2526 0.2678 0.3004
50 0.1486 0.1699 0.1883 0.2054 0.2253 0.2402 0.2720
60 0.1356 0.1548 0.1721 0.1877 0.2065 0.2193 0.2465
80 0.1180 0.1347 0.1497 0.1631 0.1794 0.1920 0.2140
100 0.1058 0.1208 0.1341 0.1464 0.1614 0.1709 0.1911
150 0.0864 0.0986 0.1096 0.1195 0.1311 0.1393 0.1566
200 0.0751 0.0857 0.0951 0.1034 0.1142 0.1217 0.1372
300 0.0613 0.0701 0.0779 0.0850 0.0936 0.0997 0.1125

(a) (b)

(c) (d)

Figure 1. Comparisons of critical table values obtained from the simulation (T S)
and the univariate KS test using R program (T C) with different sample sizes for
d = 1; (a) (1 − α) = 0.80, (b) (1 − α) = 0.90, (c) (1 − α) = 0.95, (d) (1 − α) = 0.99
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In case the proposed multivariate KS test statistic is five-variate (d = 5), the test sta-
tistics is calculated from the five-variate normal distribution with the mean vector (µ2)
and covariance matrix (Σ2) respectively as follows

µ2 =
[
−1 2 1 3 4

]
,

Σ2 =


3 0.7 −1 0.3 0.2

0.7 1 −0.4 0.5 0.8
−1 −0.4 2 −0.2 0.9
0.3 0.5 −0.2 5 0.1
0.2 0.8 0.9 0.1 4

.

The five-variate KS test critical table values calculated with 100,000 replications are
obtained as in Table 2. The MAPE for Table 2 is found as 0.0066. The similarity of Table
2 with critical table of the univariate KS test is 99.34%.

Table 2. Monte-Carlo approximation to the quantiles of the five-variate
Kolmogorov-Smirnov statistics with 100,000 replications (d = 5)

HHHHHHn
1 − α 0.8 0.9 0.95 0.975 0.99 0.995 0.999

10 0.3231 0.3693 0.4082 0.4429 0.4870 0.5178 0.5832
11 0.3087 0.3555 0.3927 0.4288 0.4763 0.5024 0.5748
12 0.2976 0.3398 0.3793 0.4144 0.4585 0.4891 0.5461
13 0.2844 0.3260 0.3648 0.3951 0.4343 0.4689 0.5211
14 0.2753 0.3147 0.3511 0.3846 0.4206 0.4430 0.4827
15 0.2652 0.3049 0.3379 0.3710 0.4074 0.4307 0.4775
20 0.2314 0.2653 0.2952 0.3221 0.3567 0.3796 0.4228
25 0.2090 0.2392 0.2676 0.2921 0.3207 0.3389 0.3800
30 0.1901 0.2169 0.2420 0.2641 0.2908 0.3084 0.3448
40 0.1652 0.1901 0.2116 0.2322 0.2524 0.2672 0.3067
50 0.1479 0.1699 0.1898 0.2077 0.2269 0.2395 0.2717
60 0.1362 0.1554 0.1709 0.1871 0.2079 0.2200 0.2475
80 0.1175 0.1339 0.1473 0.1617 0.1788 0.1902 0.2061
100 0.1052 0.1202 0.1337 0.1460 0.1609 0.1676 0.1875
150 0.0872 0.0986 0.1103 0.1196 0.1311 0.1401 0.1600
200 0.0755 0.0859 0.0953 0.1039 0.1151 0.1217 0.1359
300 0.0614 0.0700 0.0781 0.0852 0.0926 0.0975 0.1085

The quantiles of the five-variate Kolmogorov-Smirnov statistics are also calculated with
different mean vectors and covariance matrices. The mean vector (µ2) is randomly se-
lected from the uniform distribution in the range of [−1000, 1000]. In addition, the table
values are obtained by randomly selecting the diagonal elements (variance values) of the
covariance matrix (Σ2) from the uniform distribution in the range of [0, 100] and the cor-
relation values from the uniform distribution in the range of [−1, 1]. The average MAPE
values at the end of 100 trials is calculated as 0.0221.

However, comparisons of critical table values obtained from the simulation (T S) and
the univariate KS test using R program (T C) with different sample sizes for d = 5 is given
in Figure 2 according to different quantiles. When the graphs are examined, it is observed
that the T S and T C have almost the same values for the given quantiles like d = 1.
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(a) (b)

(c) (d)

Figure 2. Comparisons of critical table values obtained from the simulation (T S)
and the univariate KS test using R program (T C) with different sample sizes for
d = 5; (a) (1 − α) = 0.80, (b) (1 − α) = 0.90, (c) (1 − α) = 0.95, (d) (1 − α) = 0.99

In case the proposed multivariate KS test statistic is ten-variate (d = 10), the test
statistics is calculated from the ten-variate normal distribution with the mean vector (µ3)
and variance matrix (Σ3) receptively as follows

µ3 =
[
680 250 −489 809 534 125 794 −263 −324 237

]
,

Σ3 =



9.60 −0.81 0.03 0.90 0.69 0.87 0.95 −0.25 −0.36 0.57
−0.81 38.17 −0.58 0.92 0.86 −0.27 −0.31 0.39 0.43 0.60
0.03 −0.58 19.55 0.19 −0.81 0.12 −0.91 0.52 0.32 0.20
0.90 0.92 0.19 81.24 −0.55 0.43 0.45 −0.31 −0.93 0.69
0.69 0.86 −0.81 −0.55 72.6 0.54 0.02 0.41 0.58 −0.34
0.87 −0.27 0.12 0.43 0.54 67.79 0.83 0.15 −0.42 −0.47
0.95 −0.31 −0.91 0.45 0.02 0.83 91.48 0.78 −0.27 −0.70

−0.25 0.39 0.52 −0.31 0.41 0.15 0.78 82.28 0.89 0.30
−0.36 0.43 0.32 −0.93 0.58 −0.42 −0.27 0.89 55.32 0.96
0.57 0.60 0.20 0.69 −0.34 −0.47 −0.70 0.30 0.96 2.54


.

The ten-variate KS test critical table values calculated with 100,000 replications are
obtained as in Table 3. The MAPE for Table 3 is found as 0.0215. The similarity of Table
3 with critical table of the univariate KS test is 97.85%.

The quantiles of the ten-variate Kolmogorov-Smirnov statistics are also calculated with
different mean vectors and covariance matrices. The mean vector (µ3) is randomly se-
lected from the uniform distribution in the range of [−1000, 1000]. In addition, the table
values are obtained by randomly selecting the diagonal elements (variance values) of the
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covariance matrix (Σ3) from the uniform distribution in the range of [0, 100] and the cor-
relation values from the uniform distribution in the range of [−1, 1]. The average MAPE
values at the end of 100 trials is calculated as 0.02.

Table 3. Monte-Carlo approximation to the quantiles of the ten-variate
Kolmogorov-Smirnov statistics with 100,000 replications (d = 10)

HHHHHHn
1 − α 0.8 0.9 0.95 0.975 0.99 0.995 0.999

10 0.3229 0.3659 0.4096 0.4562 0.4980 0.5275 0.5780
11 0.3062 0.3458 0.3808 0.4260 0.4623 0.4775 0.4993
12 0.2855 0.3337 0.3676 0.4071 0.4714 0.5053 0.5652
13 0.2826 0.3241 0.3584 0.3927 0.4325 0.4769 0.5334
14 0.2842 0.3220 0.3542 0.3786 0.4236 0.4524 0.4874
15 0.2657 0.3068 0.3474 0.3709 0.3978 0.4200 0.5044
20 0.2335 0.2629 0.2919 0.3120 0.3535 0.3913 0.4158
25 0.2129 0.2395 0.2629 0.2871 0.3082 0.3346 0.3619
30 0.1913 0.2227 0.2446 0.2668 0.2905 0.3079 0.3242
40 0.1665 0.1939 0.2139 0.2315 0.2475 0.2573 0.2760
50 0.1473 0.1697 0.1920 0.2046 0.2267 0.2351 0.2540
60 0.1332 0.1548 0.1695 0.1857 0.2112 0.2159 0.2666
80 0.1182 0.1345 0.1464 0.1566 0.1717 0.1871 0.1991
100 0.1072 0.1245 0.1347 0.1476 0.1557 0.1642 0.1923
150 0.0891 0.1015 0.1129 0.1243 0.1377 0.1467 0.1602
200 0.0768 0.0856 0.0935 0.1008 0.1117 0.1179 0.1278
300 0.0609 0.0696 0.0766 0.0835 0.0918 0.1036 0.1118

However, comparisons of critical table values obtained from the simulation (T S) and the
univariate KS test using R program (T C) with different sample sizes for d = 10 is given in
Figure 3 according to different quantiles. When the graphs are examined, it is observed
that the T S and T C have almost the same values for the given quantiles like d = 1 and
d = 5.

On the other hand, if the mean vector and covariance matrix are not given in the null
hypothesis and they are calculated from the sample, the Kolmogorov-Smirnov test statis-
tic becomes the Lilliefors test. In this case, it is necessary to look at the Lilliefors table
instead of the KS table. In this study, the related critical table values are calculated only
if the data is bivariate. The bivariate Lilliefors test table at different quantiles is shown in
Table 4. The mean vector and the variance matrix of the normal distribution are utilized
for obtaining Table 4 respectively as follows

µ4 = [1 2], Σ4 =
[
3 1
1 2

]
.

Similarly, when the number of variables is more than 2, the table values can be calculated
as in the univariate and the bivariate cases via the given algorithm in the Section 3.5.

The MAPE for Table 4 is found as 0.0172. The similarity of the univariate Lilliefors test
with Table 4 is 98.28%. The MAPE is calculated by using critical table of the univariate
Lilliefors test [23] in the literature.

However, comparisons of critical table values obtained from the simulation (T S) and
the univariate KS test using R program (T C) with different sample sizes for d = 2 is given
in Figure 4 according to different quantiles. When the graphs are examined, it is observed
that the T S and T C have almost the same values for the given quantiles.
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(a) (b)

(c) (d)

Figure 3. Comparisons of critical table values obtained from the simulation (T S)
and the univariate KS test using R program (T C) with different sample sizes for
d = 10; (a) (1−α) = 0.80, (b) (1−α) = 0.90, (c) (1−α) = 0.95, (d) (1−α) = 0.99

Table 4. Monte-Carlo approximation to the quantiles of the bivariate Lilliefors
statistics with 100,000 replications (d = 2)

HHHHHHn
1 − α 0.8 0.9 0.95 0.975 0.99 0.995 0.999

10 0.2189 0.2430 0.2637 0.2829 0.3053 0.3208 0.3519
11 0.2102 0.2334 0.2532 0.2713 0.2922 0.3077 0.3381
12 0.2023 0.2240 0.2434 0.2613 0.2823 0.2957 0.3269
13 0.1952 0.2167 0.2352 0.2528 0.2730 0.2879 0.3162
14 0.1893 0.2099 0.2280 0.2441 0.2643 0.2774 0.3062
15 0.1830 0.2033 0.2211 0.2373 0.2563 0.2692 0.2966
20 0.1607 0.1784 0.1943 0.2082 0.2252 0.2368 0.2612
25 0.1449 0.1610 0.1749 0.1881 0.2034 0.2147 0.2363
30 0.1330 0.1477 0.1606 0.1725 0.1866 0.1972 0.2186
40 0.1159 0.1286 0.1399 0.1506 0.1635 0.1724 0.1916
50 0.1040 0.1155 0.1257 0.1355 0.1463 0.1543 0.1693
60 0.0954 0.1060 0.1152 0.1237 0.1338 0.1407 0.1581
80 0.0831 0.0924 0.1007 0.1081 0.1174 0.1234 0.1357
100 0.0746 0.0828 0.0901 0.0968 0.1050 0.1108 0.1235
150 0.0613 0.0680 0.0741 0.0799 0.0865 0.0912 0.1013
200 0.0532 0.0590 0.0642 0.0690 0.0749 0.0791 0.0873
300 0.0435 0.0483 0.0526 0.0564 0.0615 0.0650 0.0725
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(a) (b)

(c) (d)

Figure 4. Comparisons of critical table values obtained from the simulation (T S)
and the univariate Lilliefors test using R program (T C) with different sample sizes
for d = 2; (a)(1−α) = 0.80, (b) (1−α) = 0.90, (c) (1−α) = 0.95, (d) (1−α) = 0.99

4.2. The power comparisons of the tests
In this section, the bivariate KS test which are improved from Peacock [36], Fasano and

Franceschini [14], and Justel et al. [18] are compared with the proposed multivariate KS
(bivariate case) test in terms of type I error and the power. Simulated critical values are
utilized for the all tests. In the comparisons, the bivariate KS test are represented by P
(Peacock), FF (Fasano and Franceschini), J (Justel), and MVKS (the proposed method).
The Type I error (α) and the power values (1 − β) are calculated with a simulation
performed 10,000 times.

Furthermore, the simulation of the power comparisons consists of three parts. The
first part of the simulation, the type I errors are calculated at different sample sizes as
n = 15, 30, 50, 100, 200, 500 for the four methods. In the second part of the simulation,
the null hypothesis is determined as the bivariate standard normal distribution. The
alternative hypothesis is chosen from the multivariate symmetric (elliptical) distributions
and the powers of the tests are calculated for the four methods. In the last part, the
null hypothesis is determined as in the bivariate standard normal distribution and the
alternative hypothesis is chosen from the multivariate asymmetric distributions. The
power of test is also calculated for the four methods.

4.2.1. Type-I error comparisons for the P, FF, J, and MVKS tests. In the first
part of simulation, the type I error are calculated at different sample sizes as
n = 15, 30, 50, 100, 200, 500 for the four methods. Also, the null hypothesis is defined
as a bivariate normal distribution with the mean vector µ. The covariance matrices Σ1
and Σ2 are determined respectively as follows
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µ =
[
0 0

]
, Σ1 =

[
1 0
0 1

]
, Σ2 =

[
1 0.5

0.5 1

]
.

If the data comes from a bivariate normal distribution, it is expected that each test will
reject the null hypothesis at the 5% level. The Type I error of the bivariate KS statistics
for Σ1 and Σ2 are given in Table 5.

Table 5. Type I error of the bivariate KS statistics for four methods

Sample Size
Covariance

Matrix Method 15 30 50 100 200 500

Σ1

P 0.0066 0.005 0.0078 0.0093 0.0118 0.016
FF 0.0546 0.0425 0.0452 0.0508 0.0463 0.0586
J 0.2505 0.2138 0.1902 0.1656 0.1625 0.1514

MVKS 0.0479 0.0493 0.0499 0.0501 0.0507 0.0486

Σ2

P 0.0058 0.0062 0.0079 0.0093 0.0091 0.0135
FF 0.0500 0.0397 0.0416 0.0463 0.0493 0.0552
J 0.2516 0.2127 0.1925 0.1723 0.1575 0.1434

MVKS 0.0508 0.0478 0.0478 0.0507 0.0487 0.0465

As the sample size increases, the Type I error of the P and the J methods increase for
Σ1 and Σ2. However, while Type I error for the P method does not exceed 2% for each
sample size, Type I error for the J method is quite more than 5%. When the Type I errors
of the P and the J methods are examined for covariance matrices Σ1 and Σ2, it is seen
that these two tests do not perform consistently. On the other hand, the Type I error of
the FF and the MVKS change at 5% level for Σ1 and Σ2. In this case, these methods
perform more consistent and correct than both the P and the J methods.

4.2.2. Power comparisons for multivariate symmetric distributions. In the sec-
ond part of the simulation, random numbers are generated from the multivariate elliptical
distributions such as Normal, Laplace, Student-t, Cauchy, Logistic, and Triangular distri-
butions and the power (1 − β) of four tests are calculated. The null hypothesis is defined
as a bivariate standard normal distribution.

The mean vectors (µ1, µ2, µ3, µ4, µ5) and covariance matrix (Σ1) of the normal distri-
bution are utilized for obtaining Table 8 as follows, respectively. The power comparisons
of the bivariate KS statistics for Σ1 are given in Table 6.

µ1 µ2 µ3 µ4 µ5

[−1 −1] [−0.5 −0.5] [0 0] [0.5 0.5] [1 1]

Σ1 =
[

1 0.2
0.2 1

]
As the change in the mean vector increases or decreases according to µ3 = [0 0], the

powers of the P, FF, J, and MVKS methods increase, provided that the covariance matrix
Σ1 of the bivariate normal distribution remains constant. Although the power of the P
method is low for the small samples, the power of test increases for the four methods as
the sample size increases under the same conditions.

On the other hand, as the number of sample size increases in case of the mean vector is
µ3 = [0 0], the power of test is low for the P method and high for the J method accord-
ing to significant level (0.05). The power of test is quite close to significant level (0.05),
regardless of the number of sample sizes for the FF and MVKS methods. Furthermore,
the correlation value is 0.2. As the correlation degree of covariance matrix increase, the
FF, J, and MVKS methods will be more powerful. Also, the MVKS method has higher



A new goodness of fit test for multivariate normality 885

power than the FF method in all samples.

Table 6. Power comparisons of the bivariate KS statistics for Σ1

Method
Sample Size Mean Vector P FF J MVKS

15

µ1 0.8565 0.9757 0.9993 0.987
µ2 0.2065 0.4898 0.8635 0.537
µ3 0.0075 0.0546 0.2493 0.0628
µ4 0.1949 0.4781 0.7555 0.6198
µ5 0.8617 0.977 0.9984 0.9917

30

µ1 0.9988 0.9999 1 1
µ2 0.5582 0.8002 0.9758 0.8308
µ3 0.0088 0.06 0.227 0.0636
µ4 0.5427 0.7942 0.9242 0.8921
µ5 0.999 1 1 1

50

µ1 1 1 1 1
µ2 0.8784 0.9642 0.9973 0.9643
µ3 0.013 0.0691 0.2197 0.0736
µ4 0.8734 0.9628 0.9866 0.9889
µ5 1 1 1 1

100

µ1 1 1 1 1
µ2 0.9976 0.9998 1 0.9999
µ3 0.0242 0.0937 0.2145 0.0885
µ4 0.9984 1 1 1
µ5 1 1 1 1

The power values obtained from the test statistic by changing the covariance matrix as

Σ2 =
[

1 0.5
0.5 1

]
in the alternative hypothesis are given in Table 7, provided that the null

hypothesis remains the same.

Table 7. Power comparisons of the bivariate KS statistics for Σ2

Method
Sample Size Mean Vector P FF J MVKS

15

µ1 0.8873 0.9758 0.9994 0.9638
µ2 0.2768 0.5379 0.886 0.4319
µ3 0.02 0.0984 0.2954 0.0911
µ4 0.2945 0.5522 0.6396 0.6781
µ5 0.8861 0.9734 0.9892 0.9914

30

µ1 0.9989 0.9999 1 0.9999
µ2 0.6818 0.8605 0.9828 0.7254
µ3 0.0324 0.1453 0.327 0.1202
µ4 0.6847 0.8593 0.8394 0.9237
µ5 0.9989 1 1 1

50

µ1 1 1 1 1
µ2 0.9377 0.9807 0.9991 0.9112
µ3 0.0693 0.2304 0.3763 0.1518
µ4 0.9386 0.9826 0.9519 0.9929
µ5 1 1 1 1

100

µ1 1 1 1 1
µ2 0.9996 0.9999 1 0.9966
µ3 0.1962 0.4839 0.511 0.2782
µ4 1 1 0.9992 1
µ5 1 1 1 1
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As the change in the mean vector increases or decreases according to µ3 = [0 0], the
power of the P, FF, J, and MVKS methods increases, provided that the covariance matrix
Σ2 of the bivariate normal distribution remains constant. Although the power of the P
method is low for smaller samples, the power of test increases for the four methods as the
sample size increases under the same conditions as Table 6.

On the other hand, when the mean vector is µ3 = [0 0], the distribution in the null
and alternative hypothesis are nearly the same. The power of test is low for the P method
and high for the J method according to significant level (0.05) in case the mean vector is
µ3 = [0 0]. The powers of the FF and MVKS methods increase according to significant
level (0.05) in case the mean vector is µ3 = [0 0] as the number of samples size increases.

The power values obtained from the test statistic by changing the covariance matrix as

Σ3 =
[

1 0.8
0.8 1

]
in the alternative hypothesis are given in Table 8, provided that the null

hypothesis remains the same.

Table 8. Power comparisons of the bivariate KS statistics for Σ3

Method
Sample Size Mean Vector P FF J MVKS

15

µ1 0.9376 0.9853 0.9993 0.9274
µ2 0.4295 0.68 0.9196 0.3719
µ3 0.0611 0.2237 0.397 0.143
µ4 0.4381 0.6834 0.5424 0.7296
µ5 0.9391 0.9866 0.969 0.9929

30

µ1 0.9996 0.9999 1 0.9974
µ2 0.8518 0.9516 0.9931 0.6362
µ3 0.1532 0.4388 0.5318 0.2247
µ4 0.8515 0.9507 0.7541 0.9515
µ5 0.9998 1 0.9994 1

50

µ1 1 1 1 1
µ2 0.9895 0.9989 0.9998 0.8471
µ3 0.3574 0.7548 0.6851 0.3406
µ4 0.987 0.9975 0.9044 0.9976
µ5 1 1 1 1

100

µ1 1 1 1 1
µ2 1 1 1 0.9889
µ3 0.9036 0.9975 0.8977 0.6201
µ4 1 1 0.9963 1
µ5 1 1 1 1

As the change of the mean vector of the bivariate standard normal distribution increases,
the power of the P, the FF, J, and MVKS methods also rises in Table 8 as Table 6 and
Table 7. As the relationship between the two variables increases, the power of the tests are
higher than according to Table 6 and Table 7 under the same conditions. As the number
of sample size increases, the power of the tests rises for the four methods. Although the
P method has lower power in the case of small samples with the same mean vector and
covariance matrix as Table 6 and Table 7.

The power of the P, FF, J, and the MVKS methods are calculated using bivariate
Laplace distribution. The power values performed at the n = 10, 30, 50, 100, 200, 300
sample sizes are given in Table 9.

As the number of sample size increases, the powers of four methods increase for the
bivariate Laplace distribution. The P method has the lower power than the others. The J
method has the highest power in all sample sizes. However, it is more accurate to compare
the powers of the test between the FF and MVKS, considering that the P and J methods
do not perform consistently and correctly in the Type I error comparisons. Then, MVKS
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has a higher power in case of small sample sizes. As the number of sample size increases,
the powers of both the FF and MVKS methods increase to 1.

Table 9. Power test comparisons for the bivariate Laplace distribution

Sample Size
Method 10 30 50 100 200 300

P 0.0181 0.0919 0.3166 0.8905 0.9998 1
FF 0.1522 0.3775 0.6802 0.9839 1 1
J 0.4624 0.7272 0.89 0.9947 1 1

MVKS 0.1862 0.4363 0.6757 0.9526 0.9999 1

The power of the P, FF, J, and MVKS methods are calculated using the bivariate
Student-t distribution with υ = 10 degrees of freedom. The power values performed at
the n = 10, 30, 50, 100, 200, 300 sample sizes are given in Table 10.

Table 10. Power comparisons for the bivariate Student-t distribution

Sample Size
Method 10 30 50 100 200 300

P 0.0074 0.0065 0.0061 0.009 0.0145 0.0201
FF 0.0669 0.0495 0.0472 0.057 0.0707 0.0891
J 0.2441 0.229 0.206 0.1887 0.1991 0.204

MVKS 0.0537 0.0582 0.0588 0.0636 0.0751 0.0791

As the number of sample size increases, the powers of four methods increase for the
bivariate Student-t distribution with υ = 10 degrees of freedom. The P method has the
lower power than the others. The J method has the higher power in all sample sizes than
other methods. However, it is more accurate to compare the powers of the test between the
FF and the MVKS, considering that the P and J methods do not perform consistently and
correctly in Type I error comparisons. Then, the MVKS has higher power value except
for sample size 10 and 300. Also, as the number of sample size increases, the powers of
both the FF and MVKS methods increase.

The power of test values of the P, FF, J, and MVKS methods are calculated using the
bivariate Cauchy distribution. The power values performed at n = 10, 30, 50, 100, 200, 300
sample sizes are given in Table 11.

Table 11. Power comparisons for the bivariate Cauchy distribution

Sample Size
Method 10 30 50 100 200 300

P 0.0204 0.1505 0.4787 0.9782 1 1
FF 0.1725 0.4917 0.8191 0.9987 1 1
J 0.4945 0.8298 0.9524 0.9997 1 1

MVKS 0.2236 0.5961 0.8458 0.9954 1 1

As the number of sample size increases, the power of four methods increases for the
bivariate Cauchy distribution. The P method has the lower power than the others. The
J method has a higher power in all sample sizes than other methods. However, it is more
accurate to compare the power of the test between FF and MVKS, considering that the
P and J methods do not perform consistently and correctly in Type I error comparisons.
Then, the MVKS has the same power or higher power than FF method. Also, as the
number of sample size increases, the powers of both the FF and MVKS methods increase.
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The power of test values of the P, FF, J, and MVKS methods are calculated using the
bivariate Logistic distribution. The power values performed at n = 10, 30, 50, 100, 200, 300
sample sizes are given in Table 12.

Table 12. Power comparisons for the bivariate Logistic distribution

Sample Size
Method 10 30 50 100 200 300

P 0.0391 0.1713 0.4963 0.9744 1 1
FF 0.2641 0.55 0.8408 0.9983 1 1
J 0.6542 0.8444 0.951 0.9993 1 1

MVKS 0.2874 0.5048 0.7251 0.9716 1 1

As the number of sample size increases, the powers of four methods increase for the
bivariate Logistic distribution. The P method has the lower power than the others and
the J method has a higher power in each sample size than the other methods such as the
simulation results for the above distributions. However, it is more accurate to compare
the power of the test between the FF and MVKS, considering that the P and J methods
do not perform consistently and correctly in the Type I error comparisons. Hence, the
MVKS has a lower power within 30, 50, 100 sample sizes than the FF method, but the
MVKS method has the same power or higher power in the other sample sizes than the FF
method. Also, as the number of sample size increases, the powers of four methods increase
to 1.

The power of the P, FF, J, and MVKS methods are calculated using the bivariate
Triangular distribution. The power values performed at n = 10, 30, 50, 100, 200, 300 sample
sizes are given in Table 13.

Table 13. Power comparisons for the bivariate Triangular distribution

Sample Size
Method 10 30 50 100 200 300

P 0.0083 0.0231 0.0612 0.2599 0.789 0.9757
FF 0.0957 0.1526 0.271 0.593 0.9513 0.9976
J 0.3499 0.4682 0.5544 0.7586 0.9639 0.9964

MVKS 0.1033 0.1632 0.2397 0.4348 0.7706 0.9299

As the number of sample size increases, the powers of four methods increase for the
bivariate Triangular distribution. The P method has the lower power than the others and
the J method has a higher power in each sample size than the other methods such as the
simulation results for the above distributions. However, it is more accurate to compare
the powers between the FF and MVKS, considering that the P and J methods do not
perform consistently and correctly in Type I error comparisons. Hence, the proposed
method (MVKS) has a lower power within 30, 50, 100 sample sizes than the FF method,
but the MVKS method has the same power or higher power in the other sample sizes than
the FF method. Also, as the number of sample size increases, the powers of four methods
increase to 1.

4.2.3. Power comparisons for multivariate asymmetric distributions. In the last
part of the simulation, random numbers are generated from the multivariate asymmetric
(non-elliptical) distributions such as Uniform, Exponential, and Chi-Square distributions.
The null hypothesis is defined as a bivariate standard normal distribution.

Firstly, the alternative hypothesis is determined by choosing the different parameters of
the bivariate uniform distribution. The different parameters of the bivariate uniform dis-
tribution are not defined in any interval. The mean vectors (µ1, µ2, µ3, µ4) and covariance
matrix (Σ4) for the bivariate uniform distribution are determined as follows
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µ1 µ2 µ3 µ4

[0.5 0.5] [0.5 1] [1 1] [−1 − 1]

Σ4 =
[

1 0.5
0.5 1

]
.

The power comparisons of the P, FF, J, and MVKS methods for Σ4 are given in Table 14.

Table 14. Power comparisons for bivariate Uniform distribution

Mean Vector
Sample Size Method µ1 µ2 µ3 µ4

15

P 0.2154 0.564 0.8391 0.8419
FF 0.4666 0.8337 0.9673 0.9714
J 0.6746 0.9239 0.9813 0.9998

MVKS 0.5913 0.8658 0.9875 0.958

25

P 0.4382 0.8837 0.9915 0.9917
FF 0.6883 0.978 0.9995 0.9995
J 0.8133 0.9886 0.9982 1

MVKS 0.8087 0.9785 0.9999 0.9972

50

P 0.8583 0.9992 1 1
FF 0.9566 1 1 1
J 0.959 0.9999 1 1

MVKS 0.9783 0.9997 1 1

100

P 0.9976 1 1 1
FF 0.9999 1 1 1
J 0.9985 1 1 1

MVKS 0.9999 1 1 1

As the change of the mean vectors increases, the power also increases in the P, FF, J,
and MVKS methods. As the number of sample size increases, the powers of four methods
increase for the bivariate Uniform distribution. Although, the P and FF methods have
lower power than the J and MVKS methods under the same conditions. However, it is
more accurate to compare the powers between the FF and MVKS, considering that the P
and J methods do not perform consistently and correctly in the Type I error comparisons.
When Table 14 is examined, the power of the FF method is only higher than the MVKS
method for µ4 mean vector and small sample sizes (n = 15 and n = 25). In all other cases,
the MVKS method is either higher or has the same power values than the other methods.

The power of the P, FF, J, and MVKS methods are calculated using the bivariate
Exponential distribution. The power values performed at n = 10, 11, 12, 13, 14, 15 sample
sizes are given in Table 15.

Table 15. Power comparisons for bivariate Exponential distribution

Sample Size
Method 10 11 12 13 14 15

P 0.703 0.802 0.8557 0.9072 0.937 0.9657
FF 0.9885 0.9966 0.9988 0.9993 0.9999 1
J 1 1 1 1 1 1

MVKS 1 1 1 1 1 1

The power of test is calculated in small sample sizes for the bivariate Exponential
distribution. Because the powers of four methods are ‘1’ in the case of the number of
sample size larger than the number of sample size given in Table 15. Unlike the other
power comparisons, the powers of four methods are too high. One reason for this is that
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the distribution in the alternative hypothesis is chosen from a non-symmetrical distribution
rather than an elliptical (symmetrical) distribution.

The P method has the lower power than the others and the J method has a higher power
in each sample size than the other methods such as the simulation results for the above
distributions. However, it is more accurate to compare the powers between the FF and
MVKS, considering that the P and J methods do not perform consistently and correctly in
the Type I error comparisons. Hence, the MVKS has higher power than the FF method.
Also, as the number of sample size increases, the powers of two methods increase to ‘1’.

The power of the P, FF, J, and MVKS methods are calculated using the bivariate
Chi-Square distribution with υ = 1 degrees of freedom. The power values performed at
n = 10, 11, 12, 13, 14, 15 sample sizes are given in Table 16.

Table 16. Power comparisons for bivariate Chi-Square distribution

Sample Size
Method 10 11 12 13 14 15

P 0.5793 0.601 0.7198 0.7862 0.8477 0.8663
FF 0.9524 0.9667 0.987 0.9933 0.9978 0.9982
J 1 1 1 1 1 1

MVKS 1 1 1 1 1 1

The power of test is calculated in small sample sizes for the bivariate Chi-Square dis-
tribution. Since the powers are ‘1’ in all four methods in large samples, the small sample
sizes are examined to reveal the awareness of this distribution. The power of test values
are too high percentages like power comparisons for the bivariate Exponential distribution.
One reason for this is that the distribution in the alternative hypothesis is chosen from a
non-symmetrical distribution rather than an elliptical (symmetrical) distribution.

The P method has the lower power in all sample sizes than the other methods and
the power of the J method are calculated as ‘1’ in all sample sizes. However, it is more
accurate to compare the powers between the FF and MVKS, considering that the P and J
methods do not perform consistently and correctly in the Type I error comparisons. Then,
the MVKS has higher power than the FF method. Furthermore, the power of the MVKS
is ‘1’ in all sample sizes.

5. Real-life examples
Two different real-life data are chosen to demonstrate the performance of the proposed

method. These are Fisher’s Iris [28] and Royston’s Hematology [40] data sets.
Firstly, the normality test is performed for the Fisher’s Iris data set. Fisher’s Iris data

consists of three plant species. These are ‘Setosa’, ‘Versicolor’, and ‘Virginica’ species
and four different attributes of each species (sepal length, sepal width, petal length, petal
width) are available. There are 50 observation data for three plant species. The marginal
normality test results of each attributes of species and the multivariate normality test of
each species are obtained as in Table 17. Since the mean vector and the covariance matrix
are not given in the example, they are estimated from the data. Therefore, the Lilliefors
test table is used instead of the KS test table. The critical table value of 0.95% in Table
4 is 0.1257. ‘*’ denotes significance at 5% level.

The ‘Setosa’, ‘Versicolor’, and ‘Virginica’ species have multivariate normal distribution
as a result of Table 17. Similar results are obtained by [24, 29]. Looney [24] used the
methods developed by [41, 43, 44]. These methods reveal that the Fisher Iris data set
species have a multivariate normal distribution. The distribution of the Petal Length,
Petal Width variables of the Setosa species, the Petal Width variable of the Versicolor
species, and the Sepal Width variable of the Virginica species indicate a violation of the
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univariate normality assumption. In addition, Looney [24] performed a normality test on
the variables of the Setosa species. He showed that only Petal Width variable has not
univariate normal distribution. In another study, Sürücü [45] showed that Petal Length,
Petal Width variables of Setosa species have not the univariate normal distribution.

Table 17. The proposed multivariate normality test statistics for Fishers Iris
dataset

Species MVKS Attributes MVKS

Setosa 0.0779

Sepal Length 0.1149
Sepal Width 0.1047
Petal Length 0.1534*
Petal Width 0.3488

Versicolor 0.0637

Sepal Length 0.0962
Sepal Width 0.1207
Petal Length 0.1171
Petal Width 0.1477*

Virginica 0.0708

Sepal Length 0.1150
Sepal Width 0.1279*
Petal Length 0.1136
Petal Width 0.1208

The other real-life data is the Royston Hematology data set which has six variables
[40]. These are hemoglobin concentration, packed cell volume, white blood cell count,
lymphocyte count, neutrophil count, and serum lead concentration variables. There are
103 observations in this data set. Since the mean vector and the covariance matrix are not
given in the example, they are estimated from the data. Therefore, the Lilliefors test table
is used instead of the KS test table. The multivariate Kolmogorov-Smirnov test statistic
for this dataset is calculated as 0.1870. The critical table value can be obtained from
Table 4 as approximately 0.0901 or the approximate value can also be calculated from
the critical test table in [23]. Since the calculated test statistic is greater than the critical
table value, it can be said that this data set does not provide the multivariate normality
assumption at 5% significance level. The same result is shown by [40, 41, 43, 44] used in
[24].

6. Conclusion
The proposed method is easily applicable to the multi-dimensional data and the multi-

variate KS test statistic can be used with the univariate KS test table. There is no need
more than one table for each dimension. These results show that the proposed method is
more useful and advantageous than the other methods. Furthermore, the understanding
the complex algorithms of other methods and the calculation difficulties of the test statis-
tic in case of more than two variables reveals the advantages of the proposed method in
this study.

In the continuation of the simulation study, some methods in the literature for the
multivariate KS tests have been compared with the proposed method in terms of power
and Type I error. The P and J methods do not perform consistently and correctly in the
Type I error comparisons. Hence, it is more accurate to compare the powers between the
FF and MVKS methods. The MVKS has either better or same power values according to
the FF method in both symmetric and non-symmetric distributions power comparisons.
It also has high power especially in non-symmetrical distributions.

The effectiveness of the proposed method is investigated in known and easily accessible
two data sets. Then, the multivariate normality test results of two data sets in this study
are the same as literature.
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Consequently, the simulation study shows that the proposed multivariate Kolmogorov-
Smirnov test is a simple and consistent method. It can be easily applied to all data sizes.
Also, it is useful for practitioners regarding the applicability.
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