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Abstract
Let TM be a tangent bundle over a Riemannian manifold M with a Riemannian metric g
and TG be a tangent Lie group over a Lie group with a left-invariant metric g. The purpose
of the paper is two folds. Firstly, we study statistical structures on the tangent bundle
TM equipped with two Riemannian g-natural metrics and lift connections. Secondly, we
define a left-invariant complete lift connection on the tangent Lie group TG equipped
with metric g̃ introduced in [F. Asgari and H. R. Salimi Moghaddam, On the Riemannian
geometry of tangent Lie groups, Rend. Circ. Mat. Palermo II. Series, 2018] and study
statistical structures in this setting.
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1. Introduction
Information geometry is a combination and interaction of differential geometry and

statistics. Also, it is an important and useful bridge between applicable and pure sciences.
In this area, we use and extend the methods of differential geometry in probability theory.
The mathematical point of view of information geometry started by Rao in [14]. He
showed that a statistical model should be as a differential Riemannian manifold via the
Fisher information matrix. This means that we can define a Riemannian metric in the
space of probability distributions. In fact, the information geometry is study of natural
geometric structures by the families of probability distributions. The main objects in this
area are statistical connections and statistical manifolds and their applications such as
in computer science and physics. The geometry of statistical manifolds has been applied
to various fields of information science, information theory, neural networks, statistical
mechanics (see [2, 5, 16], for instance). In fact, a statistical manifold is a manifold whose
points are probability distributions and so statistical manifolds provide geometric model
of probability distributions.
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A pair (g, ∇) on a differentiable manifold M is a statistical structure if ∇g is totally
symmetric, where g is a (pseudo-) Riemannian metric and ∇ is a torsion free linear connec-
tion. A manifold with a statistical structure is called a statistical manifold. A (pseudo-)
Riemannian manifold (M, g) together with Levi-Civita connection ∇ of g is a typical ex-
ample of statistical manifold. In other words, statistical manifolds can be regarded as
generalizations of (pseudo-) Riemannian manifolds.

In this paper, we mostly concern with statistical structures on a tangent bundle TM
and a tangent Lie group TG with respect to the lift connections. Recently, some mathe-
maticians studied the statistical structures on the tangent bundle of a smooth manifolds
(see [4, 9, 11], for instance).

The organization of this paper is as follows. In Section 3, we consider two Riemannian
g-natural metrics on TM . One of them is Ga,b,c = ags+bgc+cgv, generated by the classical
lifts the Sasaki metric gs, the complete lift metric gc and the vertical lift gv of Riemannian
metric g and the another is the Cheeger-Gromoll metric gCG. Then, we study that under
what conditions (Ga,b,c, ∇h) is a Codazzi pair for TM . Also, we prove that (Ga,b,c, ∇h) is
a Codazzi pair on TM if and only if ∇ is a metric connection with respect to g, especially
in a particular case (Ga,0,0, ∇h) is a Codazzi pair on TM if and only if the pair (g, ∇) is
a Codazzi pair on M . Furthermore, we prove that if (g, ∇) is a Codazzi pair on M , then
(gCG, ∇h) is not a Codazzi pair on TM . Also, accordingly to the concept of complete
connection we show that (TM, Ga,b,c, ∇c) is a statistical manifold if and only if ∇ is a
flat Levi-Civita connection, and in this case (TM, Ga,b,c, ∇c) reduces to the Riemannian
manifold. In Section 4, we study the concept of tangent Lie group TG. Also in this section
we consider a left-invariant metric g on tangent Lie group TG, then we study that under
what conditions (g, ∇c) can provide a Codazzi pair on TG, whenever (g, ∇) is a Codazzi
pair for G, and g is a left-invariant metric and ∇ is a left-invariant connection.

2. Preliminaries
Let M be an n-dimensional differentiable manifold with a linear connection ∇ and

denote by π : TM → M its tangent bundle with fibres the tangent spaces to M . Then,
TM is a 2n-dimensional smooth manifold. Let P be an arbitrary point in U in M whose
coordinates are (xi). On TM , the system of local coordinates

(
π−1 (U) , xi, xi = yi

)
,

i = n + i = n + 1, ..., 2n, where (yi) is the cartesian coordinates in each tangent space
TpM at p with respect to the natural base

{
∂

∂xi |p
}

, is induced from a system of local
coordinates (U, xi) in M . Also, the set { ∂

∂xi |p, ∂
∂yi |p} is the natural basis of TpTM .

Summation over repeated indices is always implied.
The various lifts (complete, horizontal and vertical lifts, respectively) of a vector field

X = Xi∂i on M to TM are defined as follows

Xc = Xi ∂

∂xi
+ ya(∂aXi) ∂

∂yi
, Xh = Xi ∂

∂xi
− yaΓk

aiX
i ∂

∂yk
, Xv = Xi ∂

∂yi
,

where Γi
sk are the coefficients of the linear connection ∇. Recall that the Lie brackets of

horizontal and vertical vector fields are given by [17]

[Xh, Y h] =[X, Y ]h − (R(X, Y )y)v,

[Xh, Y v] =(∇XY )v − T (X, Y )v,

[Xv, Y v] =0.

It is known that TTM can be decompose to HTM ⊕ V TM , where HTM is spanned
by { δ

δxi := ( ∂
∂xi )h = ∂

∂xi − ykΓj
ki

∂
∂yj } and V is spanned by { ∂

∂yi := ( ∂
∂xi )v}. For simplicity

we write ∂i, δi and ∂i instead of ∂
∂xi , δ

δxi and ∂
∂yi , respectively.
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Let (M, g) be a Riemannian manifold. The Riemanian g-natural metric of the form
Ga,b,c = ags + bgc + cgv, generated by the classical lifts the Sasaki metric gs, the complete
lift metric gc and the vertical lift gv of g is defined by

Ga,b,c(Xh, Y h) = (a + c)g(X, Y )

Ga,b,c(Xv, Y h) = Ga,b,c(Xh, Y v) = bg(X, Y )
Ga,b,c(Xv, Y v) = ag(X, Y )

for all vector fields X, Y on M , where a, b and c are constants satisfying a > 0 and
a(a + c) − b2 > 0 [1] (see also [6]). Also, there exists another well-known lift metric: The
Cheeger-Gromoll metric gCG is given by [8]

gCG(Xh, Y h) = g(X, Y ),

gCG(Xh, Y v) = 0,

gCG(Xv, Y v) = 1
1 + r2 {g(X, Y ) + g(X, y)g(Y, y)},

for all vector fields X, Y on M , where r denotes r =
√

g(y, y).
If we write ds2 = gijdxidxj for the (pseudo-) Riemannian metric on M given by g, then

the Riemannian metrics on TM given by Ga,b,c and gCG respectively are

Ga,b,c = (a + c)gijdxidxj + 2bgijδyidxj + agijδyiδyj ,

gCG = gijdxidxj + 1
1 + r2 (gij + ysytgisgjt)δyiδyj ,

where δyi = dyi + ysΓi
jsdxj being Christoffel symbols formed with g.

Let M be a differentiable manifold with a linear connection ∇. The horizontal lift
connection ∇h and the complete lift connection ∇c are respectively defined by [17]

∇h
XhY h = (∇XY )h, (∇h

XhY v) = (∇XY )v, ∇h
Xv Y h = ∇h

Xv Y v = 0,

∇c
XhY h = (∇XY )h + (R(y, X)Y )v, ∇c

XhY v = (∇XY )v, ∇c
Xv Y h = ∇c

Xv Y v = 0,

for all vector fields X, Y on M .

3. Statistical structures on the tangent bundle with respect to the lift
connections

Let ∇ be an arbitrary linear connection on a (pseudo-) Riemannian manifold (M, g).
Given a pair (∇, g), we construct the (0, 3)- tensor fields F by

F (X, Y, Z) := (∇Zg)(X, Y ).

Clearly, F (X, Y, Z) = F (Y, X, Z), due to symmetry of g. The tensor field F is sometimes
referred to as the cubic form associated to the pair (∇, g) [7].

For a symmetric bilinear form ρ on a manifold M , we call (∇, ρ) a Codazzi pair, if the
covariant derivative (∇ρ) is (totally) symmetric in X, Y, Z [15]:

(∇Zρ) (X, Y ) = (∇Xρ) (Z, Y ) = (∇Y ρ) (Z, X) .

In terms of the cubic form F , this condition is stated as

F (X, Y, Z) = F (Z, Y, X) = F (Z, X, Y ),

i.e., the condition (∇, g) being Codazzi pair is equivalent to F being totally symmetric in
all of its indices. Now, we search the conditions under which the pair (∇h, G) is a Codazzi
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pair on TM . For using later on, we give
(∇h

δi
Ga,b,c)(δj , δk) = δiGa,b,c(δj , δk) − Ga,b,c(∇h

δi
δj , δk) − Ga,b,c(δj , ∇h

δi
δk) (3.1)

= δi(a + c)gjk − Ga,b,c((∇∂i
∂j)h, (∂k)v) − Ga,b,c((∂j)h, ((∇∂i

∂k)h)
= (a + c)∂igjk − (a + c)g(∇∂i

∂j , ∂k) − (a + c)g(∂j , ∇∂i
∂k)

= (a + c)∇igjk,

(∇h
δi

Ga,b,c)(δj , ∂k) = δiGa,b,c(δj , ∂k) − Ga,b,c(∇h
δi

δj , ∂k) − Ga,b,c(δj , ∇h
δi

∂k) (3.2)

= δibgjk − Ga,b,c((∇∂i
∂j)h, (∂k)v) − Ga,b,c((∂j)h, ((∇∂i

∂k)v)
= b∂igjk − bg(∇∂i

∂j , ∂k) − bg(∂j , ∇∂i
∂k)

= b∇igjk,

(∇h
δi

Ga,b,c)(∂j , ∂k) = δiGa,b,c(∂j , ∂k) − Ga,b,c(∇h
δi

∂j , ∂k) − Ga,b,c(∂j , ∇h
δi

∂k) (3.3)

= δicgjk − Ga,b,c((∇∂i
∂j)v, (∂k)v) − Ga,b,c((∂j)h, ((∇∂i

∂k)v)
= c∂igjk − cg(∇∂i

∂j , ∂k) − cg(∂j , ∇∂i
∂k),

= c∇igjk,

(∇h
∂

i
Ga,b,c)(δj , δk) = ∂iGa,b,c(δj , δk) − Ga,b,c(∇h

∂
i
δj , δk) − Ga,b,c(δj , ∇h

∂
i
δk) (3.4)

= ∂i(a + c)gjk = 0,

(∇h
∂

i
Ga,b,c)(δj , ∂k) = ∂iGa,b,c(δj , ∂k) − Ga,b,c(∇h

∂
i
δj , ∂k) − Ga,b,c(δj , ∇h

∂
i
∂k) (3.5)

= ∂ibgjk = 0,

(∇h
∂

i
Ga,b,c)(∂j , ∂k) = ∂iGa,b,c(∂j , ∂k) − Ga,b,c(∇h

∂
i
∂j , ∂k) − Ga,b,c(∂j , ∇h

∂
i
∂k) (3.6)

= ∂icgjk = 0.

Theorem 3.1. Let ∇ be an arbitrary linear connection on a Riemannian manifold (M, g)
and TM be its tangent bundle with the Riemannian metric Ga,b,c. The pair (∇h, Ga,b,c) is
a Codazzi pair on TM if and only if ∇ is a metric connection with respect to g.

Proof. Using conditions being Codazzi pair on TM and (3.2) and (3.4), we immediately
find

(∇h
δi

Ga,b,c)(δj , ∂k) = (∇h
δj

Ga,b,c)(δi, ∂k) = (∇h
∂

k
Ga,b,c)(δj , δi)

equivalently,
b∇igjk = b∇igjk = 0,

which gives the result. �
Now, we consider a particular case: the tensor Ga,0,0 = agv. In this case, we have the

following result.

Theorem 3.2. Let ∇ be an arbitrary linear connection on a Riemannian manifold (M, g)
and TM be its tangent bundle with the tensor Ga,0,0 = agv. The pair (∇h, Ga,0,0) is a
Codazzi pair on TM if and only if the pair (∇, g) is a Codazzi pair on M .

Proof. For the case c = 0, b = 0, and a ̸= 0, using (3.1)-(3.6), we get
(∇h

δi
Ga,0,0)(δj , δk) = a∇igjk,

all other being zero. Hence, using the Codazzi equation on TM , we derive
(∇h

δi
Ga,0,0)(δj , δk) = (∇h

δj
Ga,0,0)(δi, δk) = (∇h

δk
Ga,0,0)(δj , δi)
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equivalently,

a∇igjk = a∇jgik = a∇kgji,

which completes the proof. �

Next, we will study conditions that (∇h, gCG) is a Codazzi pair on TM .

Theorem 3.3. Let ∇ be an arbitrary linear connection on an n-dimensional (n > 1)
Riemannian manifold (M, g) and TM be its tangent bundle with the Cheeger-Gromoll
metric gCG. Let (∇, g) be a Codazzi pair on M , then (∇h, gCG) is not a Codazzi pair on
TM .

Proof. Let (M, g) be an n-dimensional (n > 1) Riemannian manifold. Assume that
(∇h, gCG) is a Codazzi pair on TM . Using the Codazzi equation on TM , we derive

(∇h
δi

gCG)(δj , ∂k̄) = (∇h
∂k̄

gCG)(δi, δj)

= (∇h
δj

gCG)(∂k̄, δi) = 0,

(∇h
∂

i
gCG)(∂j̄ , δk) = (∇h

∂j̄
gCG)(δk, ∂i)

= (∇h
δk

gCG)(∂i, ∂j̄) = 0.

Also, the direct computations give

(∇h
δi

gCG)(δj , δk) = ∇igjk,

(∇h
∂

i
gCG)(∂j̄ , ∂k̄) = ∂i(gCG)j̄k̄,

(∇h
∂j̄

gCG)(∂k̄, ∂i) = ∂j̄(gCG)k̄i,

(∇h
∂k̄

gCG)(∂i, ∂j̄) = ∂k̄(gCG)ij̄ .

Furthermore, we have

∂i(gCG)j̄k̄ = −2ys

(1 + r2)2 {gjkgsi + ysyt(gjsgtkgsi)} + ys

1 + r2 (gskgji + gjsgik), (3.7)

∂j̄(gCG)k̄i = −2ys

(1 + r2)2 {gkigsj + ysyt(gksgtigsj)} + ys

1 + r2 (gsigkj + gksgji), (3.8)

∂k̄(gCG)ij̄ = −2ys

(1 + r2)2 {gijgsk + ysyt(gisgtjgsk)} + ys

1 + r2 (gsjgik + gisgkj). (3.9)

There are two cases:
Case 1) if ∂i(gCG)j̄k̄ = ∂j̄(gCG)k̄i = ∂k̄(gCG)ij̄ = 0, then from (3.7), we have

−2ys

1 + r2 {gjkgsi + ysyt(gjsgtkgsi)} + ys(gskgji + gjsgik) = 0. (3.10)

By differentiating (3.10) with respect to ∂h̄, we get

0 =−2δs
h(1 + r2) + 2(yngnh)2ys

(1 + r2)2 {gjkgsi + ysyt(gjsgtkgsi)}

+ yt(gtkgjh + gjtghk)gsi(−2ys)
(1 + r2)

+ δs
h(gskgji + gjsgik),
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from which

0 = −2
(1 + r2)

{gjkghi + ysyt(gjhgtkghi)}

+ 4yngnhys

(1 + r2)2 {gjkgsi + ysyt(gjsgtkgsi)}

yt(gtkgjh + gjtghk)gsi(−2ys)
(1 + r2)

+ (ghkgji + gjhgik).

The above equation holds for every (x, y) ∈ TM . If we consider the above equation for
y = 0 (zero section), we obtain

−2gjkghi + (ghkgji + gjhgik) = 0.

On multiplying above equation in gik, we get 2gjkδk
h = ghkδk

j +gjhδk
k . Therefore gjh = ngjh,

this implies that n = 1, and this is a contradiction.
Case 2) If ∂i(gCG)j̄k̄ = ∂j̄(gCG)k̄i = ∂k̄(gCG)ij̄ ̸= 0, then by means of (3.7), (3.8) and

(3.9) we have

−2gjkghi + (ghkgji + gjhgik) = −2gkighj + (ghigkj + gkhgji).

Therefore, we have gjkghi = gkighj , and by multiplying this equation in gjh, we get δh
k ghi =

gkiδ
h
h . This implies that gki = ngki, and so n = 1, and this is a contradiction, i.e., (∇h, gCG)

is not a Codazzi pair on TM . �

Next, we consider a torsion-free linear connection ∇ on a (pseudo-)Riemannian man-
ifold (M, g). In the case, if (∇, g) is a Codazzi pair which characterizes what is known
to information geometers as statistical structures, then the manifold M together with a
statistical structure (∇, g) is called a statistical manifold. The notion of a statistical man-
ifold was originally introduced by Lauritzen [10]. Statistical manifolds are widely studied
in affine differential geometry [10,12] and plays a central role in information geometry.

It is known that if ∇ is torsion free, its horizontal lift connection ∇h has non trivial
torsion. But its complate lift connection ∇c is torsion free. Furthermore, if ∇ is a torsion
free linear connection on M , then ∇h is torsion free if and only if ∇ is flat. In this case ∇h

is flat and ∇h = ∇c. As the direct results of Theorem 3.1 and 3.2, we have the following
consequences.

Corollary 3.4. Let (M, g) be a (pseudo-) Riemannian manifold, ∇ be a torsion free
linear connection and TM be its tangent bundle with the Riemannian metric Ga,b,c.
Then (TM, Ga,b,c, ∇h) is a statistical manifold if and only if ∇g = 0 and ∇ is flat,i.e,
(TM, Ga,b,c, ∇h) reduces to the Riemannian manifold.

Corollary 3.5. Let (M, g) be a (pseudo-) Riemannian manifold, ∇ be a torsion free
linear connection and TM be its tangent bundle with the Riemannian metric Ga,0,0 = agv.

The pair (∇h, Ga,0,0) is a Codazzi pair on TM if and only if the pair (M, g, ∇) is a flat
statistical manifold.

Now, we will consider the similar problems with respect to the complete lift connection
∇c.

Theorem 3.6. Let (M, g) be a (pseudo-) Riemannian manifold, ∇ be a torsion free lin-
ear connection and TM be its tangent bundle with the Riemannian metric Ga,b,c. Then
(TM, Ga,b,c, ∇c) is a statistical manifold if and only if ∇g = 0 and ∇ is locally flat, i.e, ∇
is the flat Levi-Civita connection. Furthermore (TM, Ga,b,c, ∇c) reduces to the Riemannian
manifold.
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Proof. Let (TM, Ga,b,c, ∇c) be a statistical manifold and ∇ be a torsion free linear con-
nection. We calculate

(∇c
δi

Ga,b,c)(δj , ∂k̄) = δiGa,b,c(δj , ∂k̄) − Ga,b,c(∇c
δi

δj , ∂k̄) − Ga,b,c(δj , ∇c
δi

∂k̄)

= δibgjk − Ga,b,c((∇∂i
∂j)h + (R(y, ∂i)∂j)v, (∂k)v) − Ga,b,c((∂j)h, ((∇∂i

∂k)v)
= bδigjk − bg(∇∂i

∂j , ∂k) − bg(∂j , ∇∂i
∂k) + aysRsijk

= b∇igjk + aysRsijk,

(∇c
∂k̄

Ga,b,c)(δi, δj) = ∂k̄Ga,b,c(δi, δj) − Ga,b,c(∇c
∂k̄

δi, δj) − Ga,b,c(δi, ∇c
∂k̄

δj)
= ∂k̄(a + c)gij = 0.

From which, using the Codazzi equation on TM, we get

(∇c
δi

Ga,b,c)(δj , ∂k̄) = (∇c
∂k̄

Ga,b,c)(δi, δj), (3.11)
b∇igjk + aysRsijk = 0.

Operating ∂h to (3.11), we obtain Rhkij = 0, i.e., (M, g, ∇) is locally flat. In the case, it
follows that

∇igjk = 0,

i.e., ∇ is the flat Levi-Civita connection.
Conversely, if ∇ is the flat Levi-Civita connection, then ∇h = ∇c. Thus, the necessary

condition can be easily seen via (3.1)-(3.6). �

4. Statistical structures on tangent Lie group with respect to the com-
plete lift connection

In this section, we will introduce the concept of tangent Lie group and then consider a
left-invariant statistical connection ∇ on the tangent Lie group TG with a left-invariant
Riemannian metric g̃. Firstly, we compute the Christoffel symbols of ∇ and their relations.
Also we show that if (TG, g̃, ∇c) is a statistical Lie group, then (G, g, ∇) is a Riemannian
Lie group, where ∇ is a left-invariant torsion free linear connection. The study of geometric
structures on Lie groups and corresponding Lie algebras is very important. Recently, this
study extended to generalized spaces such as Hom-Lie groups and Hom-Lie algebras (see
[13] for instance).

Consider a tangent bundle TG over a Lie group G. Using the Lie group structure of G,
we can construct a Lie group structure on TG as follows:

(x, vx).(y, wy) := (xy, (dLx)(wy) + (dRy)(vx)),

for all x, y ∈ G and vx ∈ TxG and wy ∈ TyG. We can easily check that this multiplication
is smooth and TG equipped with this action has a group structure. Therefore (TG, .) is a
Lie group.

The Lie brackets of the vertical and complete lifts satisfy the following equations [3]:

[Xv, Y v] = 0, [Xc, Y c] = [X, Y ]c, [Xv, Y c] = [X, Y ]v.

It has been shown that the complete and vertical lifts of any left-invariant vector fields
of G are left-invariant vector fields on the tangent Lie group TG (for more details see
Proposition 1.3 of [17]). In fact, if {X1, · · · , Xm} is a basis for Lie algebra g of G, then
{Xv

1 , · · · , Xv
m, Xc

1, · · · , Xc
m} is a basis for the Lie algebra g̃ of TG. Let us consider a

left-invariant Riemannian metric g̃ as follows [3]:

g̃(Xc, Y c) = g(X, Y ), g̃(Xv, Y v) = g(X, Y ), g̃(Xc, Y v) = 0,

where X, Y are any two left-invariant vector fields on G and g is a left-invariant Riemann-
ian metric on the Lie group G.
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Now, we will search the statistical structures of the Riemannian manifold (TG, g̃) and
their relations with the statistical structure of the Riemannian manifold (G, g). Let ∇ be
a linear connection on the tangent Lie group TG. Then it can be written with respect to
the basis {∂i, ∂i} as follows:

∇∂i
∂j = Γk

ij∂k + Γk̄
ij∂k̄, ∇∂i

∂j̄ = Γk
ij̄∂k + Γk̄

ij̄∂k̄,

∇∂ı̄∂j = Γk
ı̄j∂k + Γk̄

ı̄j∂k̄, ∇∂ı̄∂j̄ = Γk
ı̄j̄∂k + Γk̄

ı̄j̄∂k̄,

where ΓC
AB, A, B, C ∈ {1, · · · , n, 1̄, · · · , n̄}, are smooth functions on TG.

Lemma 4.1. Let ∇ be a torsion free connection on (TG, g̃), then the Christoffel symbols
of ∇ have the following properties:

Γk
ij = Γk

ji, Γk̄
ij = Γk̄

ji,

Γk
ı̄j̄ = Γk

j̄ı̄, Γk̄
ı̄j̄ = Γk̄

j̄ı̄,

Γk
ı̄j = Γk

jı̄, Γk̄
ı̄j = Γk̄

jı̄.

Proof. We will just prove the first relation, because others can be proven by the similar
way. Via torsion freeness of ∇, we have the following

0 = [(∂i)c, (∂j)c] = [∂i, ∂j ] = ∇∂i
∂j − ∇∂j

∂i

= (Γk
ij∂k + Γk̄

ij∂k̄) − (Γk
ji∂k + Γk̄

ji∂k̄)

= (Γk
ij − Γk

ji)∂k + (Γk̄
ij − Γk̄

ji)∂k̄.

�
Definition 4.2. A connection ∇ on a Lie group G is said to be left-invariant if for any
two left-invariant vector fields X and Y , the field ∇XY is also left-invariant.

Proposition 4.3. Let (G, g, ∇) be a statistical Lie group with a left-invariant metric g and
a left-invariant connection ∇. If (TG, g̃, ∇) is a statistical Lie group with left-invariant
connection ∇, then we have the following identities

Γr
ijgrk + Γr̄

ikgjr = Γr
jkgri + Γr̄

jigkr = Γr
kigrj + Γr̄

kjgir, (4.1)

Γr̄
ijgrk + Γr

ik̄gjr = Γr
k̄igrj + Γr

k̄jgir = Γr
jk̄gri + Γr̄

jigkr, (4.2)

Γr̄
ij̄grk + Γr̄

ik̄gjr = Γr
j̄k̄gri + Γr̄

j̄igkr = Γr̄
k̄igrj + Γr

k̄j̄gir, (4.3)

Γr̄
ı̄j̄grk + Γr̄

ı̄k̄gjr = Γr̄
j̄k̄gri + Γr̄

j̄ı̄gkr = Γr̄
j̄k̄gri + Γr̄

j̄ı̄gkr. (4.4)

Proof. Using the equation

(∇∂i
g̃)(∂j , ∂k) = −Γr

ijgrk − Γr̄
ikgjr,

and the Codazzi equation
(∇∂i

g̃)(∂j , ∂k) = (∇∂j
g̃)(∂k, ∂i) = (∇∂k

g̃)(∂i, ∂j),
we get (4.1). Also, the following equations

(∇∂i
g̃)(∂j , ∂k̄) = −Γr̄

ijgrk − Γr
ik̄gjr,

(∇∂j
g̃)(∂k̄, ∂i) = −Γr

jk̄gri − Γr̄
jigkr,

(∇∂k̄
g̃)(∂i, ∂j) = −Γr

k̄igrj − Γr
k̄jgir,

and the Codazzi equation
(∇∂i

g̃)(∂j , ∂k̄) = (∇∂j
g̃)(∂k̄, ∂i) = (∇∂j

g̃)(∂k̄, ∂i),
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imply (4.2). Similarly, from

(∇∂i
g̃)(∂j̄ , ∂k̄) = −Γr̄

ij̄grk − Γr̄
ik̄gjr,

(∇∂j̄
g̃)(∂k̄, ∂i) = −Γr

j̄k̄gri − Γr̄
j̄igkr,

(∇∂k̄
g̃)(∂i, ∂j̄) = −Γr̄

k̄igrj − Γr
k̄j̄gir,

and the Codazzi equation
(∇∂i

g̃)(∂j̄ , ∂k̄) = (∇∂j̄
g̃)(∂k̄, ∂i) = (∇∂k̄

g̃)(∂i, ∂j̄),

we get (4.3). Finally
(∇∂ı̄ g̃)(∂j̄ , ∂k̄) = −Γr̄

ı̄j̄grk − Γr̄
ı̄k̄gjr,

and
(∇∂ı̄ g̃)(∂j̄ , ∂k̄) = (∇∂j̄

g̃)(∂k̄, ∂ı̄) = (∇∂k̄
g̃)(∂ı̄, ∂j̄),

give (4.4) which completes the proof. �

Next, we will show that there is no linear left-invariant connection ∇ on the Lie group
(G, g) such that (g̃, ∇c) is a Codazzi pair on TG.

Theorem 4.4. If (G, g, ∇) is a Lie group with a left-invariant metric g and ∇ be a torsion
free and linear left-invariant connection, then the following statements hold:

(1) If (TG, g̃, ∇c) is a statistical Lie group, then (G, g, ∇) is a Riemannian Lie group,
furthermore (g̃, ∇c) is a Codazzi pair on TG.

(2) If (G, g, ∇) is a non-flat Riemannian Lie group, then (g̃, ∇c) is not a Codazzi pair
on TG.

Proof. (1) Since ∂i = (∂i)c, by using the complete lift connection ∇c, we compute
(∇c

∂i
g̃)(∂j , ∂k) = ∂ig̃(∂j , ∂k) − g̃(∇c

∂i
∂j , ∂k) − g̃(∂j , ∇c

∂i
∂k)

= −g̃((∇∂i
∂j)c, (∂k)c) − g̃((∂j)c, (∇∂i

∂k)c)
= −g(∇∂i

∂j , ∂k) − g(∂j , ∇∂i
∂k)

= −Γr
ijgrk − Γr

ikgjr,

(∇c
∂j

g̃)(∂k, ∂i) = −Γr
jkgri − Γr

jigkr,

(∇c
∂k

g̃)(∂i, ∂j) = −Γr
kigrj − Γr

kjgir,

(∇c
∂

i
g̃)(∂j̄ , ∂k̄) = (∇c

∂j̄
g̃)(∂k̄, ∂i) = (∇c

∂k̄
g̃)(∂i, ∂j̄) = 0,

(∇c
∂i

g̃)(∂j , ∂k̄) = (∇c
∂j

g̃)(∂k̄, ∂i) = (∇c
∂k̄

g̃)(∂i, ∂j) = 0,

(∇c
∂i

g̃)(∂j̄ , ∂k̄) = ∂ig̃(∂j̄ , ∂k̄) − g̃(∇c
∂i

∂j̄ , ∂k̄) − g̃(∂j̄ , ∇c
∂i

∂k̄) (4.5)
= g̃((∇∂i

∂j)v, ∂k̄) − g̃(∂j̄ , (∇∂i
∂k)v)

= −g(∇∂i
∂j , ∂k) − g(∂j , ∇∂i

∂k)
= −Γr

ijgrk − Γr
ikgjr,

(∇c
∂j̄

g̃)(∂k̄, ∂i) = −Γr
jigkr, (4.6)

(∇c
∂k̄

g̃)(∂i, ∂j̄) = −Γr
kigrj .

If the Codazzi equation is verified for TG, it implies that Γr
ijgrk = 0, for all i, j, k. Therefore

(g, ∇) is a Riemannian pair for G, furthermore the second part is clear.
(2) If (g̃, ∇c) is a Codazzi pair on TG, then using (4.5), and (4.6), we obtain Γr

ijgrk = 0,
for all i, j, k. On multiplying this equation by gkr, we get nΓr

ij = 0, thus Γr
ij = 0, for all

i, j. This is a contradiction with the non-flatness of the Lie group G. �
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Consider a left-invariant metric g on the tangent Lie group TG over a Lie group G with
a left-invariant metric g and a torsion free left invariant connection ∇ defined by

g = αijdxi.dxj + 2βijdxi.dyj + γijdyi.dyj ,

where αij , βij , γij are smooth functions on TG. Next, we want to search under what
conditions (g, ∇c) is a statistical structure for the Lie group TG.

Theorem 4.5. Let (G, g, ∇) be a statistical Lie group, and ∇ be a torsion free left-
invariant connection. Then (TG, g, ∇c) is a statistical Lie group if and only if the following
identities hold:

(Γr
ik)cβjr + (Γr

ik)vαjr = (Γr
jk)cβri + (Γr

jk)vαri (4.7)
= (Γr

ij)cβrk + (Γr
ij)vαrk,

(Γr
ik)vγjr = (Γr

jk)vγri = (Γr
ki)vγrj + (Γr

kj)vγir = 0, (4.8)

(Γr
ik)vβjr = (Γr

jk)vβir = (Γr
ji)vβrk. (4.9)

Proof. Since (fX)c = f cXv + fvXc, and ∂i = (∂i)c, using the complete lift connection
∇c we have

(∇c
∂i

g)(∂j , ∂k) = ∂ig(∂j , ∂k) − g(∇c
∂i

∂j , ∂k) − g(∂j , ∇c
∂i

∂k)
= −g((∇∂i

∂j)c, ∂k) − g(∂j , (∇∂i
∂k)c)

= −g((Γr
ij∂r)c, ∂k) − g(∂j , (Γr

ik∂r)c)
= −g((Γr

ij)c∂r̄ + (Γr
ij)v∂r, ∂k) − g(∂j , (Γr

ik)c∂r̄ + (Γr
ik)v∂r)

= −(Γr
ij)cg(∂r̄, ∂k) − (Γr

ij)vg(∂r, ∂k)
− (Γr

ik)cg(∂j , ∂r̄) − (Γr
ik)vg(∂j , ∂r),

= −(Γr
ij)cβrk − (Γr

ij)vαrk − (Γr
ik)cβjr − (Γr

ik)vαjr.

Here, we use g(∂r̄, ∂k) = βrk, g(∂r, ∂k) = αrk, and g(∂j , ∂r̄) = βjr, g(∂j , ∂r) = αjr. By
means of the Codazzi equation of TG, we get (4.7). Also, we can get the following

(∇c
∂

i
g)(∂j̄ , ∂k̄) = (∇c

∂j̄
g)(∂k̄, ∂i) = (∇c

∂k̄
g)(∂i, ∂j̄) = 0.

On the other hand, we calculate

(∇c
∂ı̄

g)(∂j̄ , ∂k) = ∂ı̄g(∂j̄ , ∂k) − g(∇c
∂

i
∂j̄ , ∂k) − g(∂j̄ , ∇c

∂
i
∂k)

= −g(∂j̄ , (∇∂i
∂k)v) = −g(∂j̄ , (Γr

ik∂r)v)
= −(Γr

ik)vg(∂j̄ , ∂r̄) = −(Γr
ik)vγjr,

(∇c
∂j̄

g)(∂k, ∂i) = −(Γr
jk)vγri,

(∇c
∂k

g)(∂i, ∂j̄) = −(Γr
ki)vγrj − (Γr

kj)vγir.

Again from the Codazzi equation of TG, we conclude that (4.8) holds. Finally, the fol-
lowing

(∇c
∂i

g)(∂j , ∂k̄) = ∂ig(∂j , ∂k̄) − g(∇c
∂i

∂j , ∂k̄) − g(∂j , ∇c
∂i

∂k̄)
= −g((∇∂i

∂j)c, ∂k̄) − g(∂j , (∇∂i
∂k)v)

= −g((Γr
ij∂r)c, ∂k̄) − g(∂j , (Γr

ik∂r)v)
= −g((Γr

ij)c∂r̄ + (Γr
ij)v∂r, ∂k̄) − g(∂j , (Γr

ik)v∂r̄)
= −(Γr

ij)cg(∂r̄, ∂k̄) − (Γr
ij)vg(∂r, ∂k̄) − (Γr

ik)vg(∂j , ∂r̄)
= −(Γr

ij)cγrk − (Γr
ij)vβrk − (Γr

ik)vβjr,
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and
(∇c

∂j
g)(∂k̄, ∂i) = −(Γr

jk)vβir − (Γr
ji)vβrk − (Γr

ji)cγkr,

(∇c
∂k̄

g)(∂i, ∂j) = −(Γr
ki)vβjr − (Γr

kj)vβir,

verify (4.9) with help of the Codazzi equation of TG. �
It is known that for every Lie group G the space of left-invariant vector fields on G

is a finite dimensional Lie algebra g and we know that an inner product on g defines a
left-invariant pseudo Riemannain metric on G and vice versa. Therefore the existence of
a left invariant statistical connection on a Lie group G is equivalent to the existence of a
left-invariant connection on the Lie algebra of G.

In the following, we introduce a left-invariant statistical connection on a non-abelian
2-dimensional Lie group G, where its Lie algebra is denoted by g. It is known that g is
2-dimensional and non-abelian, and g is generated by X and Y such that [X, Y ] = X,
where X and Y are left-invariant vector fields on G. We consider left-invariant Riemannian
metric g on the Lie algebra of G as follows

g(X, X) = 1, g(X, Y ) = 0, g(Y, Y ) = 1.

Since X and Y are the basis of g, there are constants A, B, C, D, E, F, G, H such that
∇XX = AX + BY,

∇XY = CX + DY,

∇Y X = EX + FY,

∇Y Y = GX + HY.

Direct computations give us
(∇Xg)(X, Y ) = Xg(X, Y ) − g(∇XX, Y ) − g(X, ∇XY )

= −g(AX + BY, Y ) − g(X, CX + DY ) = −B − C,

and also
(∇Y g)(X, X) = Y g(X, X) − g(∇Y X, X) − g(X, ∇Y X)

= −2g(∇Y X, X) = −2g(EX + FY, X) = −2E.

From the Codazzi equation, we obtain B + C = 2E. On the other hand we have
(∇Y g)(Y, X) = Y g(Y, X) − g(∇Y Y, X) − g(Y, ∇Y X)

= −g(GX + HY, X) − g(Y, EX + FY ) = −G − F,

and
(∇Xg)(Y, Y ) = Xg(Y, Y ) − g(∇XY, Y ) − g(Y, ∇XY )

= −2g(∇XY, Y ) = −2g(CX + DY, Y ) = −2D.

From the Codazzi equation, we obtain 2D = G + F . Since ∇ is torsion free, we deduce
that

X = [X, Y ] = ∇XY − ∇Y X = (CX + DY ) − (EX + FY ) = (C − E)X + (D − F )Y,

therefore, C = 1 + E, D = F . According to above equations we deduce that F = G = D
and C = B + 2 and E = B + 1. Hence, the all left-invariant statistical connections on a
2-dimensional non-abelian Lie group G are the following form

∇XX = AX + BY,

∇XY = (B + 2)X + DY,

∇Y X = (B + 1)X + DY,

∇Y Y = DX + HY.
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Proposition 4.6. There are infinite left-invariant statistical connections on a 2-
dimensional non-abelian Lie group (G, g).

Now, we will show that if (G, g) is a 2-dimensional non-abelian statistical Lie group
with a left-invariant connection ∇, then there is not any left-invariant pseudo-Riemannian
metric g on TG such that (g, ∇c) is a Codazzi pair for TG.

In the equation (4.7), if we consider i = 1, j = 2, k = 1, and i = 2, j = 1, k = 2, we
implies that α11 = 0 and α12 = 0. In the equation (4.9), if we consider i = 1, j = 2, k = 2,
and i = 2, j = k = 1, we implies that β12 = 0 and β11 = 0. Thus, pseudo-Riemannian
metric g on TG is degenerate and this is a contradiction. Hence, we state the following
theorem.

Theorem 4.7. There is no left-invariant pseudo-Riemannian metric g on TG such that
(g, ∇c) is a Codazzi pair for TG, where (G, g) is a 2-dimensional non-abelian Lie group
equipped with a left-invariant statistical connection ∇.

In the following, we introduce a family of left-invariant statistical connections on a non-
abelian 3-dimensional Lie group G. We know that the all of non-abelian 3-dimensional
Lie algebras such as g are in seven classes and one of them is the Lie algebra g̃ generated
by the orthonormal basis X, Y, Z such that [Y, Z] = X. Now, we introduce a left-invariant
statistical connection on the Lie algebra g̃. We consider a left-invariant Riemannian metric
g on the Lie algebra g̃ as follows

g(X, X) = g(Y, Y ) = g(Z, Z) = 1,

g(X, Y ) = g(X, Z) = g(Y, Z) = 0.

Since X, Y, Z are the basis of g̃, there are real constants a1, a2, · · · , c9 such that

∇XX = a1X + a2Y + a3Z,

∇XY = a4X + a5Y + a6Z,

∇XZ = a7X + a8Y + a9Z,

∇Y X = b1X + b2Y + b3Z,

∇Y Y = b4X + b5Y + b6Z,

∇Y Z = b7X + b8Y + b9Z,

∇ZX = c1X + c2Y + c3Z,

∇ZY = c4X + c5Y + c6Z,

∇ZZ = c7X + c8Y + c9Z.

Direct computations give us

(∇Xg)(X, Y ) = Xg(X, Y ) − g(∇XX, Y ) − g(X, ∇XY ) = −a2 − a4,

(∇Y g)(X, X) = Y g(X, X) − g(∇Y X, X) − g(X, ∇Y X) = −2b1,

(∇Xg)(X, Z) = Xg(X, Z) − g(∇XX, Z) − g(X, ∇XZ) = −a3 − a7,

(∇Zg)(X, X) = Zg(X, X) − g(∇ZX, X) − g(X, ∇ZX) = −2c1,

(∇Xg)(Y, Y ) = Xg(Y, Y ) − g(∇XY, Y ) − g(Y, ∇XY ) = −2a5,

(∇Y g)(X, Y ) = Y g(X, Y ) − g(∇Y X, Y ) − g(X, ∇Y Y ) = −b2 − b4,

(∇Xg)(Z, Z) = Xg(Z, Z) − g(∇XZ, Z) − g(Z, ∇XZ) = −2a9,

(∇Zg)(X, Z) = Zg(X, Z) − g(∇ZX, Z) − g(X, ∇ZZ) = −c3 − c7.
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(∇Y g)(Z, Z) = Y g(Z, Z) − g(∇Y Z, Z) − g(Z, ∇Y Z) = −2b9,

(∇Zg)(Y, Z) = Zg(Y, Z) − g(∇ZY, Z) − g(Y, ∇ZZ) = −c6 − c8.

(∇Zg)(Y, Y ) = Zg(Y, Y ) − g(∇ZY, Y ) − g(Y, ∇ZY ) = −2c5,

(∇Y g)(Z, Y ) = Y g(Z, Y ) − g(∇Y Z, Y ) − g(Z, ∇Y Y ) = −b8 − b6.

Repeatedly using the Codazzi equation we respectively deduce that

a2 + a4 = 2b1, a3 + a7 = 2c1,

b2 + b4 = 2a5, c3 + c7 = 2a9,

c6 + c8 = 2b9, b8 + b6 = 2c5.

Also, the torsion freeness of ∇ implies that

X = [Y, Z] = ∇Y Z − ∇ZY = (b7 − c4)X + (b8 − c5)Y + (b9 − c6)Z.

Thus, we get b7 = 1 + c4, b8 = c5, b9 = c6. With help of the properties of the Lie bracket
and torsion freeness of ∇, we get

0 = [X, Z] = ∇XZ − ∇ZX = (a7 − c1)X + (a8 − c2)Y + (a9 − c3)Z,

from which we obtain a7 = c1, a8 = c2, a9 = c3. By [X, Y ] = 0, we deduce that a4 =
b1, a5 = b2, a6 = b3. Since (∇Xg)(Y, Z) is totally symmetric, we implies that a6 + a9 =
b3 +b7 = c2 +c4. According to the above equations we implies that the following identities
hold

a3 = a7, a4 = a2, a9 = b7, a4 = b1, a5 = b2, a6 = b3 = c2 − 1, b6 = c5,

b7 = 1 + c4, b8 = c5, b9 = c6, a7 = c1, a8 = c2, a9 = c3 = c7, c6 = c8.

Hence, we have the following theorem.

Theorem 4.8. If (G, g) is a non-abelian 3-dimensional Lie group with a left invariant
metric g such that its Lie algebra is g̃ (as above), then there are infinite left-invariant sta-
tistical connections on it. In fact, there is an infinite non-abelian 3-dimensional statistical
Lie group (G, g) equipped with the Lie algebra g̃ (as above).

Here, we will show that if (G, g) is a non-abelian 3-dimensional Lie group with a left-
invariant metric g and a left-invariant connection ∇ such that its Lie algebra is g̃ (as above),
then there is no left-invariant pseudo-Riemannian metric g on TG such that (g, ∇c) be a
Codazzi pair for TG.

In the equation (4.7), if we consider i = 2, j = 3, k = 2 and i = 3, j = 2, k = 3, then we
obtain α12 = α13 = 0. Also, in the equation (4.7), if we replace i = 1, j = 2, k = 3 and
i = 1, j = 3, k = 2, we obtain α11 = 0.

On the other hand, in the equation (4.9), if we consider i = 3, j = 2, k = 2 and
i = 2, j = 3, k = 3, then we obtain β12 = β13 = 0. Also, in the equation (4.9), if we
replace i = 2, j = 1, k = 3 and i = 2, j = 3, k = 1, we obtain β11 = 0. Thus, the pseudo-
Riemannian metric g is degenerate and this is a contradiction. Therefore, we have the
following theorem.

Theorem 4.9. There is no left-invariant pseudo-Riemannian metric g on TG such that
(g, ∇c) is a Codazzi pair for TG, where (G, g) is a 3-dimensional non-abelian Lie group
equipped with a left invariant metric g and a left-invariant statistical connection ∇ such
that its Lie algebra is g̃ (as above).

Now, we will consider 3-dimensional non-abelian Lie group (G, g) with a left-invariant
metric g such that its Lie algebra is g1 and it has three non zero brackets. We know that
g1 is 3-dimensional and non-abelian and generated by the orthonormal basis X, Y, Z such
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that [X, Y ] = Z, [X, Z] = −Y, [Y, Z] = X. When we use the proof of Theorem 4.8, we
implies that the following identities hold

a2 = a4 = b1, a3 = c1, a5 = b2 = b4, a6 = 1 + b3, a7 = c1,

a8 = −1 + c2, a9 = c3 = c7, b6 = b8 = c5, b7 = 1 + c4, c8 = c6,

which give

Theorem 4.10. If (G, g) is a non-abelian 3-dimensional Lie group with a left-invariant
metric g such that its Lie algebra is g1 (as above), then there are infinite left-invariant sta-
tistical connections on it. In fact, there is an infinite non-abelian 3-dimensional statistical
Lie group (G, g) equipped with the Lie algebra g1 (as above).

Let us show that if (G, g) is a non-abelian 3-dimensional Lie group with a left-invariant
metric g and a left-invariant connection ∇ such that its Lie algebra is g1 (as above),
then there is no left-invariant pseudo-Riemannian metric g on TG such that (g, ∇c) be a
Codazzi pair for Lie group TG.

In equation (4.7), if we consider i = 1, j = 3, k = 1, and i = 3, j = 2, k = 3, we obtain
α21 = α13 = 0. Moreover, in the equation (4.7), if we consider i = 3, j = 1, k = 2, and
i = 3, j = 2, k = 1, we deduce that α33 = 0. Therefore, the third row of α is zero. As the
following proof for α, we deduce that the third row of β is zero. Thus g is degenerate and
this is a contradiction. Thus, we have the following theorem.

Theorem 4.11. There is no left-invariant pseudo-Riemannian metric g on TG such that
(g, ∇c) be a Codazzi pair for TG, where (G, g) is a 3-dimensional non-abelian Lie group
equipped with a left invariant metric g and a left-invariant statistical connection ∇, such
that its Lie algebra is g1 (as above).

Here, we will consider a 3-dimensional non-abelian Lie group (G, g) with a left-invariant
metric g such that its Lie algebra is g2 and it has two non zero brackets. We know that
g2 is 3-dimensional and non-abelian and generated by the orthonormal basis X, Y, Z such
that [X, Z] = X, [Y, Z] = X + Y . If we follow the proof of Theorem 4.8, we see that the
following identities hold

a2 = a4 = b1, a3 = c1 − 1, a5 = b2 = b4, a6 = b3, a7 = 1 + c1, a8 = c2,

a9 = c3 = c7, b6 = c5 − 1, b7 = 1 + c2, b8 = 1 + c5, b9 = c6 = c8.

Theorem 4.12. If (G, g) is a non-abelian 3-dimensional Lie group with a left-invariant
metric g such that its Lie algebra is g2 (as above), then there are infinite left-invariant sta-
tistical connections on it. In fact, there is an infinite non-abelian 3-dimensional statistical
Lie group (G, g) equipped with the Lie algebra g2 (as above).

Finally, we will show that if (G, g) is a non-abelian 3-dimensional Lie group with a
left-invariant metric g and a left-invariant connection ∇ such that its Lie algebra is g2
(as above), then there is no left-invariant pseudo-Riemannian metric g on TG such that
(g, ∇c) is a Codazzi pair for TG.

In the equation (4.7), if we consider i = 1, j = 3, k = 1, and i = 3, j = 1, k = 3, we
obtain α11 = α13 = 0. In addition, in the equation (4.7), if we consider i = 3, j = 2, k = 3,
we obtain α23 = 0. Finally, in the equation (4.7), if we consider i = 2, j = 1, k = 3, and
i = 2, j = 3, k = 1, we deduce that α12 = 0. Therefore the first row of α is zero. As
following the proof for α, we deduce that the first row of β is zero. Hence, g is degenerate
and this is a contradiction. Therefore, we have the following theorem.

Theorem 4.13. There is no left-invariant pseudo-Riemannian metric g on TG such that
(g, ∇c) be a Codazzi pair for TG, where (G, g) is a 3-dimensional non-abelian Lie group
equipped with a left invariant metric g and a left-invariant statistical connection ∇, such
that its Lie algebra is g2 (as above).
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