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1. INTRODUCTION

The original Sommerfeld diffraction problem has been solved in closed analytical form
firstly by Arnold Sommerfeld in 1896 with the help of Fresnel integrals [84, 103]. An analytical
solution with the so-called Wiener-Hopf technique was found in the 1940s, see [58, 86, 121]. It
allowed a better understanding of the asymptotic behaviour of the solution, see also [66].

Another fourty years later, it has been proved to be well posed in the sense of Hadamard
[47, 68] in certain Sobolev space settings [77, 107]. Moreover, the resolvent operator has been
identified as an explicit formula based upon operator factorisation in the sense of Shinbrot in
the context of a wider class of problems [33, 101, 106, 107]. We describe the corresponding basic
ideas in the next two sections. It leads us to a detailed study of the Wiener-Hopf factorisation
of matrix functions which will be discussed in Section 4. In Section 5, a general concept of
operator factorisation in linear boundary value and transmission problems is briefly outlined.
Section 6 is devoted to the choice of adequate function(al) spaces and symbol classes occurring
from diffraction theory. In Section 7, we expose some logical sharp concepts of equivalence
and reduction coming up with operator factorisation and with the aim to construct resolvent
operators, i.e., inverses (or generalised inverses) of operators associated with linear boundary
value and transmission problems. Section 8 presents a glance at concepts which are more gen-
eral than operator factorisation, namely given by certain operator relations with applications in
diffraction theory. In the last section, we demonstrate the usefulness of the preceding concepts
once again by the generalisation of Sommerfeld problems from two to higher dimensions. At
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184 From Sommerfeld Diffraction Problems to Operator Factorisation

the end of each section, the reader may find a short historical review of selected relevant pub-
lications.

The operator theoretical approach has the advantage of a compact presentation of results
simultaneously for wide classes of diffraction problems which are analytically solvable by the
Wiener-Hopf method and it gives a different and deeper understanding of the solution pro-
cedures. An interpretation in the physical sense, such as a consideration of the solution of a
boundary value problem as the perturbed wave field in the diffraction of time-harmonic wave
propagation, can be found in the cited literature, see [69, 70, 71, 72], for instance.

The main objective of this article is to demonstrate how real applications naturally guide
us to operator factorisation concepts and how useful those are to simplify and to strengthen
the reasoning in the applications. The exposition of these concepts will be accompanied by
concrete problems closely connected with the Rawlins problem [92, 93].

2. FROM THE CLASSICAL WIENER-HOPF TECHNIQUE TO OPERATOR FACTORISATION

First, we consider the linear (non-singular) convolution equation on the real half-line

(2.1) Wf(x) = af(x) −
∫ ∞

0

K(x− y) f(y) dy = g(x) , x > 0.

Herein a ∈ C\{0},K ∈ L1(R) and g ∈ Lp(R+), p ∈ [1,∞] are (arbitrarily) given and f ∈ Lp(R+)
is unknown, R+ = (0,∞). It is well known thatW defines a bounded linear operator acting in
a Banach space X = Lp(R+)

(2.2) W : Lp(R+) → Lp(R+) ,

in briefW ∈ L(Lp(R+)), known as classical Wiener-Hopf operator (WHO) [42, 62, 79]. For sim-
plicity, we abbreviate Lp = Lp(R) and choose a = 1 and p = 2 in this discussion, focusing the
scalar case (instead of systems of equations [43]).

Now, let us look at the steps of the Wiener-Hopf technique [70, 86] from the viewpoint of
operator theory. Certainly one likes to find out whether the equation (2.1) is uniquely solvable
and, in this case, the solution f depends continuously on the given function g, (i.e., whether
(2.1) is well-posed) and also to obtain an explicit analytical formula for the solution, in brief to
determine W−1 ∈ L(L2(R+)) if possible. To this end, we need some notation. We denote in
(2.1) the convolution operator on the full real line by A and obtain with the help of the Fourier
transformation F from the convolution theorem that

A = I +K∗ = F−1 Φ · F : L2 → L2 ,(2.3)

Φ = 1 + FK ∈ L∞(R),

FK(ξ) =
1√
2π

∫
R
eixξK(x) dx , ξ ∈ R .

Hence, the classical Wiener-Hopf operator can be written as

(2.4) W = r+A`0 = L2(R+) → L2(R+)

where r+ and `0 denote the restriction and zero extension operator, respectively:

(2.5) r+ : L2(R) → L2(R+) , `0 : L2(R+) → L2(R) ,

which are bounded linear operators. Obviously, we have

(2.6) r+ `0 = IL2(R+) , P = `0 r+ ∈ L(L2),
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where P is a projector acting in L2, i.e., P ∈ L(L2) , P 2 = P , with image (or range) and kernel
(or null space) given by

imP = L2
+ = {f ∈ L2 : supp f ⊂ R+} ,(2.7)

kerP = L2
− = {f ∈ L2 : supp f ⊂ R−} .

We shall say that P projects onto imP along kerP .
With the help of this basic notation the steps of the Wiener-Hopf technique can be described

as follows. First, the equation (2.1) is extended by zero to an equation holding on the full line:

(2.8) Af+ = g+ + g−,

where g+ = `0 g ∈ L2
+ is known and f+ = `0 g ∈ L2

+ , g− ∈ L2
− are unknown provided (2.1) is

solvable.
In what follows the Fourier symbol Φ = 1 + FK of A plays a decisive role. Note that this

function is also referred to as "Fourier transformed kernel" or simply as "kernel" in some pa-
pers such as [63] which has to be distinguished from the convolution kernel K of the integral
operator A and from the kernel (or null space) of a linear operator like A or W (hence we avoid
calling Φ a kernel).

Now, let us assume that |Φ| is bounded from below. Since the Fourier symbol Φ ofA belongs
to the Wiener algebra C ⊕FL1 (with Φ(∞) = 1), it allows a factorisation [44, 62]

Φ = Φ− ζκ Φ+ ,(2.9)

κ =
1

2π

∫
R
d arg Φ(ξ)dξ ∈ Z , ζ(ξ) =

ξ − i
ξ + i

, ξ ∈ R ,

Φ± = exp{F `0 r±F−1 log(ζ−κ Φ)} .

With the help of this factorisation one can continue considering the Fourier transformed equa-
tion of (2.8) (as common in the classical Wiener-Hopf technique [86]) or, alternatively, making
directly use of the operator factorisation that results from (2.9):

A = A− C A+ ,(2.10)

A± = F−1 Φ± · F , C = F−1 ζκ · F : L2 → L2 .

All the three factors A−, C,A+ are isomorphisms in L2 (i.e., linear homeomorphisms, bound-
edly invertible operators), and the inverses are convolution operators with Fourier symbols
Φ−1
− , ζ−κ,Φ−1

+ in the Wiener algebra and value 1 at infinity.
The next step in the Wiener-Hopf technique is a rearrangement of equation (2.8) which is

different depending on whether κ ≥ 0 or κ ≤ 0 (and coinciding for κ = 0 where C = I),
namely

CA+ f+ = A−1
− g+ + A−1

− g− , if κ ≥ 0,(2.11)

A+ f+ = C−1A−1
− g+ + C−1A−1

− g− , if κ ≤ 0 .

Now, the classical Wiener-Hopf technique [86] works with holomorphy properties of the
Fourier transformed terms of the equation and an additive decomposition of the first term on
the right hand side which results in the same conclusion as applying the projector P on the two
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equations, briefly

PCA+ f+ = PA−1
− g+ , if κ ≥ 0,(2.12)

PA+ f+ = PC−1A−1
− g+ , if κ ≤ 0 .

This is just a consequence of the invariance properties of the factors: A+ maps imP onto itself,
A− maps kerP onto itself. Furthermore, in case of κ ≥ 0, the middle factor C maps imP into
itself, whilst C−1 maps kerP into itself, and in case of κ ≤ 0, it’s the other way around. These
properties altogether are equivalent to the following formulas, so-called invariance properties
of the factors:

PA+P = A+P , PA−1
+ P = A−1

+ P ,(2.13)

PA−P = PA− , PA−1
− P = PA−1

− ,

PCP = CP , PC−1P = PC−1 , if κ ≥ 0 ,

PCP = PC , PC−1P = C−1P , if κ ≤ 0 .

If κ ≥ 0, the equation (2.12) can be easily transformed with the help of the factor properties
(2.13) into

(2.14) f+ = A−1
+ P C−1 P A−1

− g+ ∈ L2
+ .

In the original setting (2.1), we obtain

(2.15) f = r+A
−1
+ P C−1 P A−1

− `0 g ∈ L2(R+) .

However, this formula holds only if the equation (2.1) is solvable (as we started from the
assumption that (2.1) holds). Looking carefully at (2.11) one can find (for κ > 0) a necessary
solubility condition, namely PA−1

− g+ ∈ imPCL2
+, which can be verified to be sufficient, as

well.
Instead of this argumentation one can prove that (2.15) presents a left inverse of the operator

W in (2.4) for all κ ≥ 0 by the help of (2.13). Similarly one verifies that it gives a right inverse
ofW in the case of κ ≤ 0.

Denoting these one-sided inverses byW− we have in the case κ > 0 a (non-trivial) projector
onto the image ofW given byWW− and in the case κ < 0 a (non-trivial) projector along the
kernel ofW given byW−W . So, we obtain as a common operator theoretical interpretation:

Theorem 2.1. Let W be given by (2.4) where |Φ| be bounded from below, i.e., A ∈ L(L2(R)) is an
isomorphism, and letW− be the operator from (2.15). Then, we have for

• κ = 0: Equation (2.1) is uniquely solvable by (2.15) (where C = I) for any g ∈ L2(R+).
• κ > 0: Equation (2.1) is solvable for a certain g ∈ L2(R+) if and only if g satisfies the condition

WW− g = r+A−PCPC
−1PA−1

− `0g = g .

In this case, (2.15) presents the unique solution.
• κ < 0: Equation (2.1) is solvable for all g ∈ L2(R+). The general solution reads

f = W− g + (I −W−W)h , h ∈ L2(R+)

W−W = r+A
−1
+ PC−1PCPA+`0 .

Remark 2.1. Moreover one can conclude that W is a Fredholm operator, i.e., its defect numbers are
finite: dim kerW <∞, codim imW <∞. The solubility conditions in the case κ > 0 can be written
as κ orthogonality conditions using a suitable basis of L2. The kernel ofW can also be explicitly written
as a −κ - dimensional subspace of L2(R+) [42, 62, 79]. Details are given later in (7.91) - (7.94).



Frank-Olme Speck 187

Remark 2.2. It is well known that the appearance of one-sided invertibility has a deeper background
in the Theorem of Coburn, see [10, Section 2.6], which allows the conclusion that for certain classes of
operators (such as classical scalar Toeplitz and Wiener-Hopf operators), the Fredholm property implies
one-sided invertibility.

Hence the question arises if, in a general setting, a factorisation of A with the factor prop-
erties (2.13) is not only sufficient for the one-sided invertibility of W , but moreover if such a
factorisation is necessary, as well. For clarity, let us first see the case whereW is invertible and
C = I coming back to the general case later. To this end, we need the following notation.

Let X be a Banach space, A ∈ L(X) and P ∈ L(X) a projector, and put Q = I −P , PX =
imP = kerQ , QX = imQ = kerP for convenience. Then

(2.16) W = P A|PX : PX → PX

is referred to as general Wiener-Hopf operator (WHO). If A is an isomorphism, an operator pair
A+ , A− ∈ L(X) is said to be a strong (right) WH factorisation of A with respect to (X,P ) if

(2.17) A = A−A+

and the first two lines of the relations (2.13) are satisfied, i.e., A+ leaves imP invariant and
A− leaves kerP invariant. As a standard situation in this general setting we shall work only
with Banach spaces; other convenient frameworks could be topological vector spaces or Hilbert
spaces.

Remark 2.3. The classical WHO (2.4) is not of the form (2.16) as L2(R+) is not a subspace of L2(R).
But L2(R+) is isomorphic to the subspace L2

+ ⊂ L2(R), see (2.5) - (2.7). With the operator P of (2.6),
we therefore have

W = `0 r+A`0 r+|L2
+

= `0W r+ : L2
+ → L2

+ ,

W = r+ P A|PX `0 = r+W `0 : L2(R+)→ L2(R+) ,

i.e., the classical WHO is equivalent to an operator of the form of a general WHO (2.16).

Remember that two bounded linear operators S, T acting in Banach spaces are said to be
equivalent, if there are isomorphisms E,F such that

T = E S F ,

briefly written as
T ∼ S .

Theorem 2.2 (of Devinatz and Shinbrot). Let the assumptions of (2.16) be fulfilled and A be an iso-
morphism. Then, the WHOW is boundedly invertible if and only ifA admits a strong WH factorisation
with respect to (X,P ). In this case, the inverse of W is given by

(2.18) W−1 = A−1
+ P A−1

− |PX : PX → PX.

The proof is quite elementary, although not at all constructive. Sufficiency is verified with
the help of the factor properties (2.13). Necessity is proved as follows: If W is invertible in
L(PX), then P A + Q is invertible in L(X) because of the well-known relation

P AP + Q = (I − P AQ) (P A + Q),

where P AP + Q is obviously invertible and (I − P AQ)−1 = I + P AQ. Now put just

A = A−A+ = A− (P A + Q)

and verify the factor properties, see [106] for details.
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This result was a cornerstone for the study of general Wiener-Hopf operators as given by
(2.16) and moreover for general WHOs in an asymmetric space setting [106, 112] defined as
follows.

Let X,Y be Banach spaces, A ∈ L(X,Y ) an isomorphism, P1 ∈ L(X) , P2 ∈ L(Y ) two
projectors, and put Qj = I − Pj , P1X = imP1 = kerQ1 etc. for convenience. Then

(2.19) W = P2A|P1X : P1X → P2Y

is referred to as a general WHO (in asymmetric setting).
The case of one-sided invertible WHOs can be seen as a special case of generalised invertibility,

i.e., for T ∈ L(X,Y ) there exists an operator T− such that

(2.20) T T− T = T.

This conception allows a unified discussion of many kinds of general WHOs and their real-
isations. It will be extended later in Section 7.

In what concerns Sommerfeld diffraction problems several modifications of the WHO (2.1)
have to be considered, particularly:

• operators acting between different (Sobolev-like) functional spaces,
• matrix instead of scalar operators,
• more general Fourier symbol classes (rather than the Wiener algebra).

The need of these generalisations will be shown in the following Sections 3, 4, and 6, respec-
tively.

Historical remarks.
Wiener-Hopf equations are named after Norbert Wiener and Eberhard Hopf who considered

this kind of equations in 1931 (in German) [122]. Crucial progress in the solution of WH equa-
tions was presented in the fundamental paper by Mark Krein in 1958 (in Russian) [62] and for
systems by Israel Gohberg and Mark Krein in the same year [43] (which was even published
before the previous). Various function spaces were considered besides the Lebesgue spaces
(with similar results) and also various symbol classes besides the Wiener algebra allowed simi-
lar results, because the Hilbert transformation is continuous in so-called decomposing algebras
(including Hölder continuous functions). Other symbol classes (like the continuous functions)
are not decomposing, the (formal) factors are not in the same class, see the books by I.C. Go-
hberg and I.A. Fel’dman [42] or Solomon Grigor’evich Mikhlin and Siegfried Prössdorf [79]
and the most important article on generalised factorisation by I.B. Simonenko from 1968 [102].

The Wiener-Hopf technique (also called WH method or WH procedure) developed parallel
to the previous advances in applications, mainly by British researchers, see the famous books
of Ben Noble from 1958 [86], by Douglas Jones from 1964 [58], as well as the surveys on the
classical WH method in applications by David Abrahams [2] and another one by Jane Lawrie
and David Abrahams [63]. Further remarkable progress was obtained for instance in Canada
by Albert Heins and Robert Allan Hurd (loc. cit.), in Russia, see the book of Lev Weinstein
[121], and later in Turkey by Mithat Idemen [56], A. Hamit Serbest et al. [98].

General WHOs were introduced by Marvin Shinbrot in 1964 [101]. Theorem 2.5 appeared
in a paper with Allan Devinatz in 1969 [33] firstly for separable Hilbert spaces with a rather
complicated proof, a year after a more general result about one-sided invertibility of ring ele-
ments (instead of PAP ∈ L(X)) that was already published by Grigorii Chebotarev in 1968
(in Russian) [29], under the name abstract WHO.

Some ideas about general WHOs appeared independently under the names truncation, pro-
jection, or compression of an operator, see the books [10, 44, 65], for instance.
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Also, in the context of pseudo-differential operators (acting in Sobolev spaces) we can find
similar ideas and related results, see [41, 117]. Some higher dimensional WH equations in
applications have been addressed in [45, 75], for instance.

The connection between classical and general WHOs was firstly pointed out in [33, 75], see
also [71, 72].

3. THE WH EQUATIONS IN SOMMERFELD HALF-PLANE PROBLEMS

A Sommerfeld half-plane problem is here referred to as to determine the solution u of a bound-
ary value problem for the Helmholtz equation

(∆ + k2)u(x) =
∂2u(x)

∂x2
1

+
∂2u(x)

∂x2
2

+
∂2u(x)

∂x2
3

+ k2u(x) = 0

in the slit domain Ω = R3 \ Σ, where the screen Σ is a half-plane Σ = {x = (x1, x2, x3) ∈
R3 : x1 ≥ 0 , x2 = 0} on which the field u is known, or its normal derivative or another linear
boundary condition is prescribed on the two sides Σ±of the screen (corresponding with x1 ≥
0 , x2 = ±0). The wave number k is assumed to have a positive imaginary part throughout this
paper. With the argument that in certain cases (as for a plane wave incoming perpendicularly
to the edge of the screen) the solution will not depend on the third variable, the problem is
modified to be a two-dimensional one, briefly written as

(∆ + k2)u = 0 in Ω,(3.21)

T0,Σ± u = g on Σ±

in case of the Sommerfeld-Dirichlet problem, with the trace operator T0,Σ± . More precisely, we like
to show that the problem is well-posed in a somehow reasonable space setting, and therefore
we are looking for a weak solution in the energy space H1 such that g has to be (arbitrarily)
given in the trace space H1/2(R+) = r+H

1/2 identifying the two banks Σ± of the screen with
the half-line R+. Moreover, an explicit solution in closed analytical form is wanted. See [77, 107]
for more details.

We shall work mainly with the spaces of Bessel potentials Hs which coincide with the
Sobolev spaces W s,p in the case s ∈ Z , p = 2 and the Sobolev-Slobodeckij spaces for s ∈
R , p = 2, all briefly referred to as Sobolev spaces [3, 41, 52, 119, 120, 124].

It has been shown [107] that problem (3.21) is solvable if and only if the difference of the
traces of the normal derivative of u on the upper and lower bank of the full line {(x1, x2) ∈
R2 : x2 = 0} (identified with R), respectively, f ∈ H−1/2(R) satisfies the equation

(3.22) r+AΦ f = 2g,

where AΦ = F−1 Φ · F , Φ(ξ) = (ξ2 − k2)−1/2 , ξ ∈ R, i.e., AΦ is a convolution (or pseudo-
differential) operator of order −1 and an isomorphism from H−1/2(R) onto H1/2(R). Further-
more, the functional f has to be supported on the positive half-line, which will be indicated by
f ∈ H

−1/2
+ (analogously to the definition of L2

+). It is important that the formulas (2.5) - (2.6)
are valid for Hs instead of L2 if and only if |s| < 1/2, see [41]. The different analytical nature
of the spaces H±1/2(R+) and H±1/2

+ is crucial. It is well-known [46, 52] that the spaces

H̃s(R+) = {f ∈ Hs(R+) : r+ f ∈ Hs
+} , s ≥ −1

2
,
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equipped with the norm of Hs
+, satisfy

H̃s(R+) = Hs(R+) , |s| < 1

2
,

H̃s(R+)
⊂

dense Hs(R+) , s = ±1

2
,

H̃s(R+) ⊂ C(R+) , s >
1

2
.

For these reasons it is not convenient to consider equation (3.22) as a WH integral equation
of the first kind in L2, but as a WH equation in asymmetric space setting with a WHO defined
by

(3.23) W = r+AΦ|H−1/2
+

: H
−1/2
+ → H1/2(R+),

where the convolutionAΦ = F−1 Φ · F : H−1/2 → H1/2 is invertible byA−1
Φ = F−1 Φ−1 · F .

Remark 3.4. Note that the operator W does not have the form of a general WHO in asymmetric space
setting (2.19), because r+ : H1/2 → H1/2(R+) is not a projector in H1/2, nor is it equivalent to
a WHO in H1/2(R+) in the same way as in the L2 setting, because `0 does not act from H1/2(R+)

into H1/2(R). However, any continuous extension operator `c : H1/2(R+) → H1/2(R) with P2 =

`c r+ = P 2
2 ∈ H1/2(R) will serve this purpose and leads to more complicated formulas explained

below.

The square root function that appears in the Fourier symbol of AΦ (with =mk > 0) is of
great importance. We shall denote it by

(3.24) t(ξ) = (ξ2 − k2)1/2 , ξ ∈ R,

and take the branch cut from k to −k vertically via∞ such that

t(ξ) ≈ |ξ| , as ξ → ±∞.

Its factorisation (with corresponding branches)

(3.25) t(ξ) = (ξ − k)1/2 (ξ + k)1/2 = t
1/2
− (ξ) t

1/2
+ (ξ), ξ ∈ R,

is closely connected with the definition of the one-dimensional Sobolev spaces [41] and some
important properties. Firstly, we have

Hs = At−s L
2,

Hs
+ = At−s+

L2
+ , Hs

− = At−s−
L2
−,(3.26)

Hs(R+) = r+At−s−
L2

+ , Hs(R−) = r−At−s+
L2
−,

for all s ∈ R (in a distributional sense for s < 0). Note that in these formulas the wave number
k takes over the common role of the imaginary unit i because of the assumption of =mk >
0 (the dependence on k is here suppressed for brevity). Moreover, they serve to construct
projectors and extension operators (mentioned before) that are most convenient in the present
context [22, 25].

To make the connection between (3.23) and (2.19) it is necessary to find convenient projectors
and extension operators. This step is a little technical, however leads to a rigorous understand-
ing of classical as general WHOs.
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For any s ∈ R, we find projectors in Hs abbreviating now (for cosmetic reasons) P+ =
`0r+ ∈ L(L2) and P− = I − P+ = `0r− by putting

P
(s)
+ = At−s+

P+Ats+ onto Hs
+,(3.27)

P
(s)
− = At−s−

P−Ats− onto Hs
−,

Π
(s)
+ = At−s−

P+Ats− along Hs
−,

Π
(s)
− = At−s+

P−Ats+ along Hs
+,

which are orthogonal (in the common sense) for k = i. Hence, P (s)
+ + Π

(s)
− = IHs and P

(s)
− +

Π
(s)
+ = IHs for any s ∈ R. Suitable extension operators are (because of (3.26)) given by

`
(s)
+ = At−s−

P+Ats− `
(s) : Hs(R+) → Hs(R),

`
(s)
− = At−s+

P−Ats+ `
(s) : Hs(R−) → Hs(R),

where `(s) stands for an arbitrary extension into Hs, see [41]. Obviously, we have the analogue
of (2.6)

r+ `
(s)
+ = IHs(R+) , Π

(s)
+ = `

(s)
+ r+ ∈ L(Hs).

Now, we are in the position for a strict understanding of (3.23) in the sense of an asymmetric
general WHO and its inversion in the spirit of Theorem 2.5. First, we see that W is equivalent
to the operator

(3.28) `
(1/2)
+ W = Π

(1/2)
+ AΦ| imP

(−1/2)
+

: H
−1/2
+ → `

(1/2)
+ H1/2(R+),

which has the form of (2.19). Second, the idea of a strong factorisation (2.10) (with C = I)
extends to the asymmetric case

AΦ = A
t
−1/2
−

A
t
−1/2
+

(3.29)

: H1/2 ←− L2 ←− H−1/2,

a factorisation into isomorphisms between the indicated spaces with factor properties analo-
gous to the symmetric space case (2.17)

PA+P1 = A+P1 , P1A
−1
+ P = A−1

+ P ,(3.30)

P2A−P = P2A− , PA−1
− P2 = PA−1

− ,

with the previous interpretation of operators, namely P1 = P
(−1/2)
+ , P = `0r+, , P2 = Π

(1/2)
+ .

It follows that the equation (3.22) is solved by the asymmetric analogue of (2.18):

(3.31) f = W−1 2g = A−1
+ P A−1

− |P2Y `
(1/2) 2g.

Moreover, it turns out that the idea of Theorem 2.5 works for general WHOs in asymmetric
space setting, as well, see [106, Chapter 2] or [113, Theorem 2.1]:

Theorem 3.3. Let X,Y be Banach spaces, A ∈ L(X,Y ) an isomorphism and P1 ∈ L(X) , P2 ∈
L(Y ) two projectors. Then the (general) WHO

(3.32) W = P2A|P1X : P1X → P2Y
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is boundedly invertible if and only if A admits a strong WH factorisation with respect to (X,Y, P1, P2):

A = A− A+(3.33)
: Y ←− Z ←− X,

where Z is a Banach space, P ∈ L(Z) a projector, and the relations (3.30) are satisfied. In this case, the
inverse of W is given by

(3.34) W−1 = A−1
+ P A−1

− |P2Y : P2Y → P1X.

The previous concept is applicable to various classes of diffraction problems that lead to
systems of WH equations, as well. As a first example, we consider the Rawlins problem [77, 93,
107] where, instead of the Dirichlet condition on both banks of the screen (see (3.21)), a Dirichlet
condition on the upper bank and a Neumann condition on the lower bank is prescribed, in brief

(∆ + k2)u = 0 in Ω,(3.35)

T0,Σ+ u = u(., x2)|x2=+0 = g0 ∈ H1/2(R+),

T1,Σ− u = ∂u/∂x2 u(., x2)|x2=−0 = g1 ∈ H−1/2(R+).

The resulting 2×2 system of WH equations can be written (after some elementary substitutions)
as

(3.36) r+AΦ f = g,

where A acts in a topological product (Banach) space (like a 2× 2 matrix operator):

A = F−1 Φ · F : H1/2 × H−1/2 → H1/2 × H−1/2,(3.37)

Φ =

(
−1 t−1

t 1

)
,

f ∈ H
1/2
+ × H

−1/2
+ , g = (g0 , g1) ∈ H1/2(R+) × H−1/2(R+).

It turns out that a strong factorisation of A in the form (3.33) can be explicitly obtained with an
intermediate space [77]

(3.38) Z = H1/4 × H−1/4.

This is an interpretation of the explicit factorisation of the matrix Φ, a spectacular result of Tony
Rawlins in 1975 [91, 92], which will be discussed in a wider frame subsequently and leads us to
the rigorous solution of a series of boundary-transmission problems and operator theoretical
insights, presented below.

Hence, the problem (3.35) is well-posed in this space setting and the solution (resolvent
operator) can be obtained by the help of the inversion formula of Theorem 3.2. Moreover, the
asymptotical behavior of the solution near the edge of the screen is related to the order of the
Sobolev spaces in (3.38):

gradu ∼ |x|−3/4 as x → 0.

Further boundary-transmission problems can be studied by analogy when the two bound-
ary conditions in (3.35) are replaced by an arbitrary linear combination of the two Dirichlet data
T0,Σ± in the first place and an arbitrary linear combination of the two Neumann data T1,Σ± in
the second place [77, 108]:

(∆ + k2)u = 0 in Ω,

a0u
+
0 + b0u

−
0 = g0 , a1u

+
1 + b1u

−
1 = g1 on Σ.
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They lead to a modification in the derived WH equation, namely replacing the Fourier symbol
Φ in (3.37) by

(3.39) σλ =

(
1 t−1

t λ

)
,

where the parameter λ ∈ C \ {0, 1} is an algebraic combination of the coefficients a0, b0, a1, b1
(under slight conditions on the coefficients that make the boundary operators to be of "normal
type", see [108], formulas (1.5), (1.6)). We shall present the explicit factorisation in the next
section and a complete discussion of all λ ∈ C in Section 5, after introducing some auxiliary
material.

As a remarkable result the exponent 1/4 in the intermediate space (3.39) has to be replaced
by δ/2, where δ ∈ (0, 1] is simply computed from λ and determines the order of the singularity
of gradu at the origin:

δ = <e

(
i

π
log

√
λ+ 1√
λ− 1

)
, gradu ∼ |x|δ/2−1 as x → 0.

It turns out that, under the assumption λ /∈ [1,+∞), all these problems are well-posed in
the given setting and explicitly solvable by Theorem 3.2 with the help of a factorisation of the
matrix (3.39), see [77, 108] for details.

The same holds true for transmission problems where a pair of functions u = (u+, u−) in
the upper and lower half-plane Ω± = {x ∈ R2 : ±x2 > 0} satisfies

(∆ + k2)u± = 0 in Ω±,(3.40)

a0u
+
0 + b0u

−
0 = g0 , a1u

+
1 + b1u

−
1 = g1 on Σ,

a′0u
+
0 + b′0u

−
0 = g′0 , a′1u

+
1 + b′1u

−
1 = g′1 on Σ′,

where u±0 , u
±
1 are the traces of u and its normal derivative, respectively, on x2 = ±0 and the

coefficients are any complex numbers.
The Fourier symbol of the derived WH system is in this case given by

(3.41) Φ =
1

a′0b
′
1 + b′0a

′
1

(
a0b
′
1 + b0a

′
1 −(a0b

′
0 + b0a

′
0) t−1

−(a1b
′
1 + b1a

′
1) t a1b

′
0 + b1a

′
0

)
.

Sommerfeld half-plane problems with first and second kind boundary conditions can be
seen as a special case of (3.40) where the third line is replaced by the homogeneous jump con-
ditions

(3.42) u+
0 − u−0 = 0 , u+

1 − u−1 = 0 on Σ′.

Another phenomenon appears when the two boundary conditions (or transmission condi-
tions) have the same order, for instance the two Dirichlet data T0,Σ± u = g± ∈ H1/2(R+) are
given (DD) or two Neumann data T1,Σ± u = g± ∈ H−1/2(R+) (NN) or two impedance data
are given (II)

T1,Σ+ u + i p+ T0,Σ+ u = g+ ∈ H−1/2(R+)(3.43)

T1,Σ− u + i p− T0,Σ− u = g− ∈ H−1/2(R+)

with different impedance numbers p± , =mp± > 0, and possibly different data in all cases.
Obviously, it is necessary that the difference of the given data g+ − g− (considered as func-
tion(al) on R+) has to be extensible by 0 to R−within the data spaceH1/2 orH−1/2, respectively.
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I.e., the following compatibility conditions are necessary for the solubility of the corresponding
problem [76, 108]:

g+ − g− ∈ H̃1/2(R+) in case DD,(3.44)

g+ − g− ∈ H̃−1/2(R+) in case NN and II.

As a matter of fact these conditions arise automatically from an operator theoretical approach
named minimal normalisation of WHOs of the form (2.1) in scales of Sobolev spaces [81, 82, 83].

Historical remarks.
Sommerfeld diffraction problems are named after Arnold Sommerfeld who found the first

closed form solution of a problem of diffraction of a time-harmonic plane wave from a half-
plane in terms of Fresnel integrals. It was part of his famous habilitation thesis, published 1896
(in German) in Mathematische Annalen [103, p. 366–371]; see also the annotated translation
into English published as a book by R.J. Nagem, M. Zampolli, and G. Sandri [84, Section 8].
The formulation as a boundary value problem goes back to Henri Poincaré [88] who proposed
a solution by series expansion in 1892, see [88], [84, p. 121] and [66, p. 145–146].

Several books and survey papers demonstrate the attention on Sommerfeld problems. For
an overview about classical WH methods the reader may consult [2, 58, 63, 71, 72, 86] which
report particularly on the pioneering work in diffraction theory by Edward Copson [31], Albert
Heins [48, 49], Allan Hurd [54], Douglas Jones [57], Ernst Lüneburg [67], Anthony Rawlins
[91, 92, 93], Thomas Senior [97], W.E. Williams [123], and others.

Formulations of Sommerfeld half-plane problems as boundary value and transmission (or
interface) problems in Sobolev spaces started in the 1970s with Giorgio Talenti [117], continued
in the 1980s by Erhard Meister and his co-authors, touching the more general theory of partial
and pseudo-differential equations, for instance by Eli Shamir [99, 100], Mikhail Agranovich,
Marko Vishik, and Gregory Eskin [3, 120, 41], Joseph Wloka [124], George Hsiao and Wolfgang
Wendland [52], to mention some closely related work.

We may point out here particularly the first solutions of the Sommerfeld-Dirichlet and the
Sommerfeld-Neumann problems by Edward Copson in 1946 [31] with the classical WH tech-
nique and the factorisation of the matrix coming up from the mixed Dirichlet-Neumann prob-
lem by Antony Rawlins in 1981 [91, 92, 93]. Erhard Meister and the author started to present
resolvent operators in Sobolev spaces for much wider classes of Sommerfeld boundary value
and transmission problems in 1985 [55, 77, 107, 108, 109]. They also stressed the importance of
the intermediate space in operator factorisations, together with Luís Castro [23, 112] and the
presence of compatibility conditions together with Francisco Teixeira and Ana Moura Santos
[77, 82].

The bridge between WHOs and ΨDOs acting in Sobolev spaces was build by Gregory Es-
kin in the early 1970s [41]. He also introduced the most convenient notation (3.23) (avoiding
the more complicated writing (3.28) presumably for cosmetic reasons) which allowed the con-
sideration of the WHO in a scale of Sobolev spaces, its lifting (cf. Proposition 7.1) etc. The
equivalence with operators of the form of a general WHO (2.19) was pointed out by the author
in 1983 [105, 106] and systematically used in subsequent publications.

BVPs for systems of PDEs such as the Lamé equations (in crack problems) can be found in
[2, 37, 78] for instance. They are, however, beyond the scope of this article.

4. CONSTRUCTIVE FACTORISATION OF NON-RATIONAL MATRIX FUNCTIONS

This topic can be considered as a separate area of research with components in algebra,
analysis, matrix and operator theory, which is strongly related to applications. According to the
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width of the area, we confine ourselves to a rough overview after focusing one distinguished
class of matrix functions (3.39) as a prototype of those related to the theme of this survey article,
which also gave a tremendous impact to factorisation theory [77, 91, 92].

Let us recall the WHO with symbol (3.39) written as

(4.45) W = r+A|P1X : H
1/2
+ ×H−1/2

+ → H1/2(R+)×H−1/2(R+),

where X = Y = H1/2(R)×H−1/2(R) , A = F−1σλ · F with

(4.46) σλ =

(
1 t−1

t λ

)
,

and t(ξ) = (ξ2 − k2)1/2 , ξ ∈ R , λ ∈ C \ {0, 1}. The connection with a general WHO is given
by (3.32) where, strictly speaking, P1 = P

(1/2)
+ ⊗ P

(−1/2)
+ ∼ diag (P

(1/2)
+ , P

(−1/2)
+ ) and P2 =

Π
(1/2)
+ ⊗ Π

(−1/2)
+ . A certain factorisation (with the common holomorphy properties and "low"

increase at infinity) is derived with the help of Khrapkov’s formulas and Daniele’s trick [108]:

σλ+ = (1− λ−1)−1/4

(
c+ −s+

√
λ/t

−c+ξ/
√
λ− s+t/

√
λ s+ξ/t+ c+

)
,

σλ− = (1− λ−1)−1/4

(
c− − s−ξ/t −s−

√
λ/t

−s−t/
√
λ+ c−ξ/

√
λ c−

)
,(4.47)

where

c±(ξ) = cosh[C log γ±(ξ)] ,

s±(ξ) = sinh[C log γ±(ξ)] ,

γ±(ξ) =

√
k ± ξ + i

√
k ∓ ξ√

2k
, ξ ∈ R ,

C =
i

π
log

√
λ+ 1√
λ− 1

.

Because of the asymptotic behavior of σλ± at infinity, the corresponding factorisation of A =
F−1σλ · F represents a (so-called strong or canonical) Wiener-Hopf factorisation through a
vector Sobolev space, provided λ /∈ [1,+∞) :

Aλ = Aλ− Aλ+ = F−1 σλ− · F F−1σλ+ · F ,

H1/2×H−1/2 ← Z ← H1/2 ×H−1/2(4.48)

Z = Hϑ(R) , ϑ = (ϑ1, ϑ2) = (
1

2
(1− δ), 1

2
(δ − 1)),

where δ = <eC = −1
π arg

√
λ+1√
λ−1

∈ ]0, 1]. The crucial point is that |ϑj | < 1/2 (cf. [112, Formula
(6.4)]), briefly speaking: the Sobolev space orders ϑj ∈ (−1/2, 1/2) where r+ is a left inverse of
`0.

The asymptotic behavior of the gradient of the solution follows by analogy of the conclu-
sions from (3.38), see [108] for details.

gradu ∼ |x|δ/2−1 as x → 0.

The factorisation procedure consists of two steps: First the matrix belongs to the (commu-
tative) so-called Daniele-Krapkov class which admit a meromorphic factorisation within the
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same class in which the two factors have an algebraic behavior at infinity, however is not re-
lated to a generalised factorisation in the sense of Simonenko [10, 44, 102] and therefore does
not directly imply a formula for the inverse of the WHO. The Daniele trick corrects this de-
ficiency by twofold factorisation of a rational matrix function, related to the behavior of the
previous at infinity, and a rearrangement of the first factorisation by adding factors in the mid-
dle of the first factorisation which compensate the increase [32, 77, 93, 107]. It turns out that
the final factorisation can be considered as a factorisation into unbounded factors generating
a bounded inverse and as a factorisation into bounded factors in the sense of (3.33), as well,
provided |ϑj | < 1/2 [77, 108]. To understand this technique in detail and to answer the ques-
tion "What happens in case of λ ∈ [0,+∞)?" completely, it is necessary to study the so-called
lifting of WHOs in Sobolev spaces to WHOs in L2 spaces presented in Section 6. Hence, we
come back to this question later.

Now, let us have a wider look at the field of constructive matrix factorisation (related to
Sommerfeld problems). The progress in this area is based upon many different ideas. We refer
to the books [30, 65] and the survey papers [2, 12, 40, 59, 63, 95, 116, 117] and point out some
basic ideas through relevant keywords that demonstrate the variety of facets in constructive
matrix factorisation:

• factorisation of rational matrix functions by means of linear algebra [30],
• commutative matrix factorisation [48, 59],
• the Daniele-Khrapkov class [29, 32, 60],
• the Wiener-Hopf-Hilbert method [53, 54],
• understanding of a matrix factorisation as generalised factorisation in Lp spaces [90,

102],
• triangular matrix functions [65, 89],
• asymmetric space settings [106],
• generalised inverses for a unified approach [106],
• lifting [34, 41, 106, 108],
• separation of analytic and algebraic properties [77],
• classification of matrix functions with respect to the number of rationally independent

entries [40, 90],
• reduction by rational transformation [40],
• meromorphic factorisation [14, 15, 56, 78],
• connection with corona problems and Riemann surfaces [8, 17],
• operator factorisation through an intermediate space [23, 113].

Proceeding beyond the classes of matrix functions which appear in Sommerfeld problems to
further classes occurring in other canonical diffraction problems such as those for wave guides,
wedges etc., one finds other species containing exponential terms, e.g., with an exhausting an
still increasing amount of literature, see [8, 9], for instance.

Further features such as approximate factorisation and stability questions as well as numer-
ical aspects exceed the scope of this exposition. In the present context, we refer to [1, 14, 61, 80].

Historical remarks.
This wide field of research developed mainly in the last three decades. We highlight only

a few milestones which are most important in the present context. A first basic insight was
that matrix functions with rational symbols and those with non-rational symbols are quite
different in nature. Rational matrix functions have great importance in system theory [4] and
admit a rather complete approach [30]. Non-rational Fourier symbols enter the scene with
the square root function appearing in the representation formulas, see Proposition 5.4. Some
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corresponding difficulties in matrix factorisation have been recognized already in the 1950s,
see the book of Ben Noble [86].

The importance of the so-called Daniele-Khrapkov class in diffraction theory was recognized
by A.A. Khrapkov in 1971. The pioneering results of Anthony Rawlins [92, 93, 94] and Vito
Daniele in 1984 [32] released a tremendous investigation of constructive factorisation of matrix
functions from this class and its applications, see for instance [16, 40, 63, 74, 77, 90, 95, 109].

The most important lines of research in view of the applications in diffraction theory are con-
nected with the names of Abrahams, Daniele, Heins, Hurd, Jones, Lüneburg, Meister, Mishuris,
Noble, Rawlins, Rogosin, Senior, Talenti, and Williams. Related theoretical work (existence
questions, functional analytic aspects, etc.) can be found in the work of Böttcher, Câmara,
Ehrhardt, Feldman, Gohberg, Krupnik, Litvinchuk, Prössdorf, dos Santos, Silbermann, Simo-
nenko, Spitkovsky, and the author.

See the corresponding references for further studies of the history of matrix factorisation.

5. OPERATOR FACTORISATION IN BOUNDARY VALUE PROBLEMS

Now, we demonstrate the connection between the solution of a boundary value problem
(BVP) or a transmission problem (TRP) and operator factorisation starting with a quite basic
contemplation [110], which leads us to an explicit representation of resolvent operators in the
case of so-called canonical diffraction problems. Typically an elliptic linear boundary value
problem is written in the form

Au = f in Ω (pde in nice domain)(5.49)
Bu = g on Γ = ∂Ω (boundary condition).

I.e., we look for the general solution of the system (5.49), where the following are given: Ω is
a Lipschitz domain in Rn (e.g.), A ∈ L(X , Y1), B ∈ L(X , Y2) are bounded linear operators in
Banach spaces of function(al)s living on Ω or Γ = ∂Ω, respectively. The data (f, g) are arbitrarily
given in a (known product) space Y = Y1×Y2 (denoting the topological product considered as
a Banach space).

The situation becomes a bit more transparent if we consider the operator associated with the
boundary value problem

(5.50) L =

(
A
B

)
: X → Y = Y1 × Y2 ,

where the data space Y and the solution space X are usually assumed to be known (eventually
modified later for practical reasons and in contrast to free boundary problems or certain inverse
problems). It is clear that a linear boundary value problem in the abstract setting (5.49) is well-
posed if and only if the operator L is an isomorphism. Thus the main problem is: Find (in a
certain form) the inverse (resolvent) of the associated operator L (or a generalised inverse etc.).
Associated operators of BVPs were systematically used, e.g., in the work of [13, 27, 28, 38, 39,
41, 82, 124]. Linear transmission problems can be considered in the same way, cf. [107, 113].

The classical idea to present the possible solution u ∈ X by surface and/or volume potentials
can be seen as an operator factorisation:

If K is an isomorphism, then L is equivalently reduced to T = KL in the sense that the two
operators are (algebraically and topologically) equivalent, i.e., that T is representable as

(5.51) T = E L F,
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L =

(
A
B

)
X −−−−→ Y

K↖ ↗T
Z

where E,F are linear homeomorphisms. Here E = K is a potential operator and F = I , Z =
Y . Equation (5.51) defines an equivalence relation between classes of bounded linear opera-
tors in the genuine mathematical sense (reflexive, symmetric and transitive) and practically it
includes the idea of a substitution in the solution and in the data space. For the existence of a
relation (5.51), we write

(5.52) T ∼ L.

Remark 5.5. In potential theory, the reasoning is often based on a proof that a BVP is uniquely solvable
if and only if a system of boundary integral equations is uniquely solvable, see [37, 52]. This would
be a consequence of (5.52), however there are other important operator relations which also imply the
equivalence of the unique solubility and much more, cf. Section 8.

Let us take a closer look at canonical diffraction problems. There is no strict definition for this
kind of boundary value and transmission problems, however experts of the area arrived at a
consensus about what it means in conferences [73, 98] dedicated to the one hundredth anniver-
sary of Sommerfeld’s famous paper [84, 103] as reported in the introduction of [27]: The word
“canonical” stands (i) for the particular geometrical situations like axi-parallel, rectangular or
circular configurations, (ii) for constant coefficients in the corresponding linear partial differ-
ential equations and in the boundary conditions, and (iii) for the importance of the problem
to describe basic phenomena in linear time harmonic wave propagation, e.g., governed by the
Helmholtz equation.

As a prototype, we focus again the Sommerfeld half-plane problems (3.40) with jump con-
ditions (3.42) on Σ′. LetH1(Ω) denote the weak solutions [52] of the Helmholtz equation in the
two-dimensional slit domain Ω = R2 \ Σ where Σ = {x = (x1, x2) ∈ R2 : x1 ≥ 0 , x2 = 0} is
the half-line identified with R+ as in Section 3. The Sommerfeld half-plane problems with two
transmission conditions of first and second kind, respectively, are briefly written as [108]

u ∈ H1(Ω),(5.53)

B1 u = a0u
+
0 + b0u

−
0 = g0 ∈ H1/2(R+),

B2 u = a1u
+
1 + b1u

−
1 = g1 ∈ H−1/2(R+).

Remark 5.6. Obviously we have a special case of the BVP (5.49) where f = 0, hence the associated
operator is, instead of (5.50), the following one:

(5.54) L0 = B|kerA : H1(Ω) → Y2 = H1/2(R+)×H−1/2(R+) .

The relation between L and L0 will be discussed later in Section 8.

Remark 5.7. Note that we avoided the notation u ∈ H1(Ω) here and before in the context of the slit
domain Ω = R2 \ Σ (in Section 3), because otherwise we had H1(Ω) = H1(R2)|Ω according to the
definition of Sobolev spaces which does not allow different traces of u on Σ±. Hence, H1(Ω) strictly
speaking denotes functions from L2(Ω) for which any restriction to a proper sub-cone Ω′ ⊂ Ω is a
H1(Ω′) solution of the Helmholtz equation in Ω′.
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The following representation formula for u ∈ H1(Ω) is well-known [77, 107].

Proposition 5.1. A function u ∈ L2(R2) belongs toH1(Ω) if and only if

u± = u|Ω± ∈ H1(Ω±) and hence u±0 = u|x2=±0 ∈ H1/2(R),

u+
0 − u−0 = 0 and At (u+

0 + u−0 ) = 0 on R−,

u(x) = F−1
ξ 7→x1

e−x2t(ξ)û+
0 (ξ) 1+(x2) + F−1

ξ 7→x1
ex2t(ξ)û−0 (ξ) 1−(x2) ,(5.55)

x = (x1, x2) ∈ Ω±,

where u±0 are taken in the sense of the trace theorem, û±0 = F u±0 , and 1± stand for the characteristic
functions of R± .

We denote the potential operator in (5.55) as K and write briefly

K : H1/2 × H1/2 → H1(Ω+) × H1(Ω−),(5.56)

u = K(u+
0 , u

−
0 ).

It is easily shown that K is an isomorphism. To solve the problem (5.53), we now determine Φ
from (3.41) - (3.42) (plugging (5.55) into the transmission conditions (5.53)) as

Φ =
1

2

(
a0 − b0 −(a0 + b0) t−1

−(a1 + b1) t a1 − b1

)
(5.57)

=
1

2

(
1 0

0 −a1+b1
a0+b0

) (
1 t−1

t λ

) (
a0 + b0 0

0 −(a0 + b0)

)
= E σλ F

with λ = (a1 − b1)/(a1 + b1) by elementary transformation with invertible matrices E,F ∈
C2×2 provided (a0 ± b0) 6= 0 and (a1 + b1) 6= 0 .

We define AΦ = F−1 Φ · F : X → X X = H1/2 × H−1/2, P1 = P
(1/2)
+ ⊗ P

(−1/2)
+ ,

P2 = Π
(1/2)
+ ⊗ Π

(−1/2)
+ (sometimes written as diagonal matrix operators) and carry out the

factorisation of σλ as given in (4.47) σλ = σλ− σλ+ , Aσλ = Aσλ− Aσλ+
. Further put

(5.58) W = P2AΦ|P1X , W−1 = F−1 A−1
σλ+

P A−1
σλ−
|P2X E−1

in accordance with Theorem 3.2, where P = `0 r+ (cf. also Section 7). The following result is
taken from [108].

Theorem 5.4. The BVP (5.53) is well posed, if and only if λ /∈ [1,+∞). In this case, the operator
L0 associated to the (semi-homogeneous) BVP is equivalent to an invertible WHO W and the resolvent
operator reads

(5.59) (L0)−1 = KW−1.

A complete discussion in dependence of the parameter λ will be possible later in Section 7
after equivalent reduction of W to a WHO W0 acting in L2 spaces, the so-called lifting process.

In brief (operator language) the proof is based upon an equivalence relation

(5.60) L0 ∼ W = L0K ∼ W0

and a complete analysis ofW0 ∈ L(L2(R+)2) as a generalisation of the WHO in Section 2 which
is only possible after some additional preparation in Section 6. Further concepts of operator
factorisation in boundary value problems will be discussed in Section 7.
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Historical remarks.
In the present sense, operators L associated with elliptic BVPs have been used most conse-

quently in the book of Joseph Wloka [124]. In different context, it appeared already in the area
of pseudo-differential operators, see [13] for instance.

The question of whether a BVP is well-posed goes back to Jacques Hadamard (1865-1963),
see [47, 68]. Besides the unique solubility he asked for a continuous dependence of the solution
from the data (here from f and g). Therefore a complete formulation of the linear BVP (5.49)
needs at least topological vector spaces (for the sets of data and solutions). The restriction
of the consideration to Banach or Hilbert spaces comes from practical reasons and physical
motivation (the energy space). See [52, 124] for more details.

The formulation of an "equivalent reduction" of a BVP to a boundary integral equation, e.g.,
has many different forms in the literature, see for instance [52, Section 5.6.5] or [37]. In recent
years, it reached a higher level of precision by use of operator relations [27, 77, 110, 113] and
became subject of independent research [4, 5, 51].

6. ON THE CHOICE OF SYMBOL CLASSES

In what concerns the classes of WHOs it is quite important and convenient to study not only
Fourier symbols which are rational functions or which belong to a decomposing algebra but
which are related to a decomposin algebra such as the Wiener algebra or the Banach algebra of
Hölder continuous functions on the one-point compactification of the real line Ṙ = R ∪ {∞}:

Cµ(Ṙ) =

{
φ ∈ Cµ(R) : φ(∞) = lim

ξ→∞
φ(ξ) exists and(6.61)

φ(ξ)− φ(∞) = O
(
|ξ|−µ

)
as ξ →∞

}
, µ ∈ (0, 1) .

It is well known [44, 79] that Cµ(Ṙ) forms a unital algebra, which is decomposing, i.e., the
Hilbert projectors (also writable with the help of the Hilbert transformation which is here omit-
ted)

(6.62) F−1 P± F = F−1 `0 r± F = Cµ0 (Ṙ) → Cµ0 (Ṙ)

are continuous where Cµ0 (Ṙ) = {φ ∈ Cµ(Ṙ) : φ(∞) = 0} and we have an additive decompo-
sition into complemented subspaces

(6.63) Cµ0 (Ṙ) = Cµ+(Ṙ) ⊕ Cµ−(Ṙ).

Roughly speaking these are the subspaces of Cµ0 (Ṙ) functions which are holmorphically ex-
tensible into the upper and into the lower complex half-plane, respectively, with zero limit at
infinity.

The regular functions of the algebra (6.61)

(6.64) G Cµ(Ṙ) = {φ ∈ Cµ(Ṙ) , φ(ξ) 6= 0 in Ṙ}

form a group which is inverse-closed, i.e., φ−1 ∈ G Cµ(Ṙ) if φ ∈ G Cµ(Ṙ). These functions
allow a factorisation of the form (2.9) (after splitting φ(∞)) within G Cµ(Ṙ) with all the conse-
quences (2.10) - (2.15).
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If, instead of the situation before, there are two different limits φ(±∞) at infinity, we have
also a unital algebra denoted by

Cµ(R̈) =

{
φ ∈ Cµ(R) : φ(±∞) = lim

ξ→±∞
φ(ξ) exist and(6.65)

φ(ξ)− φ(±∞) = O
(
|ξ|−µ

)
as ξ → ±∞

}
, µ ∈ (0, 1) ,

which is inverse-closed, as well. Unfortunately Cµ(R̈) is not decomposing, a factorisation like
(2.10) with factors in Cµ(R̈) does not exist whenever φ(−∞) 6= φ(+∞).

However, this algebra is crucial in the treatise of canonical diffraction problems since many
Fourier symbols Φ in the related WH equations are generated by polynomials and square root
functions like t±1, t

±1/2
+ , t

±1/2
− , see the examples in Section 3. More precisely, all Fourier sym-

bols that appear in Sommerfeld half plane problems (two-dimensional, only one wave number
involved) belong to a certain algebra, the functions generated by polynomials and one square
root function t which can be represented by

(6.66) Φ = a1Q1 + a2Q2,

where aj are scalar functions and Qj are rational 2× 2 matrix functions. These facts finally led
to the intensive study of the algebra of matrix functions Cµ(R̈)n×n, n ∈ N, particularly in case
of n = 1 and n = 2 [21, 26, 27, 83].

Let us have a look at the following factorisation theorem for scalar symbols which at the end
is no more than a moderate modification of the formulas in Section 2 [34, 83].

Theorem 6.5. Let Φ ∈ G Cµ(R̈). Then Φ admits a factorisation

Φ = Φ− ζκ Φ+ where(6.67)

κ = max{z ∈ Z : z ≤ <(ω) +
1

2
},

ω =
1

2πi

∫
R
d log Φ(ξ)dξ ∈ C,

Ψ = ζ−ω Φ−1(+∞) Φ , ζ(ξ) =
ξ − i
ξ + i

, ξ ∈ R,

Ψ± = exp{F `0 r±F−1 log Ψ} ∈ Cµ±(Ṙ),

Φ− = ζω−κ− Ψ− , Φ+ = Φ(+∞) ζκ−ω+ Ψ+,

where ζ±(ξ) = ξ ± i , ξ ∈ R.

Remark 6.8. Note that the complex winding number ω = ω(Φ) of Φ can be written as ω = κ+η+ iτ

where κ ∈ Z , η ∈ (−1/2,+1/2] , τ ∈ R. The function Ψ belongs to Cµ(Ṙ), Ψ(∓∞) = 1, and
ω(Ψ) = 0.

Another observation is that ζ(ξ) may be replaced by ζk(ξ) = (ξ−k)/(ξ+k) = t−(ξ)/t+(ξ) which
may have advantage in diffraction problems (cf. (7.76)).

Again, we formally define the operator factorisation corresponding with (2.10)

A = A− C A+ ,(6.68)

A± = F−1 Φ± · F , C = F−1 ζκ · F : L2 → L2.
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These formulas admit (at least) two different interpretations. Firstly, (6.67) represents a gener-
alised factorisation in L2 in the sense of [102], provided

(6.69) <(ω) +
1

2
/∈ Z,

see [23, 44, 79, 83]. I.e., t−1
+ Φ±1

+ ∈ L2(R+), t−1
− Φ±1

− ∈ L2(R−). A± in (6.68) must be regarded
as unbounded operators in L2(R), densely defined and such that

(6.70) W− = A−1
+ P C−1 P A−1

− |L2
+

admits a bounded extension by continuity to L(L2(R)). Depending on whether κ is positive or
negative, this formula defines a right or a left inverse ofW = P A|PX forX = L2 , P = `0 r+,
and an inverse of W for κ = 0, all this provided η 6= 1/2.

The second interpretation is a factorisation through an intermediate space [112]

A = A− C A+(6.71)
: X ←− Z ←− Z ←− X,

where X = L2 and Z = Hη with the advantage to avoid unbounded operators. The conse-
quences are the same as before but formulas are composed of bounded instead of unbounded
operators.

In the case of η = 1/2 the operator W turns out to be not normally solvable. More pre-
cisely, its image is not closed. A normalisation can be achieved systematically by choosing
a smaller image space imposing a compatibility condition (in the image space) and a corre-
sponding norm such that the normalised operator is one-sided invertible and (6.70) becomes a
one-sided inverse in the new space setting. See [82, 83] for details.

The generalisation of Theorem 6.1 to the systems case where Φ is a squared matrix function

(6.72) Φ ∈ GCµ(R̈)m×m

combines ideas of the factorisation of matrix functions with elements in decomposing algebras
such as Φ ∈ Cµ(Ṙ)m×m [43], with the factorisation technique of Theorem 6.1, see [21]. The
case m = 2 is needed for a complete analysis of (5.60).

In the next section, we shall see the abstract analogue of this factorisation (6.71) as a sufficient
and necessary condition for the generalised invertibility of a general WHO in symmetric and
in asymmetric space setting, respectively.

Historical remarks.
For a glance at the history of relevant function spaces we refer to the book by Hans Triebel

[119]. The use of Sobolev-like spaces in BVPs started in the 1930s with the famous work of
Sergei Sobolev, L.N. Slobodeckij, Beppo Levi, and Nachman Aronzjan and became a standard
tool in the solubility theory for partial differential and pseudo-differential equations in the
1950s, see the work of Mikhail Agranovic, Nicolas Bourbaki, and Lars Hörmander. For general
questions about smoothness and asymptotic behavior of solutions see [3, 120, 41, 52, 124].

The edge and radiation conditions [96, 104] are not relevant in the present context, where a
solution u denotes a diffracted wave (without sources and sinks) in a suitable (energy) space.

In what concerns the most relevant classes of Fourier symbols we refer to [10, 42, 79]. In the
applications the classes of matrix functions with entries from Cµ(Ṙ) and Cµ(R̈) play a decisive
role, see [43, 62] for the origin and [34, 83], respectively, for some relevant applications.

The idea of an intermediate space in WH factorisation (related to Sommerfeld problems)
arose in [107] and gained further interest in [18, 23, 83, 112].
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7. EQUIVALENCE AND REDUCTION VIA OPERATOR FACTORISATION

To reduce a problem or a system of equations Tf = g can often be seen as to find a "simpler
operator" S somehow related to the operator T such that conclusions for S imply conclusions
for T . As before, we focus bounded linear operators in Banach spaces. The easiest case is the
situation where the two operators are equivalent, i.e.,

(7.73) T = E S F,

where E and F are isomorphisms. In this case, many properties of S are transferred to prop-
erties of T , e.g., invertibility, the Fredholm property, explicit representation of (generalised)
inverses, etc. [24] (and vice versa). Conclusions of that kind appeared already in Section 5. So,
we shall speak about "operator relations" and their "transfer properties". Now, we outline four
further examples of this rather strong equivalence relation which are most important in WHO
theory and its applications:

• lifting from Sobolev to Lebesgue spaces [34, 41, 108],
• shifting of WHOs in a scale of Sobolev spaces [83],
• equivalence of a WHO with the truncation of a cross factor [105, 106],
• symmetrisation of general WHOs [11].

First, we describe the so-called lifting of WHOs from Sobolev to Lebesgue spaces in the scalar
case. In view of (3.23) consider an operator of the form

(7.74) W = r+ AΦ|Hr+ : Hr
+ → Hs(R+),

where AΦ : X = Hr → Y = Hs is a bounded convolution operator, i.e., ts−rΦ ∈ L∞. Then
we have as a consequence of (3.26):

Proposition 7.2. Under these assumptions W is equivalent to a WHO acting in L2 spaces:

W ∼ W0 = r+ AΦ0 |L2
+

: L2
+ → L2(R+)(7.75)

Φ0 = tr−Φ t−s+ .

The same idea works perfectly for matrix operators. As an example consider (4.45) again.
There we get

W = r+Aσλ |H1/2
+ ×H−1/2

+
: H

1/2
+ ×H−1/2

+ → H1/2(R+)×H−1/2(R+)

∼ W0 = r+Aσλ,0 |L2
+×L2

+
: L2

+ × L2
+ → L2(R+)× L2(R+)

with

σλ,0 =

(
t
1/2
− 0

0 t
−1/2
−

) (
1 t−1

t λ

) (
t
−1/2
+ 0

0 t
1/2
+

)

=

(
ζ

1/2
k 1

1 λ ζ
−1/2
k

)
.(7.76)

This allows a direct application of the theory of systems of WH equations in L2 spaces [43, 79]
and ends up with a complete discussion of properties of W in dependence of the parameter λ,
see [108, Corollary 4.6], as follows:

(1) λ = 0 : σλ,0 is triangular. W0 decomposes into two single WH equations that are
invertible;

(2) λ = 1 : σλ,0 degenerates and imW0 is not closed;
(3) λ ∈ (0, 1) : σλ,0 admits a bounded strong factorisation, W0 is invertible;
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(4) λ ∈ (1,∞) : σλ,0 admits a function theoretic factorisation but not a generalised factori-
sation in the L2 setting, imW0 is not closed;

(5) λ /∈ [0,∞) : σλ,0 admits an unbounded (generalised) factorisation with vanishing par-
tial indices, W0 is invertible.

As a remarkable fact we cannot find any non-invertible Fredholm operator in this class. All
operators are either invertible or not normally solvable.

The preceding idea can also be used to discuss regularity properties of (7.75), say, i.e., to look
at smoother solutions of the equation W f = g (for smoother data g). A convenient way is to
consider the restricted operator

(7.77) Ws = Rst r+ AΦ0
|Hs+ : Hs

+ → Hs(R+) , for s > 0.

This makes sense because Hs is an invariant subspace of the convolution operator AΦ0
. The

consideration in larger spaces may be interesting, as well. Hence, we also define

(7.78) Ws = Ext r+ AΦ0
|Hs+ : Hs

+ → Hs(R+) , for s < 0

by continuous extension since Hs ⊂ L2, Hs
+ ⊂ L2

+, and Hs(R+) ⊂ L2(R+) are densely
embedded for negative s. These operators (7.77) and (7.78) are referred to as shifted operators
[83, 87].

Now, the point is that the shifted operator can also be lifted to the L2 level and that lifted
shifted WHO has a symbol Φs,0 = ts−Φ0 t

−s
+ = ζs Φ0 in the scalar case. Hence, if Φ0 admits a

factorisation like (6.67), then all lifted shifted Fourier symbols admit a "certain factorisation" of
this kind, as well. This technique can be used, e.g., in the cases where the operator W0 of (7.76)
is not invertible. Namely, W can be normalised by a shift in the scale of Sobolev spaces, i.e., it
becomes invertible as an operator restricted like

W (ε) : H
1/2+ε
+ × H

−1/2+ε
+ → H1/2+ε(R+) × H−1/2+ε(R+)

with a suitable ε ∈ (0, 1/2). For more details see [83] and [21] in the matrix case.
For the following let us recall some properties of generalised inverses T− of T ∈ L(X,Y )

as defined already in (2.20). It is well-known that the following assertions are equivalent:

• T is generalised invertible, i.e., T T− T = T for some T− ∈ L(Y,X),
• T has a reflexive generalised inverse, i.e., T− T T− = T− holds additionally,
• kerT and imT are complemented subspaces of X and Y , respectively,
• there exist projectorsP0 ∈ L(X) andP1 ∈ L(Y ) onto kerT and onto imT , respectively,
• there exist projectors P0 ∈ L(X) and P1 ∈ L(Y ) such that, for arbitrary g ∈ Y , the

equation T f = g is solvable if and only if P1 g = g and, in this case, the general
solution of the equation is given by f = T− g + P0 h , h ∈ X .

For the proof choose T− T T− as a reflexive generalised inverse, and P0 = I − T− T , P1 =
T T− in the corresponding places, briefly speaking.

A third example for an equivalent reduction of a WHO by an operator equivalence (7.73)
was touched already in (2.10). The following result is just an interpretation of those formulas,
extended to the asymmetric case.

Proposition 7.3. Let W = P2A|P1X : P1X → P2Y be a general WHO with the assumptions of
(2.19). Further let

A = A− C A+(7.79)
: Y ←− Z ←− Z ←− X,
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be a factorisation into three isomorphisms with an intermediate Banach space Z, and a projector P ∈
L(Z) such that

(7.80) PA+P1 = A+P1 , P2A−P = P2A− .

Then W satisfies

(7.81) W = P2A−|PZ P C|PZ P A−|P1X ∼ P C|PZ .

Various examples show that this idea of equivalent reduction yields direct results, provided
the operator C has certain properties (as in (2.10)). We call an isomorphism C ∈ L(Z) a cross
factor with respect to (Z,P ) where P ∈ L(Z) is a projector if C−1 P C P is idempotent, or
equivalently if

(7.82) C−1 P C P = P C−1 P C P .

It follows that C splits the space Z twice into four subspaces with

Z =

PZ︷ ︸︸ ︷
X1 +̇ X0 +̇

QZ︷ ︸︸ ︷
X2 +̇ X3

↓ C ↙↘ ↓(7.83)

= Y1 +̇ Y2︸ ︷︷ ︸
PZ

+̇ Y0 +̇ Y3︸ ︷︷ ︸
QZ

,

where Q = IZ − P and where C maps each Xj onto Yj , j = 0, 1, 2, 3 , i.e., the comple-
mented subspaces X0, X1, ..., Y3 are images of corresponding projectors p0, p1, ..., q3, namely
X0 = p0Z = C−1QCPZ , X1 = p1Z = C−1PCPZ, ..., Y3 = q3Z = CQC−1QZ.

A WHO W which is a truncation of a cross factor, W = PC|PX , allows very strong conclu-
sions for the solution of the corresponding equation W f = g:

Proposition 7.4. Let X be a Banach space, P ∈ L(X) , P 2 = P , and C ∈ GL(X) a cross factor with
respect to X,P . Then we have:

• W = PC|PX is generalised invertible,
• W− = PC−1|PX is a reflexive generalised inverse of W ,
• kerW = PC−1QCPX = C−1QCPX ,
• imW = PC−1PCPX = C−1PCPX ,
• for any g ∈ PX the equation W f = g is solvable in PX if and only if C−1PCg = g and,

in this case, the general solution of the equation is given by

(7.84) f = W− g + C−1QCh with arbitrary h ∈ PX .

The proof of this result is elementary and can be seen as a consequence of the diagram
(7.83). Moreover, the equivalence of a general WHO (2.16) in symmetric space setting withA ∈
GL(X) to a truncation of a cross factor (in the same space) is characteristic for the generalised
invertibility of W :

Theorem 7.6. The WHO (2.16) is generalised invertible if and only if A admits a cross factorisation
(with respect to X and P ), i.e.,

(7.85) A = A− C A+,
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where A± are strong WH factors (satisfying the first two lines of (2.13)) and C is a cross factor (with
respect to X,P ). In this case, we have

W = P A− P C P A+|PX
= P A−|PX P C|PX P A+|PX ∼ P C|PX(7.86)

and a reflexive generalised inverse of W is given by

(7.87) W− = P A−1
+ P C−1 P A−1

− |PX .

The proof of sufficiency is obvious, a verification of W− to be a reflexive generalised inverse
based on the factor properties of A± and C, however not very short. The proof of necessity
is tricky, either by use of a space decomposition generated by a reflexive generalised inverse
[105] or by a direct formula of a cross factorisation in terms of a generalised inverse, see [106,
Chapter 6]. However, a corresponding result for general WHOs in asymmetric space setting
W = P2A|P1X (see (2.19)) has been published only recently [11, 112], under an additional
condition that guarantees the symmetrization of W :

Theorem 7.7. Consider the general WHO (in asymmetric setting) (2.19). Then the following assertions
are equivalent:

(1) A admits a WH factorisation through an intermediate space (FIS)

A = A− C A+(7.88)
: Y ←− Z ←− Z ←− X,

where A± are strong WH factors, see (3.30), and C is a cross factor;
(2) W is generalised invertible and P1 ∼ P2, i.e.,

(7.89) kerP1
∼= kerP2 and imP1

∼= imP2 .

In this case, a reflexive generalised inverse of W is given by

(7.90) W− = P1 A−1
+ P C−1 P A−1

− |P2Y .

This last result contains the idea to symmetrise a general WHO and (hence) the space set-
ting itself, see [11] which is important in applications, since it simplifies the reasoning and
enables the use of other results, e.g., about operators in Lebesgue spaces (by lifting, as men-
tioned before). However, the conditions of the last theorem are not necessary for a WHO to be
generalised invertible, see the cross factorisation theorem in asymmetric settings in [106] and
further going research in [115].

More important for applications is the stability of factorisations against a change of the un-
derlying function spaces for normalisation and regularity results, see [83] for instance.

As an example that fits best to the present context consider the WHO (2.4) again where
C = F−1 ζκ · F , κ ∈ Z. It is not hard to prove the following facts.

• Formula (2.10) represents a cross factorisation provided Φ is invertible in the Wiener
algebra,

• If κ < 0, the subspaces of (7.83) are

X0 = kerPC|PX = span {φj , j = 1, ...,−κ}(7.91)

φj(x) = F−1
ξ 7→x

(ξ − i)j−1

(ξ + i)κ
, x ∈ R ,

and X2 is not present, etc.
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• If κ > 0, the subspaces of (7.83) are

X2 = kerQC|QX = span {ψj , j = 1, ..., κ}(7.92)

ψj(x) = F−1
ξ 7→x

(ξ + i)j−1

(ξ − i)κ
, x ∈ R ,

and X0 is not present, etc.

In the first case, the equation W f = g is solvable for all g ∈ L2(R+) by

(7.93) f = W− g +
−κ∑
j=1

aj A
−1
+ φj with aj ∈ C .

In the second case, the equation W f = g is solvable if and only if κ conditions are satisfied

(7.94)
∫
R+

g P A−1
− P C−1 ψj = 0 , j = 1, ..., κ .

The solution reads f = W− g and is unique in this case.
These results are standard conclusions for Fredholm operators and their generalised in-

verses.
Finally, we like to remark that, in a symmetric space setting, every general WHO W =

PA|PX which is generalised invertible can be presented as a truncation of a (suitable) cross
factor [115]. This underlines the impression that cross factors are something natural, if we
look for non-invertible Fredholm or other generalised invertible operators, see [112] for further
examples.

Historical remarks.
The idea of equivalent reduction in the sense of (7.73) is a genuine element of WH factorisa-

tion and just an interpretation of the pioneering work mentioned in Section 2. The idea of the
lifting process and its consequences was settled by Gregory Eskin and Roland Duduchava in
the 1970s, see [34, 41].

For the history of generalised inverses see [85]. The generalised inversion of general WHOs
was firstly studied by the author in [105, 106], where also the term "cross factor" was intro-
duced (in symmetric and in asymmetric Banach space settings). Intermediate spaces in the
context of generalised factorisation of matrix functions in the sense of I.B. Simonenko [102]
were firstly studied by Luís Castro and the author [18, 23]. The complete proof of Theorem 7.5
was presented only in 2016 [11, 112].

The question whether a general WHO (2.19) in asymmetric setting can be equivalently re-
duced to a WHO (2.16) in symmetric setting was recently analysed in [11]. Further questions
about equivalent reduction of general WHOs to more convenient forms have been answered
in [115].

8. FROM OPERATOR FACTORISATION TO OPERATOR RELATIONS

The operator factorisations considered before can all be seen as equivalence relations in the
sense of (7.73). However, there are other operator relations which play a crucial role in the
present context and in general, as well. We point out two of them, again coming up from
concrete applications.

It is well known that the diffraction problem where the trace of the diffracted field is given on
a plane screen Σ ∈ R3 (equally on the two sides of the screen) leads to an (boundary integral)



208 From Sommerfeld Diffraction Problems to Operator Factorisation

equation

(8.95) rΣAt−1 f = g,

where Σ is identified with a (Lipschitz) domain in R2, t(ξ1, ξ2) = (ξ2
1 + ξ2

2 − k2)1/2, At−1 =

F−1 t−1 · F , F denotes here the two-dimensional Fourier transformation, g ∈ H1/2(Σ) is given
and f ∈ H

−1/2
Σ is unknown, in analogy to the Sommerfeld-Dirichlet problem: f is an element

of H−1/2(R2) supported on Σ.
Assuming that the complementary screen Σ′ = R2 \Σ is also a Lipschitz domain, we consider

the Sommerfeld-Neumann problem for Σ′ and arrive by analogy at an equation

(8.96) rΣ′ At f∗ = g∗,

where g∗ ∈ H−1/2(Σ′) is given and f∗ ∈ H
1/2
Σ′ is unknown. Now, Lipschitz domains allow

continuous extension operators [124], say

`
(1/2)
Σ : H1/2(Σ) → H1/2(R2) , `

(−1/2)
Σ′ : H−1/2(Σ′) → H−1/2(R2)

such that the projector P2 = `
(1/2)
Σ rΣ acts in H1/2(R2) along H1/2

Σ′ and Q1 = `
(−1/2)
Σ′ rΣ′ acts

in H−1/2(R2) along H−1/2
Σ . In analogy to the half-line case in Section 3, we conclude that the

operators in the foregoing equations (8.95) and (8.96) are equivalent to operators in the form of
general WHOs

rΣAt−1 |
H
−1/2
Σ

∼ W = P2At−1 |P1X ,(8.97)

rΣ′ At|H1/2

Σ′
∼ W∗ = Q1At|Q2Y ,

where X = H−1/2 , P1 + Q1 = I|H−1/2 and Y = H1/2 , P2 + Q2 = I|H1/2 , cf. (2.19). Using
the space decompositions X = P1X ⊕ Q1X ∼= P1X × Q1X (identifying the direct sum with
the topological product space considered as a Banach space written in matrix form) and Y =
P2Y ⊕Q2Y ∼= P2Y ×Q2Y , as well, we have

(8.98) At−1 ∼
(
W .
. .

)
=

(
. .
. W∗

)−1

∼ A−1
t ,

where the dots stand for obvious entries P2At−1 |Q1X etc., i.e., W and W∗ are matricially coupled
(MC) operators [4, 5] and associated WHOs in the sense of [105, 106].

The MC relation between two bounded linear operators T, S in Banach spaces is often writ-
ten in the form

(8.99)
(
T .
. .

)
=

(
. .
. S

)−1

.

It is well known that (8.99) is closely related to another operator relation which is called equiv-
alence after extension (EAE) relation defined by

(8.100)
(
T 0
0 IZ1

)
= E

(
S 0
0 IZ2

)
F,

where Z1, Z2 are Banach spaces and E,F are isomorphisms acting between the corresponding
spaces. In this case, one writes

(8.101) T
∗∼ S .

The two relations (8.99) and (8.100) look quite different, however it turns out that they coin-
cide:
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Theorem 8.8 (of Bart and Tsekanovskii). Two bounded linear operators acting in Banach spaces are
matricially coupled if and only if they are equivalent after extension.

There are some important facts to be pointed out:
• EAE is an equivalence relation in the genuine mathematical sense (reflexive, symmetric,

and transitive) and such is MC;
• T ∼ S implies T ∗∼ S, but not conversely (see the example below);
• The two relations (8.99) and (8.100) can be computed from each other [5, 114].

The following conclusion is most important in applications [24, Theorem 2.5].

Theorem 8.9. If (8.100) is satisfied, and if S− is a reflexive generalised inverse of S, then a reflexive
generalised inverse of T is given by the formula

(8.102) T− = R11

(
F−1

(
S− 0
0 IZ2

)
E−1

)
,

where R11 denotes the restricted operator of the first matrix entry to the first component spaces.

An example for the ease of a MC relation appears in diffraction theory in the context of
diffraction of time-harmonic waves from plane screens in R3. It turns out that the operators as-
sociated to certain problems for complementary plane screens are matricially coupled, which
was denoted as “abstract Babinet principle" in [111]. Therefore, the construction of the resol-
vent operator for one of the problems implies a representation of the resolvent operator for
the other one. Since the resolvent operators can be computed for certain convex screens, the
preceeding idea yields the explicit solution of diffraction problems for a much wider class of
plane screens, the so-called “polygonal-conical screens" [22].

Another application of the EAE relation is the following. A process commonly denoted by
"equivalent reduction" is the step from a boundary value problem (BVP) to a semi-homogeneous
BVP. This is not reflected by equivalence between the two associated operators but by equiva-
lence after extension.

Consider the abstract BVP (5.1)-(5.2) and its associated operator (5.50). Moreover consider
the semi-homogeneous (abstract) boundary value problem briefly written as

(8.103) L0u =

(
A
B

)
u =

(
0
g

)
∈ {0} × Y2

∼= Y2

with associated operator

(8.104) B|kerA : X0 = kerA → Y2.

By analogy, we may define A|kerB : kerB → Y1.

Theorem 8.10. Let L =

(
A
B

)
∈ L(X , Y1 × Y2) be a bounded linear operator in Banach spaces.

Then

AR = I for some R ∈ L(Y1,X ) implies L
∗∼ B|kerA,

BR = I for some R ∈ L(Y2,X ) implies L
∗∼ A|kerB .

The proof (for the first case) is based upon the operator identity

(8.105) L = E T F =

(
0 A|X1

I|Y2
B|X1

)(
B|X0 0

0 I|X1

)(
P
Q

)
which holds if A is right invertible: AR = I|Y1

, say, with X0 = kerA, X1 = imR, Q = RA,P =
I−RA. Formula (8.105) is an EAE relation between L andB|X0 , more precisely an equivalence
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after one-sided extension (EAOE) relation, since the operator L on the left side is not extended.
For details and further consequences (transfer properties, normalization etc.) see [110]. As a
consequence, the resolvent operator (L0)−1 of the semi-homogeneous BVP (8.103) implies a
representation of the resolvent operator L−1 of the full problem by the help of formula (8.102).

For further operator relations, their interplay, and further applications see [6, 19, 24, 50, 51,
118].

Historical remarks.
The present concepts of equivalence and reduction are much stronger than those usually

used in potential theory where, for instance elliptic BVPs are said to be equivalent to certain
boundary integral equations if, roughly speaking, there are mappings which generate solu-
tions from each other, see [52, Section 5.6.5] and [77, Section 2], for instance. Various other
equivalence relations appear in the literature, e.g., defined by the fact that two operators are
simultaneously Fredholm or not [7]. Those properties can be regarded as consequences of the
MC and EAE relations and were denoted as "transfer properties" in [110, 115].

The MC and EAE relations were introduced by Harm Bart, Israel Gohberg, and Rien Kaashoek
in the early 1980s [4], where the conclusion from MC to EAE was of great importance in system
theory, see also [114]. The proof of the inverse conclusion (from EAE to MC) was obtained by
Harm Bart and V.E. Tsekanovskii [5]. It gave a great impact to the study of operator relations
in general, see [50, 51, 110, 118]. Its usefulness in the study of various classes of operators was
demonstrated already by Luís Castro and the author in 1998 [19, 24, 25] and recently also for
applications in diffraction theory, together with Roland Duduchava [22, 111, 113].

9. THE STEP FROM 2 TO 3 AND TO n DIMENSIONS

In this final section, we describe briefly an idea of how to study the Sommerfeld problems
of Section 3 in higher dimensions, i.e., where Ω is three-dimensional or even n-dimensional
which mathematically does not make a great difference to some extend. The FIS concept (see
Theorem 7.5) improves to be very efficient, because the intermediate space turns out to be an
anisotropic Sobolev space and the reasoning of an operator factorisation with bounded instead
of unbounded operators applies as before in two dimensions.

Instead of a half-line (as in Section 3) consider the half-plane Σ = R2
1+ = {x ∈ R2 : x1 > 0},

the (orthogonal) projectors P+ = `0r+ : L2(R2) → L2(R2) onto L2
Σ = L2

R2
1+

, P− = I − P+ and
the Bessel potential operators [35, 36, 41] of order s ∈ R:

Λs+ = Aλs+ = F−1 λs+ · F , λs+(ξ) =

(
ξ1 + i

√
ξ2
2 + 1

)s
, ξ ∈ R2

Λs− = Aλs− = F−1 λs− · F , λs−(ξ) =

(
ξ1 − i

√
ξ2
2 + 1

)s
, ξ ∈ R2,

where F now denotes the two-dimensional Fourier transformation. For any s ∈ R, we find the
orthogonal projectors [25]

P
(s)
+ = Λ−s+ P+ Λs+ onto Hs

Σ

P
(s)
− = Λ−s− P− Λs− onto Hs

Σ′

Π
(s)
+ = Λ−s− P+ Λs− along Hs

Σ′

Π
(s)
− = Λ−s+ P− Λs+ along Hs

Σ.

Hence P (s)
+ + Π

(s)
− = IHs and P (s)

− + Π
(s)
+ = IHs .
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As mentioned in Remark 6.2 one can work with
√
ξ2
2 − k2 instead of

√
ξ2
2 + 1. In that case,

the corresponding projectors are not anymore orthogonal in the usual sense.
Now, let us go to the higher-dimensional case (m = n − 1 ≥ 2) where Σ is a half-space, cf.

[20, 41, 45, 100, 106]. According to the traditional notation [41] xn denotes now the "normal
derivative direction" (corresponding to x2 in Section 3) and xm = xn−1 denotes the "WH di-
rection" (corresponding to x1 in Section 3) whilst the remaining variables x1, ..., xm−1 play the
role of parameters. Putting

X = Y = H1/2(Rm)×H−1/2(Rm) , Σ = Rm+ = Rm−1×]0,∞[

and t(ξ) = (ξ2
1 + ... + ξ2

m − k2)1/2 , ξ = (ξ′, ξm) ∈ Rm, we can consider the same factorisation
given by (4.47) replacing k by (k2 − ξ′2)1/2, i.e., the previous factorisation as to be parameter-
dependent of ξ′ ∈ Rm−1. It turns out that the factorisation (4.47) can be seen as a canonical FIS
of A with an intermediate space which is an anisotropic vector Sobolev space

Z = Hϑ(Rm)×H−ϑ(Rm) ,(9.106)

Hϑ(Rm) = F(wϑL
2(Rm)) , wϑ(ξ) = (1 + |ξ′|2)ϑ1/2) (1 + ξ2

m)ϑ2/2),

ϑ = (ϑ1, ϑ2) = (
1

2
(δ − 1),

1

2
(1− δ)) ,

see [113] for more details. Adding in the factorisation σλ = σλ− σλ+ (cf. (4.47)) a middle factor
of the form diag (ζκ1 , ζκ2), where ζ(ξ) = (ξm−i |ξ′|)/(ξm+i |ξ′|), we find further examples with
non-canonical FIS which are not Fredholm according to a non-trivial kernel (or co-kernel) that
is translation invariant with respect to x′ = (x1, ..., xm−1) ∈ Rm−1, hence infinite dimensional.
However, generalised inverses can be constructed as before according to the FIS interpretation.

One can find plenty of further boundary value and transmission problems in higher di-
mensions (n ≥ 3), where the associated operators are not anymore Fredholm but generalised
invertible, just adding one or more variables, see [28, 64, 81, 113], for instance.

Many problems in mathematical physics, for instance in elasticity theory, make sense only
in three dimensions. They typically lead us to Wiener-Hopf equations, anisotropic function
spaces and normalisation problems, see [37, 52, 78, 109], e.g.

Conclusion. The operator theoretical formulation allows a clear and compact description of
results about the solution of linear BVPs, a simultaneous treatise of large classes of problems,
and the solution of new classes of BVPs, as well.

For instance, the described ideas are applicable to other geometrical situations, particularly
the conception of equivalent reduction via operator relations, see further work on diffraction
by wedges or polygonal-conical screens etc. such as [20, 22] and [28].
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