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Abstract

In the present paper, we introduce the concept of F-modular, which is a generalization
of the modular notion. Moreover, we introduce a K,-modular and K-modular, and then
compare these concepts together. Finally, we give a characterization of F-modulars.
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1. Introduction

A modular on a space X is a mapping p : X — [0, oo| satisfying the following properties:
(i) p(z) =0 if and only if z = 0,
(ii) p(ax) = p(z) for every scaler a with |a| =1,

(iii) p(ax + By) < p(x) + p(y) for every o, B > 0 such that o+ = 1.
A modular p defines a corresponding modular space, i.e., the vector space X, given by

Xp={xeX: pAz)—=0as—0}.
The theory of modular spaces was founded by Nakano [15] and was intensively developed

by Luxemburg [10], Koshi and Shimogaki [8] and Yamamuro [18] and their collaborators.
In the present time the theory of modulars and modular spaces is extensively applied,
in particular, in the study of various Orlicz spaces [16] and interpolation theory [9,12],
which in their turn have broad applications [13]. Shateri [17] introduced the notion of a
C*-valued modular, and investigated some fixed point theroems in such spaces.

Recently, many interesting extentions of the metric space appeared. The notion of a b-
metric space introduced by Czerwik [2]. Fagin, et al. [3] introduced s-relaxed, metric
spaces. Gdahler [4] defined the notion of a 2-metric on the product set X x X x X. The
reader can see more generalizations of the notion of a metric space in [1,5,7,12,14]. Jleli
and Samet [6] introduced the F-metric concept. They defined a natural topology in such
spaces, and studied their topological properties.

In this paper, by using some ideas of [6] we introduce the F-modular concept, which is a
generalization of the modular space notion. We prove that any modular is an F-modular,
but the converse is not true in general, which shows that our concept is more general than
the standard modular concept.
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Moreover, we introduce a K,-modular and K-modular, and then compare these concepts
together. Finally, we introduce the notion of F-modulars boundedness, which is used to
provide a characterization of F-modular spaces.

2. F-modulars

We start by introducing the following set which plays an important role in our topic.
Let F be the set of all functions f : (0, +00) — R which satisfy in the following conditions

(F1) f is non-decreasing,
(F2) For every sequence {t,} in (0, +00), ll}r}rl t, = 0 if and only if ll}I_il_l f(tn) = —o0.

Now we define a new concept of a modular space.

Definition 2.1. Let X be a linear space, and let § : X — [0, +00) be a given mapping.
Suppose there exists (f,7) € F x [0, +00) such that

(01) d(z) = 0 if and only if z =0,

(02) () = &(x) for every scaler o with |a| =1,

(03) For each z,y € X, for each 2 <n € N, and for every {u;}!"; in X with u; = 2 and
up =y, if 0(ax + By) > 0 for , 8 > 0 in which a + § =1,

then

F(8la -+ 8y) < F(320(u)) + 7.
=1

Then 0 is called an F-modular on X, and the pair (X,¢) is said to be an F-modular
space.

Note that if p is a modular on X, then it is an F-modular with f(¢) = Int and v = 0.
Clearly (d1) and (d2) satisfied. On the other hand, for each z,y € X, for every 2 <n € N,
and for every {u;}; in X with u; = x and u,, = y, we have

In(plaz + ) < Inp(a) + p(y) < In(3 p(u).
=1

for o, 8 > 0 in which o + 8 = 1.
In the following example we give an F-modular space which is not a modular space.

Example 2.2. Let X = [1, 00), define the mapping 6 : X — [0, +00) as follows

for all z € X. Then ¢ is not a modular. Indeed, § does not satisfy (iii), because for z = 1,
y=2a=1and =2, we get

8 9 81

-)=4d=)==>96 o(y) = 3.

5 =0(2) = o > 6(x) +3(y)

Now, we show that J is an F-modular. Fix z,y € X, and let {u;}? ; in X with u; = = and
up,=y. Put I={i=1,...,n; u; € [1,2)} and J = {1,2,...} — I, then we have

d(ax + By) = 5(% +

n

D 0(ui) = 0(ui) + D 0(u) =Y i+ uj.

i=1 iel jeJ il jeJ
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Now we have two cases.
Case 1: If ax + Sy ¢ [1,2), then

d(ax + Py) = ax + By

n
Sx+yézui=ZUi+ZUJ

=1 il Jj€J
2 .
S ESNT
iel jeJ

i=1
Case 2: If ax + Py € [1,2), then we have
S(az + By) = (az + By)°

< 2(ax + By)

<2(z+vy)

< 2(2 u; + Z u]'>
icl jeJ

< 2(2 u? + > uj)
il jeJ

=2 zn: (S(Uz)
i=1

The above cases show that ¢ satisfies (d3) with f(¢) =1Int, ¢ > 0 and v = In2. Therefore
0 is an F-modular.

Now,we define a K)-modular on a space X, also we provide an example of an F-modular
space that cannot be an Kj,-modular space, which confirms that the class of F-modular
spaces is more large than the class of Kj,-modular spaces.

Definition 2.3. Let A : X — [0, +00) be a mapping satisfies (d1), (d2), and
(Asz) There exists K > 1 such that for every z,y € X, for every 2 < n € N, for every
{Ui}?zl in X with Uy = and Up = Y, WE have

Alaz + By) < KD Aw)),
i=1
for o, 3 > 0 in which o+ 8 = 1. Then A is called a K,-modular, and (X, A) is said to be

a Kj-modular space.

It is clear that A satisfies (d3) with f(¢f) =1Int, t > 0 and v = In K, and hence A is an
F-modular. Notice that the mapping ¢ in Example 2.2 satisfies in (A3) with K = 2.
The following example shows that the class of F-modulars is more large than the class of
K, modulars.

Example 2.4. Let X = Z. Define the mapping § : X — [0, +00) by
1
= 0
S(z) = d el T 7 0, 2.1
(@) {0 e (2.1

for all x € X. Then 0 is a F-modular. It is clear that ¢ satisfies (d1) and (d2). In order to
check (d3), let

f) =3, (¢>0)



New generalizations of modular spaces 1079

It can be easily seen that f € F. Fix x,y € X and o, > 0 in which a + § = 1 with
0(ax + By) > 0. For every n € N, and for every {u;} in X with u; = x and ug = y, we
have

n

L+ F(D06(u)) = F(5(@) + 6())

=1

1 1
=l ot
i=1 glu;]  claa+Ayl
1
=1—- =T + e|ax+6y\
i=1 Zlu;]
> 1+ 1+ elowtl

> 0.

Note that the first inequality holds because Y ;" ; ﬁ > 0> —1and 50 — 71— > 1.

i=1 luyl

Therefore we get
n

F6() + () < F(30(ui)) +1.
i=1
Consequently ¢ is an F-modular.
Next, we shall prove ¢ is not a Kp-modular. Suppose that J satifies (A3) with a certain
= 1. Then we have

K > 1. Consider u1 =x =4n,ug =y =0and a = = 3
d(ax + Py) = 6(2n) < K(6(x) + 6(y)) = Kd(4n),
this implies that
e < K.

Passing to the limit as n — 400, we obtain a contradiction. Therefore, § can not be a
K,-modular.

In following, we introduce another concept of a modular space which is more large than
the class of F-modular spaces and Kp-modular spaces.

Definition 2.5. Let X be a linear space, and let p : X — [0,4+00) be a mapping. Let
there exists K > 1 such that

(p1) p(z) = 0 if and only if z =0,

(p2) plax) = p(x) for every scalar o with |a] =1,

(p3) plaz + By) < K(p(z) + p(y)), for a, 3 > 0 in which v + 5 = 1.

Then p is called a K-modular.

Notice that, each modular is a K-modular with K = 1. Also every Kj,-modular is a
K-modular. In following we give an example that shows the converse is not true in general.

Example 2.6. Let X = [0, 1], and let 6 : X — [0, +00) be the mapping defined by

.'172 X
§(z) = {O . i [197 D:

It can be easily seen that ¢ is a K-modular with K = 2. Next, we prove that ¢ is not an
F-modular. Suppose that there exists (f,~) such that § satisfies (d3). Let n € N, and put
1
r=u=0y=u,=Luy=—, 1=2,...,n—1.
n

Then for a = 8 = %, (03) implies that
FO(G +5)) < F(8(u) +6(ug) + - + 8(un-1) + 0(un)) +7.
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Hence

By (F2), we have

. n—2
lim f( 3 )—l—’YZ—oo,
which is a contradiction. Consequently ¢ is not an F-modular.
Moreover ¢ is not a Kj,-modular. Infact if § satisfies (A3), and let
1
z=u=0y=u,=lLuy=—, 1=2,...,n—1,
n

then for « = 8 = 3, by (A3) we conclude that

y
+ %) < 0(ur) + 0(ug) + -+ 4+ 0(un—1) + 6(upn) + 7.

T
5(Z
(2
Therefore
1 1 n-2
—=-< .
2 4= n?
By (F2), we have
lim "%,

which is a contradiction.

Remark 2.7. One can easily see that the mapping § defined by (2.1) in Example 2.4, is
not also a K-modular on X.

3. F-modular boundedness

In this section, we introduce the concept of F-modular boundedness, which is used to
provide a characterization of F-modular spaces.

Definition 3.1. Let X be a linear space, and let 6 : X — [0, +00) be a mapping satisfying
(01) and (62). We call the pair (X,d) is F-modular bounded with respect to (f,v) €
F x [0,4+00), if there exists a modular p on X such that for every z,y € X, and for a, § > 0
in which a + 8 =1, 6(ax + By) > 0 implies that

f(plaz + By)) < f(0(x) +6(y)) and f(d(ax + By)) < f(plax + By)) +~.  (3.1)

We can prove the following result.

Theorem 3.2. Let X be a space and let 6 : X — [0,+00) be a mapping satisfying (01)
and (02). Let (f,y) € F x [0,+00) such that f is continuous from the right. Then the
followings are equivalent:

(i) (X,0) is an F-modular on X with (f,~) given above.
(i) (X, 0) is an F-modular bounded with respect to (f,~).

Proof. Suppose that (X,0) is an F-modular on X with respect to (f,). We define the
mapping p : X — [0, +00) by

plax + By) = inf{z 0(ui) :meNn>2 (u)ie; CX,up =x,u, = y},
i=1

for all z,y € X and for a, 8 > 0 in which a + 8 = 1. We show that p is a modular on X.
Note that

n

plx) = inf{Z(S(ui) neN,n>2 (u)ie, CX,up =uy = x},
i=1
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so if z = 0, then p(x) = 0. Since §(ax) = §(x), for each « such that |a] = 1, it follows
from the definition of p that

plax) =p(x), zeX.
Now, let = € X be such that p(xz) = 0. Suppose that x # 0. Given € > 0, then there exists
neN, n>2 and (u;)f_; C X with u; = u,, = z such that

n

25(1@) <e.

i=1
By (51), we obtain

£(300(w) < £(©) (32
=1

More over, putting y = x in (d3) deduce that
F8(2) < F(300(w)) + . (3.3)
i=1

Using (3.2) and (3.3), we get

f(6(x)) < fle) + -
By (F2), we obtain

lim (f(e) +7) = —o0,

e—0t
which is a contradiction. Now, let z,y € X and let o, 5 > 0 be such that o + g = 1.
Suppose € > 0 is arbitrary. Then by definition of p, there exist {u;}i; and {v;}72; in X
such that u; = u, =z, v1 = v, =y, and

m

58w < pla) +2, D0 8(0) < ply) + <.
=1

J=1

Put w; = uy = z, and w; = u; for every 2 < i < n, w; = Upgm—i—1 for every n +1 < i <
n+m — 1, and wyp4m = Uy = y. Then we obtain

Passing to the limit as e — 07, we get

plaz + By) < p(x) + p(y).
Now, we shall prove that ¢ satisfies (3.1). For this, let z,y € X, and for «, 8 > 0 in which
a+ B =1, dax+ py) > 0. It is clear that

plaz + By) < d6(x) +0(y),
and (J7) implies that

flplax + By)) < f(5(x) +6(y)). (3.4)
Let € > 0. Then, there exist n € N, and {u;}; C X with u; = z and u,, = y such that

n

Z d(u;) < plax + By) + €.

i=1
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Hence
n

f(Zl 5(ui)) < flplax + By) +e).
By (J3), we obtain Z
f6(az + By) < f(plaz + By) +¢) + 1.
Passing to the limit as ¢ — 0", and using the right continuity of f, we get
f(6(ax + By) < f(plax + By)) + - (3.5)
We deduce from (3.4) and (3.5) that
flplazx + By)) < f(6(z) +0(y)) < fplax + By)) + 7.

Therefore (X, §) is F-modular bounded with respect to (f, ).

Now, let (X, d) is F-modular bounded with respect to (f, ), that is, there exists a modular
p on X such that (3.1) satisfied. Let =,y € X, and let a,, > 0 be such that o+ = 1, and
d(ax + Py) > 0. Suppose n € N, and {u;}!' | with u; = z,u, = y. Since p is a modular,
we have

pla + By) < ple) + ply) < 3 plus). (3.6)
=1

Using (1) and the fact that if 6(z) + d(y) > 0, and
flplazx + By)) < f(0(x) +d(y)),
we deduce that
plaz + By) < o(x) +d(y). (3.7)
By (3.6) and (3.7), we get
flploz + By)) < f(6(x) +6(y)) and f(5(ax + By)) < f(plax + By)) + -
By (1) we deduce that

On the other hand
f(0(ax + By)) < f(plax + By)) + 7,

we conclude that

F(a(a + By)) < F(3000) + 7.

i=1

Therefore, § is an F-modular on X. O
Theorem 3.2 gives a characterization of F-modulars as follows.
Corollary 3.3. An F-modular on a space X is an F-modular bounded mapping.

Remark 3.4. Note that in the proof of Theorem 3.2, the right continuity assumption of
f is used only to prove that (i) = (i7). However, (ii) = (i) holds for any f € &.



1]

New generalizations of modular spaces 1083

References

A. Branciari, A fized point theorem of Banach-Caccioppoli type on a class of general-
ized metric spaces, Publ. Math. Debrecen 57, 31-37, 2000.

S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Univ. Ostrav. 1
(1), 511, 1993.

R. Fagin, R. Kumar and D. Sivakumar, Comparing top k lists, SIAM J. Discrete
Math. 17 (1), 134-160, 2003.

V.S. Gahler, 2-metrische Raume und ihre topologische struktur, Math. Nachr. 26,
115-118, 1963/1964.

M. Jleli and B. Samet, A generalized metric space and related fixed point theorems,
Fixed Point Theory Appl. 2015, 14 pages, 2015.

M. Jleli and B. Samet, On a new generalization of metric spaces, Fixed Point Theory
Appl. 20 (3), 20 pages, 2018.

R. Kopperman and H. Pajoohesh, Generalizations of metrics and partial metrics,
Hacet. J. Math. Stat. 46 (1), 9-14, 2017.

S. Koshi and T. Shimogaki, On F-norms of quasi—-modular spaces, J. Fac. Sci.
Hokkaido Univ. Ser. I. 15 (3), 202-218, 1961.

M.A. Krasnoselskii and Y.B. Rutickii, Convex functions and Orlicz spaces (in Rus-
sian), Fizmatgiz, Moskva, 1958; Translated by L.F. Boron, Noordhoff, Groningen,
1961.

W.A. Luxemburg, Banach function spaces, Ph. D. Thesis, Delft University of Tech-
nology, Delft, The Netherlands, 1959.

L. Maligranda, Orlicz Spaces and Interpolation, in: Seminars in Math. 5, Univ. of
Campinas, Brazil, 1989.

S.G. Matthews, Partial metric topology, Proc. 8th Summer Conference on General
Topology and Applications, Ann. New York Acad. Sci. 728, 183-197, 1994.

J. Musielak, Orlicz Spaces and Modular Spaces, in: Lecture Notes in Math. 1034,
Springer-Verlag, Berlin, 1983.

7. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear
Convex Anal. 7 (2), 289-297, 2006.

H. Nakano, Modulared Semi-Ordered Linear Spaces, in: Tokyo Math. Book Ser. 1,
Maruzen Co., Tokyo, 1950.

W. Orlicz, Collected Papers, Vols. I, II, PWN, Warszawa, 1988.

T.L. Shateri, C*-algebra-valued modular spaces and fixed point theorems, J. Fixed
Point Theory Appl. 19 (2), 1551-1560, 2017.

S. Yamamuro, On conjugate spaces of Nakano spaces, Trans. Amer. Math. Soc. 90,
291-311, 1959.



