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Abstract
In the present paper, we introduce the concept of F-modular, which is a generalization
of the modular notion. Moreover, we introduce a Kp-modular and K-modular, and then
compare these concepts together. Finally, we give a characterization of F-modulars.
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1. Introduction
A modular on a space X is a mapping ρ : X → [0, ∞] satisfying the following properties:

(i) ρ(x) = 0 if and only if x = 0,
(ii) ρ(αx) = ρ(x) for every scaler α with |α| = 1,
(iii) ρ(αx + βy) ≤ ρ(x) + ρ(y) for every α, β ≥ 0 such that α + β = 1.

A modular ρ defines a corresponding modular space, i.e., the vector space Xρ given by

Xρ = {x ∈ X : ρ(λx) → 0 as λ → 0} .

The theory of modular spaces was founded by Nakano [15] and was intensively developed
by Luxemburg [10], Koshi and Shimogaki [8] and Yamamuro [18] and their collaborators.
In the present time the theory of modulars and modular spaces is extensively applied,
in particular, in the study of various Orlicz spaces [16] and interpolation theory [9, 12],
which in their turn have broad applications [13]. Shateri [17] introduced the notion of a
C∗-valued modular, and investigated some fixed point theroems in such spaces.
Recently, many interesting extentions of the metric space appeared. The notion of a b-
metric space introduced by Czerwik [2]. Fagin, et al. [3] introduced s-relaxedp metric
spaces. Gähler [4] defined the notion of a 2-metric on the product set X × X × X. The
reader can see more generalizations of the notion of a metric space in [1, 5, 7, 12, 14]. Jleli
and Samet [6] introduced the F-metric concept. They defined a natural topology in such
spaces, and studied their topological properties.

In this paper, by using some ideas of [6] we introduce the F-modular concept, which is a
generalization of the modular space notion. We prove that any modular is an F-modular,
but the converse is not true in general, which shows that our concept is more general than
the standard modular concept.
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Moreover, we introduce a Kp-modular and K-modular, and then compare these concepts
together. Finally, we introduce the notion of F-modulars boundedness, which is used to
provide a characterization of F-modular spaces.

2. F-modulars
We start by introducing the following set which plays an important role in our topic.

Let F be the set of all functions f : (0, +∞) → R which satisfy in the following conditions

(F1) f is non-decreasing,
(F2) For every sequence {tn} in (0, +∞), lim

n→+∞
tn = 0 if and only if lim

n→+∞
f(tn) = −∞.

Now we define a new concept of a modular space.

Definition 2.1. Let X be a linear space, and let δ : X → [0, +∞) be a given mapping.
Suppose there exists (f, γ) ∈ F × [0, +∞) such that

(δ1) δ(x) = 0 if and only if x = 0,
(δ2) δ(αx) = δ(x) for every scaler α with |α| = 1,
(δ3) For each x, y ∈ X, for each 2 ≤ n ∈ N, and for every {ui}n

i=1 in X with u1 = x and
un = y, if δ(αx + βy) > 0 for α, β > 0 in which α + β = 1,

then

f(δ(αx + βy)) ≤ f
( n∑

i=1
δ(ui)

)
+ γ.

Then δ is called an F-modular on X, and the pair (X, δ) is said to be an F-modular
space.

Note that if ρ is a modular on X, then it is an F-modular with f(t) = lnt and γ = 0.
Clearly (δ1) and (δ2) satisfied. On the other hand, for each x, y ∈ X, for every 2 ≤ n ∈ N,
and for every {ui}n

i=1 in X with u1 = x and un = y, we have

ln(ρ(αx + βy)) ≤ ln(ρ(x) + ρ(y)) ≤ ln
( n∑

i=1
ρ(ui)

)
,

for α, β > 0 in which α + β = 1.

In the following example we give an F-modular space which is not a modular space.

Example 2.2. Let X = [1, ∞), define the mapping δ : X → [0, +∞) as follows

δ(x) =
{

x2 x ∈ [1, 2),
x x ≥ 2,

for all x ∈ X. Then δ is not a modular. Indeed, δ does not satisfy (iii), because for x = 1,
y = 2, α = 1

5 and β = 4
5 , we get

δ(αx + βy) = δ(1
5

+ 8
5

) = δ(9
5

) = 81
25

> δ(x) + δ(y) = 3.

Now, we show that δ is an F-modular. Fix x, y ∈ X, and let {ui}n
i=1 in X with u1 = x and

un = y. Put I = {i = 1, . . . , n; ui ∈ [1, 2)} and J = {1, 2, . . .} − I, then we have
n∑

i=1
δ(ui) =

∑
i∈I

δ(ui) +
∑
j∈J

δ(uj) =
∑
i∈I

u2
i +

∑
j∈J

uj .
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Now we have two cases.
Case 1: If αx + βy /∈ [1, 2), then

δ(αx + βy) = αx + βy

≤ x + y ≤
n∑

i=1
ui =

∑
i∈I

ui +
∑
j∈J

uj

≤
∑
i∈I

u2
i +

∑
j∈J

uj

=
n∑

i=1
δ(ui).

Case 2: If αx + βy ∈ [1, 2), then we have

δ(αx + βy) = (αx + βy)2

≤ 2(αx + βy)
≤ 2(x + y)

≤ 2
(∑

i∈I

ui +
∑
j∈J

uj

)
≤ 2

(∑
i∈I

u2
i +

∑
j∈J

uj

)

= 2
n∑

i=1
δ(ui).

The above cases show that δ satisfies (δ3) with f(t) = ln t, t > 0 and γ = ln 2. Therefore
δ is an F-modular.

Now,we define a Kp-modular on a space X, also we provide an example of an F-modular
space that cannot be an Kp-modular space, which confirms that the class of F-modular
spaces is more large than the class of Kp-modular spaces.

Definition 2.3. Let ∆ : X → [0, +∞) be a mapping satisfies (δ1), (δ2), and
(∆3) There exists K ≥ 1 such that for every x, y ∈ X, for every 2 ≤ n ∈ N, for every
{ui}n

i=1 in X with u1 = x and un = y, we have

∆(αx + βy) ≤ K
( n∑

i=1
∆(ui)

)
,

for α, β > 0 in which α + β = 1. Then ∆ is called a Kp-modular, and (X, ∆) is said to be
a Kp-modular space.

It is clear that ∆ satisfies (δ3) with f(t) = ln t, t > 0 and γ = ln K, and hence ∆ is an
F-modular. Notice that the mapping δ in Example 2.2 satisfies in (∆3) with K = 2.
The following example shows that the class of F-modulars is more large than the class of
Kp modulars.

Example 2.4. Let X = Z. Define the mapping δ : X → [0, +∞) by

δ(x) =
{

1
e|x| x ̸= 0,

0 x = 0,
(2.1)

for all x ∈ X. Then δ is a F-modular. It is clear that δ satisfies (δ1) and (δ2). In order to
check (δ3), let

f(t) = −1
t
, (t > 0).
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It can be easily seen that f ∈ F. Fix x, y ∈ X and α, β > 0 in which α + β = 1 with
δ(αx + βy) > 0. For every n ∈ N, and for every {ui} in X with u1 = x and u2 = y, we
have

1 + f
( n∑

i=1
δ(ui)

)
− f(δ(x) + δ(y))

= 1 − 1∑n
i=1

1
e|ui|

+ 1
1

e|αx+βy|

= 1 − 1∑n
i=1

1
e|ui|

+ e|αx+βy|

> 1 + 1 + e|αx+βy|

≥ 0.

Note that the first inequality holds because
∑n

i=1
1

e|ui| > 0 > −1 and so − 1∑n

i=1
1

e|ui|
> 1.

Therefore we get

f(δ(x) + δ(y)) ≤ f
( n∑

i=1
δ(ui)

)
+ 1.

Consequently δ is an F-modular.
Next, we shall prove δ is not a Kp-modular. Suppose that δ satifies (∆3) with a certain

K ≥ 1. Consider u1 = x = 4n, u2 = y = 0 and α = β = 1
2 . Then we have

δ(αx + βy) = δ(2n) ≤ K(δ(x) + δ(y)) = Kδ(4n),
this implies that

e2n ≤ K.

Passing to the limit as n → +∞, we obtain a contradiction. Therefore, δ can not be a
Kp-modular.

In following, we introduce another concept of a modular space which is more large than
the class of F-modular spaces and Kp-modular spaces.

Definition 2.5. Let X be a linear space, and let ρ : X → [0, +∞) be a mapping. Let
there exists K ≥ 1 such that

(ρ1) ρ(x) = 0 if and only if x = 0,
(ρ2) ρ(αx) = ρ(x) for every scalar α with |α| = 1,
(ρ3) ρ(αx + βy) ≤ K(ρ(x) + ρ(y)), for α, β > 0 in which α + β = 1.
Then ρ is called a K-modular.

Notice that, each modular is a K-modular with K = 1. Also every Kp-modular is a
K-modular. In following we give an example that shows the converse is not true in general.

Example 2.6. Let X = [0, 1], and let δ : X → [0, +∞) be the mapping defined by

δ(x) =
{

x2 x ∈ [0, 1),
0 x = 1.

It can be easily seen that δ is a K-modular with K = 2. Next, we prove that δ is not an
F-modular. Suppose that there exists (f, γ) such that δ satisfies (δ3). Let n ∈ N, and put

x = u1 = 0, y = un = 1, ui = 1
n

, i = 2, . . . , n − 1.

Then for α = β = 1
2 , (δ3) implies that

f(δ(x

2
+ y

2
)) ≤ f(δ(u1) + δ(u2) + · · · + δ(un−1) + δ(un)) + γ.
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Hence
f(1

2
) = 1

4
≤ f

(n − 2
n2

)
+ γ.

By (F2), we have

lim
n→+∞

f
(n − 2

n2

)
+ γ = −∞,

which is a contradiction. Consequently δ is not an F-modular.
Moreover δ is not a Kp-modular. Infact if δ satisfies (∆3), and let

x = u1 = 0, y = un = 1, ui = 1
n

, i = 2, . . . , n − 1,

then for α = β = 1
2 , by (∆3) we conclude that

δ(x

2
+ y

2
) ≤ δ(u1) + δ(u2) + · · · + δ(un−1) + δ(un) + γ.

Therefore
1
2

= 1
4

≤ n − 2
n2 .

By (F2), we have

lim
n→+∞

n − 2
n2 = 0,

which is a contradiction.

Remark 2.7. One can easily see that the mapping δ defined by (2.1) in Example 2.4, is
not also a K-modular on X.

3. F-modular boundedness
In this section, we introduce the concept of F-modular boundedness, which is used to

provide a characterization of F-modular spaces.

Definition 3.1. Let X be a linear space, and let δ : X → [0, +∞) be a mapping satisfying
(δ1) and (δ2). We call the pair (X, δ) is F-modular bounded with respect to (f, γ) ∈
F× [0, +∞), if there exists a modular ρ on X such that for every x, y ∈ X, and for α, β > 0
in which α + β = 1, δ(αx + βy) > 0 implies that

f(ρ(αx + βy)) ≤ f(δ(x) + δ(y)) and f(δ(αx + βy)) ≤ f(ρ(αx + βy)) + γ. (3.1)

We can prove the following result.

Theorem 3.2. Let X be a space and let δ : X → [0, +∞) be a mapping satisfying (δ1)
and (δ2). Let (f, γ) ∈ F × [0, +∞) such that f is continuous from the right. Then the
followings are equivalent:

(i) (X, δ) is an F-modular on X with (f, γ) given above.
(ii) (X, δ) is an F-modular bounded with respect to (f, γ).

Proof. Suppose that (X, δ) is an F-modular on X with respect to (f, γ). We define the
mapping ρ : X → [0, +∞) by

ρ(αx + βy) = inf
{ n∑

i=1
δ(ui) : n ∈ N, n ≥ 2, (ui)n

i=1 ⊂ X, u1 = x, un = y
}

,

for all x, y ∈ X and for α, β > 0 in which α + β = 1. We show that ρ is a modular on X.
Note that

ρ(x) = inf
{ n∑

i=1
δ(ui) : n ∈ N, n ≥ 2, (ui)n

i=1 ⊂ X, u1 = un = x
}

,
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so if x = 0, then ρ(x) = 0. Since δ(αx) = δ(x), for each α such that |α| = 1, it follows
from the definition of ρ that

ρ(αx) = ρ(x), x ∈ X.

Now, let x ∈ X be such that ρ(x) = 0. Suppose that x ̸= 0. Given ε > 0, then there exists
n ∈ N, n ≥ 2, and (ui)n

i=1 ⊂ X with u1 = un = x such that
n∑

i=1
δ(ui) < ε.

By (F1), we obtain

f
( n∑

i=1
δ(ui)

)
≤ f(ε). (3.2)

More over, putting y = x in (δ3) deduce that

f(δ(x)) ≤ f
( n∑

i=1
δ(ui)

)
+ γ. (3.3)

Using (3.2) and (3.3), we get
f(δ(x)) ≤ f(ε) + γ.

By (F2), we obtain
lim

ε→0+
(f(ε) + γ) = −∞,

which is a contradiction. Now, let x, y ∈ X and let α, β > 0 be such that α + β = 1.
Suppose ε > 0 is arbitrary. Then by definition of ρ, there exist {ui}n

i=1 and {vj}m
j=1 in X

such that u1 = un = x, v1 = vm = y, and
n∑

i=1
δ(ui) < ρ(x) + ε,

m∑
j=1

δ(vj) < ρ(y) + ε.

Put w1 = u1 = x, and wi = ui for every 2 ≤ i ≤ n, wi = vn+m−i−1 for every n + 1 ≤ i ≤
n + m − 1, and wn+m = um = y. Then we obtain

ρ(αx + βy) ≤
n+m∑
i=1

δ(wi)

=
n∑

i=1
δ(ui) +

m∑
j=1

δ(vj)

< ρ(x) + ρ(y) + 2ε.

Passing to the limit as ε → 0+, we get

ρ(αx + βy) ≤ ρ(x) + ρ(y).

Now, we shall prove that δ satisfies (3.1). For this, let x, y ∈ X, and for α, β > 0 in which
α + β = 1, δ(αx + βy) > 0. It is clear that

ρ(αx + βy) ≤ δ(x) + δ(y),

and (F1) implies that

f(ρ(αx + βy)) ≤ f(δ(x) + δ(y)). (3.4)

Let ε > 0. Then, there exist n ∈ N, and {ui}n
i=1 ⊂ X with u1 = x and un = y such that

n∑
i=1

δ(ui) < ρ(αx + βy) + ε.
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Hence

f
( n∑

i=1
δ(ui)

)
≤ f(ρ(αx + βy) + ε).

By (δ3), we obtain
f(δ(αx + βy) ≤ f(ρ(αx + βy) + ε) + γ.

Passing to the limit as ε → 0+, and using the right continuity of f , we get

f(δ(αx + βy) ≤ f(ρ(αx + βy)) + γ. (3.5)

We deduce from (3.4) and (3.5) that

f(ρ(αx + βy)) ≤ f(δ(x) + δ(y)) ≤ f(ρ(αx + βy)) + γ.

Therefore (X, δ) is F-modular bounded with respect to (f, γ).
Now, let (X, δ) is F-modular bounded with respect to (f, γ), that is, there exists a modular
ρ on X such that (3.1) satisfied. Let x, y ∈ X, and let α, β > 0 be such that α+β = 1, and
δ(αx + βy) > 0. Suppose n ∈ N, and {ui}n

i=1 with u1 = x, un = y. Since ρ is a modular,
we have

ρ(αx + βy) ≤ ρ(x) + ρ(y) ≤
n∑

i=1
ρ(ui). (3.6)

Using (F1) and the fact that if δ(x) + δ(y) > 0, and

f(ρ(αx + βy)) ≤ f(δ(x) + δ(y)),

we deduce that

ρ(αx + βy) ≤ δ(x) + δ(y). (3.7)

By (3.6) and (3.7), we get

f(ρ(αx + βy)) ≤ f(δ(x) + δ(y)) and f(δ(αx + βy)) ≤ f(ρ(αx + βy)) + γ.

By (F1) we deduce that

f(ρ(αx + βy)) + γ ≤ f
( n∑

i=1
δ(ui)

)
+ γ.

On the other hand
f(δ(αx + βy)) ≤ f(ρ(αx + βy)) + γ,

we conclude that

f(δ(αx + βy)) ≤ f
( n∑

i=1
δ(ui)

)
+ γ.

Therefore, δ is an F-modular on X. �

Theorem 3.2 gives a characterization of F-modulars as follows.

Corollary 3.3. An F-modular on a space X is an F-modular bounded mapping.

Remark 3.4. Note that in the proof of Theorem 3.2, the right continuity assumption of
f is used only to prove that (i) ⇒ (ii). However, (ii) ⇒ (i) holds for any f ∈ F.



New generalizations of modular spaces 1083

References
[1] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of general-

ized metric spaces, Publ. Math. Debrecen 57, 31-37, 2000.
[2] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Univ. Ostrav. 1

(1), 511, 1993.
[3] R. Fagin, R. Kumar and D. Sivakumar, Comparing top k lists, SIAM J. Discrete

Math. 17 (1), 134-160, 2003.
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