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Abstract
In this paper, we consider the existence of traveling wave solutions in a higher dimensional
lattice competition-cooperation system with stage structure. We first construct a pair of
upper and lower solutions. The upper solutions are allowed to be larger than positive
equilibrium point. Then we establish the existence of traveling wave solutions by means
of cross iterative and Schauder’s fixed point theorem.
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1. Introduction
Lattice differential equations are the discrete versions of reaction-diffusion equations.

In past few years, many authors have paid their attention on the existence of traveling
wave solutions for lattice differential equations, see [3, 4, 7, 8, 13, 16, 17, 21] for one or two
dimensional lattices and [15,20,22] for higher dimensional lattices, and also see the results
for reaction-diffusion equations with or without stage structure [1, 2, 5, 6, 9, 10,14,18,19].

In this paper we are concerned with the existence of traveling wave solutions of a higher
dimensional lattice competition-cooperation system with stage structure{

u′
1η(t) = D1(∆nu1)η + α1e

−γ1τ1u1η(t− τ1) − a1u
2
1η(t) − b1u1η(t)u2η(t),

u′
2η(t) = D2(∆nu2)η + α2e

−γ2τ2u2η(t− τ2) + b2u1η(t)u2η(t) − a2u
2
2η(t), (1.1)

where all the parameters are positive constants, t > 0, (∆nw)η =
∑

|ξ−η|=1,ξ∈Zn

wξ − 2nwη,

η ∈ Zn, | · | denotes the Euclidean norm in Rn, n ∈ Z+. System (1.1) has four equilibria

0 = (0, 0),
(α1e

−γ1τ1

a1
, 0

)
,

(
0, α2e

−γ2τ2

a2

)
, K = (k1, k2),
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where

k1 = a2α1e
−γ1τ1 − b1α2e

−γ2τ2

a1a2 + b1b2
> 0, k2 = a1α2e

−γ2τ2 + b2α1e
−γ1τ1

a1a2 + b1b2
> 0

provided that
a2α1e

−γ1τ1 > b1α2e
−γ2τ2 . (1.2)

We are interested in the existence of traveling wave solutions of higher dimensional lattice
(1.1) connecting 0 with K. In this case, the reaction terms of (1.1) satisfy partial mono-
tonicity. We notice that there are some existence results about traveling wave solutions
for systems with partial monotonicity. For example, Huang et al. [8, 9] considered the
existence of traveling wave solutions of continuous and discrete reaction-diffusion systems
with partial monotonicity by using upper and lower solutions and Schauder’s fixed point
theorem; Li et al. [12] considered the existence and asymptotic behavior of traveling wave
solutions of competition-cooperation system on 1D lattice. Recently, Li et al. [11] con-
sidered the existence of traveling wave solutions of diffusive and competition-cooperation
system with stage structure. However, their results are not applied to system (1.1). Hence
we need to extend the above methods to higher dimensional lattice system (1.1).

Motivated by techniques in [8,9,11,12], we will establish the existence of traveling wave
solutions of system (1.1) connecting 0 with K by Schauder’s fixed point theorem and upper
and lower solutions method. The upper solutions are allowed to be larger than positive
equilibrium point, which is different from [8,9].

This paper is organized as follows. In Section 2, we first construct a pair of upper and
lower solutions and prove the continuity and compactness of operators, then we establish
the existence of traveling wave solutions by means of the cross iterative and Schauder’s
fixed point theorem.

2. The existence of traveling wave solutions
In this paper, we use the usual notations for the standard ordering in R2. That is,

for u = (u1, u2) and v = (v1, v2), we denote u ≤ v if ui ≤ vi, i = 1, 2, and u < v if
u ≤ v but u ̸= v. In particular, we denote u ≪ v if u ≤ v but ui ̸= vi, i = 1, 2. If
u ≤ v, we also denote (u, v] = {ω ∈ R2, u < ω ≤ v}, [u, v) = {ω ∈ R2, u ≤ ω < v},
[u, v] = {ω ∈ R2, u ≤ ω ≤ v}. In the following, | · | denotes the Euclidean norm in R2 or
Rn and ∥ · ∥ denotes the supremum norm in C([−τ, 0],R2).

Let
C[0,M](R,R2) = {(ϕ, ψ) ∈ C(R,R2) : 0 ≤ (ϕ(s), ψ(s)) ≤ M, s ∈ R},

where K ≤ M := (M1,M2).
Denote {

f1(uη(s), vη(s)) = α1e
−γ1τ1uη(−τ1) − a1u

2
η(0) − b1uη(0)vη(0),

f2(uη(s), vη(s)) = α2e
−γ2τ2vη(−τ2) + b2uη(0)vη(0) − a2v

2
η(0).

Lemma 2.1. For the functional f(ϕ, ψ) = (f1(ϕ, ψ), f2(ϕ, ψ)),
(A) there exist Li > 0 such that

|fi(u1η, v1η) − fi(u2η, v2η)| ≤ Li ∥ U − V ∥
for U = (u1η, v1η), V = (u2η, v2η) ∈ C([−τ, 0],R2) with
0 ≤ (uiη(s), viη(s)) ≤ M, s ∈ [−τ, 0], i = 1, 2,

and it satisfies partially quasimonotone condition:
(PQM) there exist β1 > 0 and β2 > 0 such that

f1(u1η(s), v1η(s)) − f1(u2η(s), v1η(s)) + β1[u1η(0) − u2η(0)] ≥ 2nD1[u1η(0) − u2η(0)],
f1(u1η(s), v1η(s)) − f1(u1η(s), v2η(s)) ≤ 0,
f2(u1η(s), v1η(s)) − f2(u2η(s), v2η(s)) + β2[v1η(0) − v2η(0)] ≥ 2nD2[v1η(0) − v2η(0)]



1086 Y. He, K. Li

for uiη(s), viη(s) ∈ C([−τ, 0],R), i = 1, 2, with
0 ≤ (u2η(s), v2η(s)) ≤ (u1η(s), v1η(s)) ≤ M for s ∈ [−τ, 0].

Proof. (A) is obvious. Next we check (PQM). For any (u1η, v1η), (u2η, v2η) ∈ C([−τ, 0],R2)
with 0 ≤ (u2η(s), v2η(s)) ≤ (u1η(s), v1η(s)) ≤ M, let β1 > 0 and β2 > 0 satisfying
β1 > 2a1M1 + b1M2 + 2nD1 and β2 > 2a2M2 + 2nD2, we have
f1(u1η, v1η) − f1(u2η, v1η) − 2nD1[u1η(0) − u2η(0)]

≥ {−a1[u1η(0) + u2η(0)] − b1v1η(0)}[u1η(0) − u2η(0)] − 2nD1[u1η(0) − u2η(0)]
≥ −(2a1M1 + b1M2 + 2nD1)[u1η(0) − u2η(0)]
≥ −β1[u1η(0) − u2η(0)],

f1(u1η, v1η) − f1(u1η, v2η) = −b1u1η(0)[v1η(0) − v2η(0)] ≤ 0,

f2(u1η, v1η) − f2(u2η, v2η) − 2nD2[u1η(0) − u2η(0)]
≥ −a2[v1η(0) + v2η(0)][v1η(0) − v2η(0)] − 2nD2[v1η(0) − v2η(0)]
≥ −(2a2M2 + 2nD2)[v1η(0) − v2η(0)]
≥ −β2[v1η(0) − v2η(0)].

�

We give the definition of traveling wave solutions of (1.1) .

Definition 2.2. A traveling wave solution of (1.1) has special form u1η(t) = ϕ(σ · η +
ct), u2η(t) = ψ(σ · η+ ct), where ϕ(±∞) and ψ(±∞) both exist, σ = (σ1, σ2, · · · , σn) ∈ Rn

is a unit vector, c > 0 is the wave speed, (ϕ, ψ) is the wave profile.

Denoting σ · η + ct by t, we search for the solutions of system
cϕ′(t) = D1

n∑
k=1

[ϕ(t+ σk) − 2ϕ(t) + ϕ(t− σk)] + f c
1(ϕt, ψt),

cψ′(t) = D2

n∑
k=1

[ψ(t+ σk) − 2ψ(t) + ψ(t− σk)] + f c
2(ϕt, ψt)

(2.1)

satisfying
lim

t→−∞
(ϕ(t), ψ(t)) = 0, lim

t→+∞
(ϕ(t), ψ(t)) = K, (2.2)

where ϕt(s) = ϕ(t + s), ψt(s) = ψ(t + s), s ∈ [−τ, 0], τ = max{τ1, τ2}, f c
i (ϕ, ψ), i = 1, 2, is

defined by {
f c

1(ϕt, ψt) = α1e
−γ1τ1ϕ(t− cτ1) − a1ϕ

2(t) − b1ϕ(t)ψ(t),

f c
2(ϕt, ψt) = α2e

−γ2τ2ψ(t− cτ2) + b2ϕ(t)ψ(t) − a2ψ
2(t).

Define F = (F1, F2) : C[0,M](R,R2) → C(R,R2) by

Fi(ϕ, ψ)(t) = 1
c
e− βi

c
t
∫ t

−∞
e

βi
c

sHi(ϕ, ψ)(s)ds, i = 1, 2,

where H = (H1,H2) : C[0,M](R,R2) → C(R,R2) is defined by
H1(ϕ, ψ)(t) = f c

1(ϕt, ψt) + β1ϕ(t) +D1

n∑
k=1

[ϕ(t+ σk) − 2ϕ(t) + ϕ(t− σk)],

H2(ϕ, ψ)(t) = f c
2(ϕt, ψt) + β2ψ(t) +D2

n∑
k=1

[ψ(t+ σk) − 2ψ(t) + ψ(t− σk)].

Then F is well defined and for any (ϕ, ψ) ∈ C[0,M](R,R2), we have

c[Fi(ϕ, ψ)]′(t) = −βiFi(ϕ, ψ)(t) +Hi(ϕ, ψ)(t), i = 1, 2. (2.3)
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We only need to find a fixed point of (2.3) satisfying (2.2).
Let µ ∈ (0,min{β1/c, β2/c}) and equip C(R,R2) with the norm | · |µ defined by

|Φ|µ = sup
t∈R

|Φ(t)|e−µ|t| and Bµ(R,R2) = {Φ ∈ C(R,R2) : sup
t∈R

|Φ(t)|e−µ|t| < ∞}.

Then it is easy to check that (Bµ(R,R2), | · |µ) is a Banach space.

Definition 2.3. A pair of functions Φ̄ = (ϕ̄, ψ̄),Φ = (ϕ, ψ) ∈ C(R,R2) is called a weak
upper solution and a weak lower solution of (2.1), respectively, if there exist finitely many
constants Ti, i = 1, · · · , p such that Φ̄ and Φ are differentiable in R \ T , T := {Ti : i =
1, · · · , p} and satisfy

cϕ̄′(t) ≥D1

n∑
k=1

[ϕ̄(t+ σk) − 2ϕ̄(t) + ϕ̄(t− σk)] + f c
1(ϕ̄t, ψt

) for t ∈ R \ T,

cψ̄′(t) ≥D2

n∑
k=1

[ψ̄(t+ σk) − 2ψ̄(t) + ψ̄(t− σk)] + f c
2(ϕ̄t, ψ̄t) for t ∈ R \ T,

(2.4)

and 
cϕ′(t) ≤D1

n∑
k=1

[ϕ(t+ σk) − 2ϕ(t) + ϕ(t− σk)] + f c
1(ϕ

t
, ψ̄t) for t ∈ R \ T,

cψ′(t) ≤D2

n∑
k=1

[ψ(t+ σk) − 2ψ(t) + ψ(t− σk)] + f c
2(ϕ

t
, ψ

t
) for t ∈ R \ T.

(2.5)

Next we will construct a pair of upper and lower solutions of (2.1) satisfying
(A1) 0 ≤ (ϕ(t), ψ(t)) ≤ (ϕ̄(t), ψ̄(t)) ≤ M, t ∈ R;
(A2) lim

t→−∞
(ϕ̄(t), ψ̄(t)) = 0, lim

t→+∞
(ϕ(t), ψ(t)) = lim

t→+∞
(ϕ̄(t), ψ̄(t)) = K.

To do this, we need to assume
a1k1 > b1k2, (2.6)

which implies (1.2) holds.
Similar to [11,12], it is easy to prove the following lemma.

Lemma 2.4. Let

∆i(λ, c) := Di

n∑
k=1

(eλσk + e−λσk − 2) − cλ+ αie
−γiτie−λcτi , i = 1, 2.

Then, there exist c∗
1 > 0 and c∗

2 > 0 such that ∆1(λ, c) = 0 and ∆2(λ, c) = 0, respectively,
have only two positive roots 0 < λ1 < λ3 and 0 < λ2 < λ4, and

∆1(λ, c)
{
> 0, λ < λ1 or λ > λ3,

< 0, λ1 < λ < λ3,
and ∆2(λ, c)

{
> 0, λ < λ2 or λ > λ4,

< 0, λ2 < λ < λ4,

for 0 < c < c∗
i , ∆i(λ, c) = 0 has no real roots on R, i = 1, 2.

Now we construct a pair of upper and lower solutions for c > c∗ := max{c∗
1, c

∗
2}.

For fixed
ν ∈

(
1,min

{
2, λ3
λ1
,
λ4
λ2
,
λ1 + λ2
λ1

})
,

consider hi(t) = eλit − qeνλit, i=1,2, where q > 1 is large enough. By direct calcula-
tion, it shows that hi(t) has a unique global maximum ϱi = ϱi(q) > 0 at t∗i = t∗i (q) =
− 1

(ν−1)λi
ln qν < 0, and

lim
q→∞

ϱi(q) = lim
q→∞

eλit
∗
i (q) = lim

q→∞
qeνλit

∗
i (q) = 0, i = 1, 2.
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We also have hi(t) is increasing in t ≤ t∗i and decreasing in t ≥ t∗i . So hi(t) = Ai has
only two different roots ti∗ and ti(ti∗ < t∗i < ti) and ti − ti∗ > t̃, where Ai = eλi(t∗

i −t̃) −
qeνλi(t∗

i −t̃) > 0, t̃ = max{1, cτ1, cτ2}, i = 1, 2.
For any given λ > 0, there exists a unique εi = εi(λ) > 0 such that

ki − ki(1 − εi)e−λti = Ai, i = 1, 2.

Then lim
λ→0

kiεi(λ) = Ai and

eλit − qeνλit ≥ ki − ki(1 − εi)e−λt, ti∗ ≤ t ≤ ti, i = 1, 2. (2.7)

We can see that for sufficiently small λ and large enough q > 1,

0 < max{ε1, ε2} ≪ min
{

1, 1
a2k2

,
a1k1 − b1k2

a1k1

}
.

Define the continuous functions as follows:

ϕ̄(t) =
{
eλ1t, t ≤ t3,

k1 + k1e
−λt, t > t3,

ψ̄(t) =
{
eλ2t + qeνλ2t, t ≤ t4,

k2 + k2e
−λt, t > t4,

and

ϕ(t) =
{
eλ1t − qeνλ1t, t ≤ t1,

k1 − k1(1 − ε1)e−λt, t > t1,
ψ(t) =

{
eλ2t − qeνλ2t, t ≤ t2,

k2 − k2(1 − ε2)e−λt, t > t2,

where λ > 0 is small enough and q > 1 is large enough, which will be determined later.
Then

M1 := sup
t∈R

ϕ̄(t) > k1, M2 := sup
t∈R

ψ̄(t) > k2,

ϕ̄(t), ψ̄(t), ϕ(t) and ψ(t) satisfy (A1) and (A2) and

max{t1 + cτ1, t2 + cτ2} ≪ t4 ≪ min{0, t3}

for small enough λ > 0 and large enough q > 1. By the choice of ν, we have ∆i(νλi, c) <
0, i = 1, 2.

Lemma 2.5. Assume that (2.6) holds. Then (ϕ̄(t), ψ̄(t)) is a weak upper solution and
(ϕ(t), ψ(t)) is a weak lower solution of (2.1), respectively.

Proof. Without loss of generality, assume σk > 0, otherwise, we only need to distinguish
them from positive, negative or zero. Define

P (ϕ, ψ)(t) := D1

n∑
k=1

[ϕ(t+ σk) − 2ϕ(t) + ϕ(t− σk)] − cϕ′(t)

+α1e
−γ1τ1ϕ(t− cτ1) − a1ϕ

2(t) − b1ϕ(t)ψ(t),

Q(ϕ, ψ)(t) := D2

n∑
k=1

[ψ(t+ σk) − 2ψ(t) + ψ(t− σk)] − cψ′(t)

+α2e
−γ2τ2ψ(t− cτ2) + b2ϕ(t)ψ(t) − a2ψ

2(t).

We have two cases to verify for ϕ̄(t).
(i) For t < t3, since ϕ̄(t± σk) ≤ eλ1(t±σk) and ϕ̄(t− cτ1) ≤ eλ1(t−cτ1), it follows that

P (ϕ̄, ψ)(t) ≤ D1

n∑
k=1

[ϕ̄(t+ σk) − 2ϕ̄(t) + ϕ̄(t− σk)] − cϕ̄′(t) + α1e
−γ1τ1 ϕ̄(t− cτ1)

≤ eλ1t∆1(λ1, c) = 0.
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(ii) For t > t3, since t3 ≫ t2 + cτ1, ϕ̄(t ± σk) ≤ k1 + k1e
−λ(t±σk) and ϕ̄(t − cτ1) ≤

k1 + k1e
−λ(t−cτ1), we have

P (ϕ̄, ψ)(t) ≤ e−λt
{
k1

[
D1

n∑
k=1

(eλσk − 2 + e−λσk) + cλ
]

+k1
[
α1e

−γ1τ1eλcτ1 − a1k1(2 + e−λt) − b1k2(ε2 − (1 − ε2)e−λt)
]}

:= e−λtI1(λ).
I1(λ) < 0 for sufficiently small λ since I1(0) = 2k1(b1k2 − a1k1 − b1k2ε2) < 0 by (2.6).

For ψ̄(t), we also have two cases to verify.
(i) For t < t4, because of t4 → −∞ as q → ∞, we have

Π1(q) := 1
q
e

( λ1+λ2
λ1

−ν)λ1t + eλ1t → 0 as q → ∞.

Since ψ̄(t±σk) ≤ eλ2(t±σk)+qeνλ2(t±σk), ψ̄(t−cτ2) ≤ eλ2(t−cτ2)+qeνλ2(t−cτ2) and ϕ̄(t) ≤ eλ1t,
it follows that for sufficiently large q > 1,

Q(ϕ̄, ψ̄)(t) ≤ D2

n∑
k=1

[ψ̄(t+ σk) − 2ψ̄(t) + ψ̄(t− σk)] − cψ̄′(t) + α2e
−γ2τ2 ψ̄(t− cτ2) + b2ϕ̄(t)ψ̄(t)

≤ qeνλ2t[∆2(νλ2, c)] + b2Π1(q)] ≤ 0.

(ii) For t > t4, since ϕ̄(t) ≤ k1 + k1e
−λt and ψ̄(t± σk) ≤ k2 + k2e

−λ(t±σk), ψ̄(t− cτ2) ≤
k2 + k2e

−λ(t−cτ2), we have

Q(ϕ̄, ψ̄)(t) ≤ k2e
−λt

[ n∑
k=1

D2(eλσk − 2 + e−λσk) + cλ

+α2e
−γ2τ2eλcτ2 + (b2k1 − a2k2)(2 + e−λt)

]
:= e−λtI2(λ).

I2(λ) < 0 for sufficiently small λ since I2(0) = 2k2(b2k1 − a2k2) = −2k2α2e
−γ2τ2 < 0.

We have two cases to verify for ϕ(t).
(i) For t < t1 < 0, because of t1 → −∞ as q → ∞, we have

Π2(q) := a1
q
e(2−ν)λ1t + b1

(1
q
e

( λ1+λ2
λ1

−ν)λ1t + e(λ1+ν(λ2−λ1))t
)

→ 0 as q → ∞.

Since ϕ(t ± σk) ≥ eλ1(t±σk) − qeνλ1(t±σk), ϕ̄(t − cτ1) ≥ eλ1(t−cτ1) − qeνλ1(t−cτ1) and ψ̄(t) ≤
eλ2t + qeνλ2t, it follows that for sufficiently large q > 1,
P (ϕ, ψ̄)(t) ≥ −qeνλ1t∆1(νλ1, c) + (eλ1t − qeνλ1t)[−a1(eλ1t − qeνλ1t) − b1(eλ2t + qeνλ2t)]

≥ −qeνλ1t[∆1(νλ1, c) + r1Π2(q)] ≥ 0.
(ii) For t > t1, since ψ̄(t) ≤ k2 + k2e

−λt and ϕ(t± σk) ≥ k1 − k1(1 − ε1)e−λ(t±σk), ϕ(t−
cτ1) ≥ k1 − k1(1 − ε1)e−λ(t−cτ1) by (2.7) and t1 − t1∗ > t̃, we have

P (ϕ, ψ̄)(t) ≥ e−λt
{

−k1(1 − ε1)
[
D1

n∑
k=1

(eλσk − 2 + e−λσk) + cλ
]

− k1(1 − ε1)α1e
−γ1τ1eλcτ1

−a1k
2
1[−2(1 − ε1) + (1 − ε1)2e−λt] − b1k1k2[ε1 − (1 − ε1)e−λt]

}
:= e−λtI3(λ).

I3(λ) > 0 for sufficiently small λ since I3(0) = ε1k1(a1k1 − b1k2 −a1k1ε1) > 0 by (2.6) and
ε1 <

a1k1−b1k2
a1k1

.
For ψ(t), we only have two cases to verify.
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(i) For t < t2 < 0, since ψ(t ± σk) ≥ eλ2(t±σk) − qeνλ2(t±σk), ψ(t − cτ2) ≥ eλ2(t−cτ2) −
qeνλ2(t−cτ2) and ψ(t) ≤ eλ2t, for sufficiently large q > 1, we have

Q(ϕ, ψ)(t) ≥ D2

n∑
k=1

[ψ(t+ σk) − ψ(t) + ψ(t− σk)] − cψ′(t) + α2e
−γ2τ2ψ(t− cτ2) − a2ψ

2(t)

≥ −qeνλ2t
[
∆2(νλ2, c) + a2

q
e(2−ν)λ2t

]
≥ 0.

(ii) For t > t2, we can divide this case into two subcases: (a) t2 < t ≤ max{t1, t2}, (b)
t > max{t1, t2}. In fact, if t2 ≥ t1, it only has case (b).

(a) In view of t4 → 0 as q → ∞, ψ(t ± σk) ≥ k2 − k2(1 − ε2)e−λ(t±σk), ψ(t − cτ2) ≥
k2 − k2(1 − ε2)e−λ(t−cτ2) by (2.7) and t2 − t2∗ > t̃, it follows that

Q(ϕ, ψ)(t) ≥ − k2(1 − ε2)[D2

n∑
k=1

(eλσk − 2 + e−λσk) + cλ]e−λt

+ α2e
−γ2τ2 [k2 − k2(1 − ε2)e−λ(t−cτ2)] − a2[k2 − k2(1 − ε2)e−λt]2

→ α2e
−γ2τ2A2 − a2A

2
2 as λ → 0.

Then Q(ϕ, ψ)(t) ≥ 0 for sufficiently small λ > 0 since λ is independent of q and A2 → 0
as q → ∞.

(b) we can get

Q(ϕ, ψ)(t) ≥e−λt
{

−k2(1 − ε2)
[
D2

n∑
k=1

(eλσk − 2 + e−λσk) + cλ
]

− k2(1 − ε2)α2e
−γ2τ2eλcτ2 + b1k1k2[−(1 − ε1) − (1 − ε2) + (1 − ε1)(1 − ε2)e−λt]

− a2k
2
2[−2(1 − ε2) + (1 − ε2)2e−λt]

}
:=e−λtI4(λ).

I4(λ) > 0 for sufficiently small λ since I4(0) = ε2k2(1−a2k2ε2+b2k1ε1) > 0 by a2k2−b2k1 =
α2e

−γ2τ2 and ε2 <
1

a2k2
.

�

Define
Γ([ϕ, ψ], [ϕ̄, ψ̄]) =

{
(ϕ, ψ) ∈ C[0,M](R,R2)|(ϕ(t), ψ(t)) ≤ (ϕ(t), ψ(t)) ≤ (ϕ̄(t), ψ̄(t)), t ∈ R

}
.

Obviously, Γ([ϕ, ψ], [ϕ̄, ψ̄]) is nonempty.
Similar to the proofs in [8, 9, 11,12], we have the following lemma.

Lemma 2.6. F has the following properties:
(i) F1(ϕ2, ψ1)(t) ≤ F1(ϕ1, ψ2)(t), F2(ϕ1, ψ2)(t) ≤ F2(ϕ2, ψ1)(t) for t ∈ R

if (ϕi, ψi) ∈ C[0,M](R,R2) satisfy 0 ≤ (ϕ2(t), ψ2(t)) ≤ (ϕ1(t), ψ1(t)) ≤ M for
t ∈ R, i = 1, 2;

(ii) F = (F1, F2) : C[0,M](R,R2) → C(R,R2) is continuous with respect to the norm
| · |µ in Bµ(R,R2);

(iii) F (Γ([ϕ, ψ], [ϕ̄, ψ̄])) ⊂ Γ([ϕ, ψ], [ϕ̄, ψ̄]);
(iv) F : Γ([ϕ, ψ], [ϕ̄, ψ̄]) → Γ([ϕ, ψ], [ϕ̄, ψ̄]) is compact with respect to the norm | · |µ.

By Schauder’s fixed point theorem, we have the following existence result.

Theorem 2.7. Assume that (2.6) holds. Then, for every c > c∗, (1.1) has a traveling
wave solution (ϕ(σ · η + ct), ψ(σ · η + ct)) with the wave speed c which connects 0 with K.
Moreover, lim

ξ→−∞
(ϕ(ξ)e−λ1ξ, ψ(ξ)e−λ2ξ) = (1, 1), where ξ = σ · η + ct.
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