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Abstract
This article concerned about the numerical solution of time fractional partial differential
equations (FPDEs). The proposed technique is using shifted Chebyshev-Gauss-Lobatto
(CGL) collocation points in conjunction with an operational matrix of Caputo sense deriva-
tives via Genocchi polynomials. The system of linear algebraic equations is obtained when
the main equation along with the initial as well as boundary conditions is collocated by
using shifted CGL collocation points. The main approach to this method is to transform
the FPDEs to system of algebraic equations, hence, greatly simplify the numerical scheme.
Comparison of the obtained results with the existing methods depicts that the suggested
method is highly effect, more efficient and have less computational work. Some examples
are given to illustrate the effectiveness and applicability of the proposed technique.
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Keywords. collocation method, shifted Chebyshev-Gauss-Lobatto, fractional partial
differential equations, operational matrix

1. Introduction
The interest of researchers towards the study of fractional calculus and fractional partial

differential equations (FPDEs) [8, 11, 14, 15, 22–24] during the last few decades have been
increased rapidly due to its significant role in modeling of many physical and engineering
processes [8]. A number of fractional derivative applications and models can be found in
chemical physics, viscoelasticity, anomalous diffusion, probability, astrophysics, optic and
signal processing, electromagnetism and biology. When comparing with the integer order
models, the memory and hereditary properties of different substances are well described
by fractional-order models [22]. The FPDEs can be treated in three ways; time fractional
and/or space fractional.
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In this research direction, the attempts for finding the solutions more accurately of var-
ious type of FPDEs including works in [4,5,26–29] . More specifically, in Turut and Güzel
[21], they employed multivariate Padé approximation and variational iteration method
to tackle FPDEs. Some FPDEs have been treated by Mohebbi et al. [12]. They have
proposed compact difference scheme for the solution of FPDEs. Reutskiy [18] used the
backward substitution method with Fourier series expansion for the solution of FPDEs
and converted the given equation into a sequence of multi-term fractional ordinary differ-
ential equations (FODEs). Liu et al. [9] applied the fractional predictor-corrector method
and the finite difference method to handle the multi-term time-fractional wave-diffusion
equations. In [6], Ghandehari and Ranjbar solved the FPDEs by converting them into a
nonlinear programming problem. The Sumudu transform method along with the Adomian
polynomials have been proposed by Al-Khaled [1] for the solution of FPDEs.

On the other hand, in recent years, FPDEs have been also solved with the help of
polynomials operational matrices for fractional integration and fractional differentiation
as well. Mostly, the methods including spectral Tau method, collocation method and
the Tau method could be used with the operational matrix method to solve the prob-
lem. Bhrawy and Zaky [2] investigated the time-fractional PDEs with variable coefficients.
They applied spectral tau method by using fractional-order shifted Jacobi orthogonal func-
tion along with the operational matrix. Moreover, Patel et al. [16] used the collocation
method which is based on 2D shifted Legendre polynomials for the solution of FPDEs.
Yi et al. [25] applied the two-dimensional Block pulse operational matrix for FPDEs.
Furthermore, Zhou and Xu [30] used the third kind of Chebyshev wavelets operational
matrices of integration of fractional order to investigate the time-fractional convection dif-
fusion equations with variable coefficients. The shifted Jacobi operational matrices along
with the spectral tau method have been employed by Bhrawy and Zaky [3]. They solved
some multi-term time-space FPDEs with Dirichlet boundary conditions. Saadatmandi et
al. [19] deals with the variable coefficients based fractional convection-diffusion equations
by using the combination of sinc functions and shifted Legendre polynomials in space and
in time with the collocation method respectively.

Since the result for solving some FPDEs using operational matrix method based on
orthogonal basis function is encouraging, the researches in this field may be can extended
to other operational matrix method based on semi-orthogonal polynomials. We refer the
readers to paper by Tohidi et al. [20] for some advantages of using semi-orthogonal poly-
nomials like Bernoulli polynomials for approximating an arbitrary unknown function over
some classical orthogonal polynomials. Other semi-orthogonal polynomials such as Appell
polynomials may also had great potential to solve fractional calculus problems effectively.
On top of that, we introduced operational matrix of derivative via Genocchi polynomi-
als by Loh et al. [10] for the solution of fractional integro-differential equations, (FIDEs),
Genocchi operational matrix of integration for solving fractional optimal control problems,
(FOCPs) by Phang et al. [17] and pantograph equation [7]. Different than these recently
developed schemes, here we solve the fractional partial differential equations (FPDEs) by
using this Genocchi operational matrix of derivative in conjunction of shifted CGL. This
shifted CGL together with Bernoulli operational matrix was succesfully applied to solve
wave equations with Dirichlet boundary conditions and linear multidimensional diffusion
equation by Zogheib [31] et al., but it is limited to the problem with integer derivative.
Here, we hope that not only extend the Genocchi operational matrix to solve FPDEs, but
also extend the use of shifted CGL collocation points in conjunction with semi-orthogonal
polynomials to solve the FPDEs.
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The outline of the article is as follow. Some preliminaries related to fractional calcu-
lus, shifted CGL collocation points and Genocchi polynomials are discussed in Section 2.
Section 3 is comprised of the description of the proposed technique. Section 4 consists of
applications wherein solution of time FPDEs has been obtained via this new collocation
scheme. Finally, we concluded our results in Section 5.

2. Preliminaries
Some of the basic definitions of fractional calculus are mentioned below:

Definition 1: The Riemann-Liouville [11,14] (R-L) fractional derivative is defined as

Dα
t f(t) =

{
1

Γ(n−α)
dn

dtn

∫ t
0

fn(τ)
(t−τ)α−n+1 dτ, n − 1 < α < n,

dn

dtn f(t), n = α,
(2.1)

where n ∈ Z.
Definition 2: The Riemann-Liouville fractional integral operator [11,14] of order α > 0,
of a function f ∈ Cµ, where µ ≥ −1, is defined as

Iαf(t) = 1
Γ(α)

∫ t

0
(t − τ)α−1f(τ)dτ, α > 0, t > 0. (2.2)

Some Riemann-Liouville fractional integral properties are given as [11,14]

I0f(t) = f(t),

IαIβf(t) = Iα+βf(t) = IβIαf(t),

Iαtγ = Γ(γ + 1)
Γ(α + γ + 1)

tα+γ .

(2.3)

Definition 3: The fractional derivative in Caputo sense is defined as [11,14]

Dα
t f(t) =

{
1

Γ(n−α)
∫ t

0
fn(τ)

(t−τ)α−n+1 dτ, n − 1 < α < n,
dn

dtn f(t), n = α.
(2.4)

Some properties of Caputo sense fractional derivative are given as

Dα(λf(t) + µg(t)) = λDαf(t) + µDαg(t),

IαDα
t f(t) = f(t) −

m−1∑
k=0

f (k)(0+)
k!

tk, t > 0,

dn

dtn
[∅(t)f(t)] =

n∑
k=0

∅k(t)fn−k(t).

(2.5)

2.1. Shifted Chebyshev-Gauss-Lobatto (CGL) nodes
One of the main tool for this article is using shifted Chebyshev-Gauss-Lobatto (CGL)

collocation points in conjunction with Genocchi operational matrix. Here, we briefly
explain the concept. Suppose any function of two variables υ(x, t) can be approximated
by using Genocchi polynomials, Ga(x) and Gb(t), where a and b denotes the degree of
Genocchi polynomials,

υM+1(x, t) ≈
M+1∑
a=1

M+1∑
b=1

cabGa(x)Gb(t), (2.6)

in vector notation equation (2.6) can be written as,
υ(x, t) = GT (t)CM+1×M+1G(x). (2.7)
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The Genocchi coefficient matrix C which consist of the unique coefficients cab follow as

CT = A−1HT A−1, (2.8)

where, H =
∫ 1

0
∫ 1

0 υ(x, t)Ga(x)Gb(t)dxdt and A(x) =
∫ 1

0 Ga(x)Ga′(x)dx,

A(t) =
∫ 1

0 Gb(t)Gb′(t)dt.

Let the basis functions are denoted by {{Ga(x)Gb(t)}M
a=1}M

b=1 associated with the points
{xa}M

a=1 and {tb}M
b=1 correspondingly in the x and t directions. In this work, we are con-

cerned with shifted CGL nodes. For this purpose, we let the extrema of TM (η) on [−1, 1]
is given by η = cos

(
nπ
M

)
, where TM (η) be the Chebyshev polynomials of order M , we have

the shifted CGL nodes given as η
(M)
0 , . . . , η

(M)
N .

Furthermore, we let Shifted CGL nodes based {ϕa(η)}M
a=1 Lagrange polynomials.

ϕb(η) =
M∏

a=0,a̸=b

η − ηa

ηb − ηa
, b = 1, . . . , M, (2.9)

with the Kronecker property ϕb(ηl) = δbl =
{

0, b ̸= l,
1, b = l.

Also the formula named as Christoffel-Darboux given by the following relation can be
used instead of equation (2.9)

ϕb(η) = (−1)b(1 − η2)
caN2(η − ηb)

T
′
M (η), where ca =

{
2, a = 0 and M,
1, 1 ≤ a ≤ M − 1.

(2.10)

Any defined function can be approximated by using the transformation from [−1, 1] to
[ζ, θ]. For two variables, a function w(x, t) may be approximated on the interval [ζ, θ]×[ζ, θ]
and the nodes are created by the cosine distribution as

xa = θ − ζ

2

(
1 − cos((a − 1)π

M
)
)

+ ζ, a = 1, 2, . . . , M + 1, (2.11)

tb = θ − ζ

2

(
1 − cos((b − 1)π

M
)
)

+ ζ, b = 1, 2, . . . , M + 1. (2.12)

It is to be noted that the numerical solution becomes ambiguous near the domain
boundaries with an increase in the order of field variable interpolation by the field nodes
distributed uniformly. The problem can be tackle if the nodes are distributed densely near
the boundaries and within the domain they are uniform. This can be done with the help
of Chebyshev nodes. The shifted CGL nodes are used to solve any PDE because of the
fact that it includes the domain boundaries as well. The Figures (1) and (2) represents
the shifted CGL points for M = 4 and M = 5.
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Figure 1. CGL collocations points for M = 4.
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Figure 2. CGL collocations points for M = 5.

2.2. Two dimensional Genocchi polynomials
The two-dimensional Genocchi polynomials are defined as a product function of two

Genocchi polynomials.
Gab(x, t) = Ga(x)Gb(t) a = 1, 2, . . . , i, b = 1, 2, . . . , i. (2.13)

The expansion of any function υ(x, t) defined over the interval [0, 1] × [0, 1] in terms of
Genocchi polynomials, can be written as

υ(x, t) =
∞∑

a=1

∞∑
b=1

cabGa(x)Gb(t). (2.14)
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If the infinite series as given in equation (2.14) is truncated, then truncated form could be
written as:

υ(x, t) ≈
i∑

a=1

i∑
b=1

cabGa(x)Gb(t), (2.15)

Theorem 2.1. Let υ(x, t) ∈ L2[0, 1] and {Gk(x), k = 1, 2, . . . , S} and {Gl(t), l = 1, 2, . . . , H}
be two sets of Genocchi polynomials up to order S and H, respectively.
Let X = span{G1(x), . . . , GS(x)} and X ′ = span{G1(t), . . . , GH(t)}. Since X and X ′ are
the finite dimensional subspaces of L2[0, 1] , then there exist υ∗(x, t) = X × X ′ is the best
unique approximation in Genocchi polynomials such that υ(x, t) can be approximated by
unique coefficients cpq as

υ(x, t) =
S∑

p=1

H∑
q=1

cpqGp(x)Gq(t) = GT (x)CG(t). (2.16)

where C the Genocchi coefficient matrix with the unique coefficients cpq given by CT =
A−1HT A−1 and H =

∫ 1
0
∫ 1

0 υ(x, t)Gp(x)Gq(t)dxdt, A =
∫ 1

0 Gp(t)Gp′(t)dt or A =∫ 1
0 Gq(x)Gq′(x)dx.

Proof. Suppose we have

υ(x, t) =
S∑

p=1

H∑
q=1

cpqGp(x)Gq(t), (2.17)

then multiply both sides with Gp′(x) and Gq′(t) and integrate, we have∫ 1

0

∫ 1

0
υ(x, t)Gp′(x)Gq′(t)dxdt =

S∑
p=1

H∑
q=1

cpq

∫ 1

0
Gp(x)Gp′(x)dx

∫ 1

0
Gq(t)Gq′(t)dt. (2.18)

By letting, υp′q′(x, t) =
∫ 1

0
∫ 1

0 υ(x, t)Gp′(x)Gq′(t)dxdt. Then we obtain

υp′q′(x, t) =
S∑

p=1

H∑
q=1

(∫ 1

0
Gp(x)Gp′(x)dx

)
cpq

(∫ 1

0
Gq(t)Gq′(t)dt

)
. (2.19)

Both υp′q′(x, t) and υ(x, t) are similar. Hence we can write the equation (2.17) as

HT = ACT A, (2.20)
the coefficient matrix C can be obtained by CT = A−1HT A−1, where A can be found
from A =

∫ 1
0 Gp(x)Gp′(x)dx or A =

∫ 1
0 Gq(t)Gq′(t)dt. �

Lemma 2.2. Suppose that any function u(x, t) be the sufficiently smooth function in
domain ω and assume that it has derivative of any order bounded by a constant Fn as
follow,

|∂
i+j−2u(x, t)
∂i−1x∂j−1t

| ≤ Fi−1,j−1, i, j ∈ N. (2.21)

Also, let u∗
M (x, t) be the approximation of u(x, t) in terms of Genocchi polynomials, i.e.

u(x, t) ≈ u∗
M (x, t) =

M∑
i=1

M∑
j=1

cijGi(x)Gj(t), (2.22)

then we have the following maximum error in L∞([0, 1] × [0, 1]) norm bounded by,

∥u(x, t) − u∗
M (x, t)∥∞ ≤

∞∑
i=M+1

∞∑
j=M+1

i∑
l=1

j∑
m=1

Fi−1,j−1|gi−l||gj−m|
l!m!(i − l)!(j − m)!

(2.23)
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Remark: The equation (2.22) using Genocchi polynomials from 1 to M , hence we denote
it as uM (x, t) while in (2.6), we use uM+1(x, t) for represent Genocchi polynomials from 1
to M + 1.

Proof.
∥u(x, t) − u∗

M (x, t)∥∞ = max |u(x, t) − u∗
M (x, t)|,

= max |
∞∑

i=M+1

∞∑
j=M+1

cijGi(x)Gj(t)|,

≤ max
∞∑

i=M+1

∞∑
j=M+1

|cijGi(x)Gj(t)|,

≤
∞∑

i=M+1

∞∑
j=M+1

|cij | max |Gi(x)|Gj(t)|.

(2.24)

where

|cij | = | 1
4i!j!

[
∂i−1∂j−1

∂i−1x∂j−1t
u(1, 1) + ∂i−1∂j−1

∂i−1x∂j−1t
u(1, 0) + ∂i−1∂j−1

∂i−1x∂j−1t
u(0, 1) + ∂i−1∂j−1

∂i−1x∂j−1t
u(0, 0)

]
|,

The terms |cij | can be simplified as |cij | = | 1
4i!j! [4Fi−1,j−1] |, hence we obtain

|cij | = Fi−1,j−1
i!j!

. (2.25)

Now, we have

max |Gi(x)| = max |
i∑

l=1

(
i
l

)
gi−lx

l| ≤
i∑

l=1

(
i
l

)
|gi−l|. (2.26)

and similarly, we have

max |Gj(t)| = max |
j∑

m=1

(
j
m

)
gj−mtm| ≤

j∑
m=1

(
j
m

)
|gj−m|. (2.27)

By putting equations (2.25), (2.26) and (2.27) in equation (2.24), we have

∥u(x, t) − u∗
M (x, t)∥∞ ≤

∞∑
i=M+1

∞∑
j=M+1

i∑
l=1

j∑
m=1

Fi−1,j−1.i!|gi−l|.j!|gj−m|
i!j!l!m!(i − l)!(j − m)!

,

≤
∞∑

i=M+1

∞∑
j=M+1

i∑
l=1

j∑
m=1

Fi−1,j−1|gi−l||gj−m|
l!m!(i − l)!(j − m)!

.

(2.28)

�

Here, we give an example for approximate u(x, t) = sin(x)sin(t) with using two di-
mensional Genocchi polynomials by using (2.22) and its error bound presented by above
Lemma as in Table (1).

Table 1. Comparision of maximum error for approximate u(x, t) = sin(x)sin(t)
by using two dimensional Genocchi polynomials as in (2.22) and error bound by
(2.24)

M Max error Error bound
4 5.21823E-04 5.79892E-02
5 4.70856E-05 1.01132E-02
6 1.28722E-06 5.54573E-04
7 1.14497E-06 9.07230E-05
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Here, we present the error analysis for the collocation scheme using shifted CGL nodes.
Note that the first few Genoochi polynomials are G1(x) = 1,G2(x) = 2x − 1 and G3(x) =
3x2 − 3x. The Genocchi polynomials with Gi(x) having i − 1 highest power of x. On
the other hand, using CGL points will give M + 1 points. Hence, for the comparison of
error for approximating function with Genocchi polynomials and interpolating with CGL
points, we use ω∗

N,N (x, t) be its best approximation in terms of Genocchi polynomials,
where degree N is one degree higher than M . Assume that ω(x, t) ∈ Ξ be a sufficiently
smooth function where Ξ = [i, j] × [k, l] , then

∥ω(x, t) − ω∗
N,N (x, t)∥2 ≤ ∥ω(x, t) − iM,M (x, t)∥2 (2.29)

≤ 1
(M + 1)!22r+1

(
λ1 + λ2 + λ3

(M + 1)!(22r+1)

)
,

where λ1 = max
(x,t)∈i

|∂M+1ω(x,t)
∂xM+1 |, λ2 = max

(x,t)∈i
|∂M+1ω(x,t)

∂tM+1 | and λ3 = max
(x,t)∈i

| ∂2M+2ω(x,t)
∂xM+1∂tM+1 |.

Proof. The proof is following procedure in [13]. Let iM,M (x, t) be the interpolating
polynomials of the function ω(x, t) at points (xa, tb) where xa and tb, a = 0, 1, ..., M, b =
0, 1, ..., M are the shifted CGL nodes given by

xa = θ − ζ

2
(1 − cos(aπ

M
)) + ζ, a = 0, 1, 2, . . . , M, (2.30)

tb = θ − ζ

2
(1 − cos( bπ

M
)) + ζ, b = 0, 1, 2, . . . , M, (2.31)

Then for any (x, t) ∈ [i, j] × [k, l], we can write

ω(x, t) − iM,M (x, t) = ∂M+1

∂xM+1
ω(x, t)

(M + 1)!

M+1∏
a=1

(x − xa) + ∂M+1

∂tM+1

ω(x, t)
(M + 1)!

M+1∏
b=1

(t − tb) − ∂2M+2

∂xM+1∂tM+1
ω(x, t)

(M + 1)!2
M+1∏
a=1

(x − xa)
M+1∏
b=1

(t − tb),
(2.32)

Thus we have

|ω(x, t) − iM,M (x, t)| ≤
(

θ − ζ

2

)r+1 λ1
2r(M + 1)!

+(
θ − ζ

2

)r+1 λ2
2r(M + 1)!

+
(

θ − ζ

2

)r+1 (θ − ζ

2

)r+1 λ3
2r.2r(M + 1)!2

(2.33)

where

λ1 = max
(x,t)∈i

| ∂M+1

∂xM+1 ω(x, t)|

λ2 = max
(x,t)∈i

| ∂M+1

∂tM+1 ω(x, t)|

λ3 = max
(x,t)∈i

| ∂2M+2

∂xM+1∂tM+1 ω(x, t)|

(2.34)
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Since ω∗
N,N is the best approximation of ω(x, t), then finally by using equation (2.29), we

get

∥ω(x, t) − ω∗
N,N (x, t)∥2

2

≤ ∥ω(x, t) − iM,M (x, t)∥2
2

=
∫ 1

0

∫ 1

0
|ω(x, t) − iM,M (x, t)|2dxdt

≤
∫ 1

0

∫ 1

0

((
θ − ζ

2

)r+1
λ1

2r(M + 1)!
+
(

θ − ζ

2

)r+1
λ2

2r(M + 1)!

+
(

θ − ζ

2

)2r+2
λ3

22r(M + 1)!2

)2

dxdt.

≤

((
θ − ζ

2

)r+1
λ1

2r(M + 1)!
+
(

θ − ζ

2

)r+1
λ2

2r(M + 1)!
+
(

θ − ζ

2

)2r+2
λ3

22r(M + 1)!2

)2

.

(2.35)
By taking the square root on both sides, we have

∥ω(x, t) − ω∗
N,N (x, t)∥2

≤
(

θ − ζ

2

)r+1
λ1

2r(M + 1)!
+
(

θ − ζ

2

)r+1
λ2

2r(M + 1)!
+
(

θ − ζ

2

)2r+2
λ3

22r(M + 1)!2
.

(2.36)

Remark: The domain for the present problem is given by Ξ = [0, 1] × [0, 1], so for the
error estimate the equation (2.36) becomes

∥ω(x, t) − ω∗
N,N (x, t)∥2 ≤ λ1

22r+1(M + 1)!
+ λ2

22r+1(M + 1)!
+ λ3

24r+2(M + 1)!2
(2.37)

or can be written as

∥ω(x, t) − ω∗
N,N (x, t)∥2 ≤ 1

22r+1(M + 1)!

(
λ1 + λ2 + λ3

22r+1(M + 1)!

)
, (2.38)

which concludes the proof. �

Here, we give an example for error for approximate u(x, t) = sin(x)sin(t) when u(0.9, 0.9)
with using two dimensional Genocchi polynomials and compare with the error bound as
in (2.29) as in Table (2). Note than since Genocchi Polynomials with degree GN (x) have
N − 1 power of x. Hence, we take one degree higher in N to compare with same degree
of Lagrange interpolation polynomials, M .

Table 2. Comparision of error for approximate u(x, t) = sin(x)sin(t) when
u(0.9, 0.9) with using two dimensional Genocchi polynomials and error bound by
(2.29)

N Error M Error bound
3 1.02487E-03 2 1.35593E-02
4 1.20530E-04 3 9.22270E-04
5 1.75328E-05 4 5.08672E-05
6 4.57160E-07 5 1.92077E-06
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2.3. Genocchi operational matrix of derivative
The matrix Uσ

M×M is the operational matrix of fractional derivative of order σin Caputo
sense, we have

Dσ
t G(t) = Uσ

M×M G(t),

Uσ
M×M =


θ11 θ12 · · · θ1M

θ21 θ22 · · · θ2M
... · · · · · ·

...
θM1 θM2 · · · θMM

 , G(t) =


G1
G2
...

GM

 (2.39)

Lemma 2.3. The formula for the fractional derivative of order σ of Genocchi polynomials
of order k in Caputo sense is given as

Dσ
t Gi(t) =

{ ∑i
l=⌈σ⌉

i!gi−l

(i−l)!Γ(l−σ+1) tl−σ, n′ − 1 < σ ≤ n′, n′ = ⌈σ⌉ ∈ N, i ≥ σ

0, i < σ
(2.40)

where gi−l is the Genocchi number.

Proof. See [10]. �

Lemma 2.4. The matrix ℵM =
∫ 1

0 (Dσ
t G(t)) ∗ GT (t)dt is given as ℵM = Φih, where we

have

Φih =
i∑

l=⌈σ⌉

h∑
q=0

i!(h
q )gi−lgh−q

(i − l)!(l + q − σ + 1)Γ(l − σ + 1)
. (2.41)

Proof. See [10]. �
Theorem 2.5. For the operational matrix of Genocchi polynomials in Caputo sense of
fractional order σ over the interval [0, 1] , we let Gk(x), k = 1, 2, . . . , M be the set of
Genocchi polynomials. We denote the operational matrix as Uσ

M×M which is given by

Uσ
M×M = ℵM A−1 (2.42)

Proof. See [10]. �

3. Description of the proposed technique by using collocation method
This section explain the procedure for the new collocation scheme, which is using

shifted CGL collocation points in conjunction of Genocchi polynomials operational matrix
method.
Consider the general fractional order partial differential equation as follow:

∂αυ

∂tα
+ ϖ1

∂υ

∂x
+ ϖ2

∂2υ

∂x2 + υ(x, t) = ω(x, t), (x, t) ∈ [ζ, θ] × [ζ, θ], (3.1)

along with the following initial and boundary conditions
υ(x, 0)=ϱ1(x), (3.2)

υ(0, t) = ϕ1(t), υ(1, t) = ϕ2(t). (3.3)
where ϖ1 and ϖ2 are real parameters , ω is a continuous function and ζ = 0 and θ = 1.
In matrix form, we approximate the solution υ(x, t) by means of Genocchi polynomials as

υM+1(x, t) =
M+1∑
a=1

M+1∑
b=1

cabGa(x)Gb(t) =GT (t)CM+1×M+1G(x), (3.4)
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where the Genocchi coefficient matrix CM+1×M+1 is M+1 by M+1 matrix. The equations
(3.1) to (3.3) can be approximate as

∂αυ

∂tα
= GT (t)(Uσ

M+1×M+1)T CM+1×M+1G(x),
∂υ

∂x
= GT (t)CM+1×M+1U1

M+1×M+1G(x),

∂2υ

∂x2 = GT (t)CM+1×M+1U2
M+1×M+1G(x).


(3.5)

Also
υ(x, 0) = GT (0)CM+1×M+1G(x),
υ(0, t) = GT (t)CM+1×M+1G(0),
υ(1, t) = GT (t)CM+1×M+1G(1).

 (3.6)

By putting equations (3.5) and (3.6) in equations (3.1) to (3.3), we will get

GT (t)(Uσ
M+1×M+1)T CM+1×M+1G(x) + ϖ1GT (t)CM+1×M+1U1

M+1×M+1G(x)
+ ϖ2GT (t)CM+1×M+1U2

M+1×M+1G(x) + GT (t)CM+1×M+1G(x)
= ω(x, t).

(3.7)

and
GT (0)CM+1×M+1G(x) = ϱ1(x)
GT (t)CM+1×M+1G(0) = ϕ1(t)
GT (t)CM+1×M+1G(1) = ϕ2(t).

 (3.8)

The shifted CGL collocation points are

xa = θ − ζ

2

(
1 − cos((a − 1)π

M
)
)

+ ζ, a = 1, 2, . . . , M + 1,

tb = θ − ζ

2

(
1 − cos((b − 1)π

M
)
)

+ ζ, b = 1, 2, . . . , M + 1,

(3.9)

By using equations (3.7) and (3.8) with the collocation points, we can write the equation
for equations (3.1) to (3.3) as

GT (tb)(Uσ
M+1×M+1)T CM+1×M+1G(xa) + ϖ1GT (tb)CM+1×M+1U1

M+1×M+1G(xa)
+ ϖ2GT (tb)CM+1×M+1U2

M+1×M+1G(xa) + GT (tb)CM+1×M+1G(xa)
= ω(xa, tb),

(3.10)
where 2 ≤ a ≤ M, 2 ≤ b ≤ M + 1 and

GT (0)CM+1×M+1G(xa) = ϱ1(xa), 1 ≤ a ≤ M + 1,

GT (tb)CM+1×M+1G(0) = ϕ1(tb), 2 ≤ b ≤ M + 1,

GT (tb)CM+1×M+1G(1) = ϕ2(tb), 2 ≤ b ≤ M + 1.

 (3.11)

The system of linear algebraic equation can be obtained by combining the above equations.
Hence, one can easily achieve the coefficients cab. Therefore, the approximate solution
υ(x, t) can be calculated. For example, if M = 6, the coefficent CM+1×M+1 is a matrix
with dimension 7 by 7. The equation in (3.10) will give 30 equations (i.e. 5 time 6), and
equations in (3.11) will give 19 equations. (i.e. 7 + 6 + 6).

If there are initial condition υt(x, 0) = ϱ2(x), we can have

GT (0)(U1
M+1×M+1)T

C
M+1×M+1G(xa) = ϱ2(xa), 1 ≤ a ≤ M + 1.
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In this case, some of the collocation points at interior point or/and boundary condition
have to ignore in order to obtain system of linear algebraic equation with same number of
equations and number of unknowns.

4. Numerical results
This section comprises of some numerical examples to show that the present technique

is accurate for solving such FPDEs. The comparison results are also illustrated given
below to verify the accuracy of present technique.

Problem 1. Consider the following linear time-fractional convection diffusion equation
as in [30].

∂αu

∂tα
+x

∂u

∂x
− ∂2u

∂x2 = 2t2−α

Γ (3 − α)

(
x2−x3

)
+
(
1+t2

) (
2x2−3x3+6x−2

)
, (4.1)

for (x, t)∈[0, 1] × [0, 1], 0 < α < 1 where the initial and boundary conditions are given
as:

u(x, 0) = x2 − x3, u(0, t) = u(1, t) = 0. (4.2)
The exact solution is given by u(x, t) = (1 + t2)(x2 − x3). In Table (3), we compare
our result by using the proposed technique with the result obtained by using Chebyshev
wavelets method as shown in [30], which they use k = 2 and M = 6. Apart from that, we
also show our result with different α at M = 3 in Table (4).

Table 3. Comparison of the absolute errors for the method used in [30] with our
proposed method for problem 1 for different values of α and M = 6

(x,t) α = 0.5 α = 0.7
[30] Proposed method [30] Proposed method

(0.1,0.1) 6.3167E-06 8.81552E-07 1.0481E-05 1.22521E-06
(0.2,0.2) 9.0144E-06 8.70156E-07 9.4357E-06 1.62880E-06
(0.3,0.3) 1.0906E-05 7.74359E-07 1.0861E-05 4.74839E-07
(0.4,0.4) 1.2217E-05 2.02455E-06 1.0863E-05 2.70323E-06
(0.5,0.5) 1.2120E-05 1.11899E-06 9.8330E-06 2.08419E-06
(0.6,0.6) 1.1359E-05 1.12449E-06 8.6775E-06 1.00412E-06
(0.7,0.7) 9.6580E-06 1.97722E-06 7.0242E-06 2.77912E-06
(0.8,0.8) 7.0716E-06 3.40304E-07 4.9338E-06 9.02850E-07
(0.9,0.9) 3.7565E-06 8.22466E-07 2.5354E-06 1.03032E-06

Table 4. Absolute errors of Problem 1 for different values of α and M = 3

(x,t) α = 0.1 α = 0.3 α = 0.7 α = 0.9
(0.1,0.1) 1.05054E-07 2.72011E-07 2.40185E-07 2.40185E-07
(0.2,0.2) 6.47738E-07 2.00232E-06 2.79383E-06 2.79383E-06
(0.3,0.3) 1.72368E-06 5.67480E-06 8.83077E-06 8.83077E-06
(0.4,0.4) 3.08438E-06 1.05071E-05 1.72204E-05 1.72204E-05
(0.5,0.5) 4.20633E-06 1.46759E-05 2.48789E-05 2.48789E-05
(0.6,0.6) 4.46786E-06 1.59359E-05 2.78249E-05 2.78249E-05
(0.7,0.7) 3.43383E-06 1.26330E-05 2.29424E-05 2.29424E-05
(0.8,0.8) 1.24802E-06 5.11271E-06 1.04523E-05 1.04523E-05
(0.9,0.9) 8.66618E-07 2.47919E-06 2.90853E-06 2.90853E-06
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From the absolute error presented in Table (3), our method provide better result com-
pare to those in [30].

Problem 2. Consider the following linear time-fractional diffusion-wave equation with
damping as

∂αu

∂tα
+ ∂u

∂t
= ∂2u

∂x2 + ρ(x, t), (x, t)∈[0, 1] × [0, 1], 1 < α ≤ 2, (4.3)

where having the following initial and boundary conditions:
u(x, 0) = 0, ut(x, 0) = 0, u(0, t) = t3, u(1, t) = et3. (4.4)

The exact solution of the problem (2) is u(x, t) = t3ex andρ(x, t) = 3t2ex − t3ex + 6ext3−α

Γ(4−α) .
Using the suggested algorithm and for the different values of M we obtained the numerical
solutions. Table (5) shows the approximate solution of problem 2 for α = 1.85, while Table
(6) shows the comparison in term of absolute error when equally space collocation is used
compare to shifted CGL collocation, both with Genocchi operational matrix.

Table 5. Absolute errors of problem 2 for α = 1.85 and M = 4, 6, 8

(x,t) M=4 M=6 M=8
(0.1,0.1) 2.93785E-03 2.49737E-04 2.79635E-04
(0.2,0.2) 1.38984E-02 2.39629E-03 8.60177E-03
(0.3,0.3) 2.57208E-02 1.80089E-02 2.40774E-02
(0.4,0.4) 3.01704E-02 3.77154E-02 3.76401E-02
(0.5,0.5) 2.50426E-02 4.02594E-02 3.86355E-02
(0.6,0.6) 1.39617E-02 2.12280E-02 2.39831E-02
(0.7,0.7) 2.59308E-03 2.00676E-03 3.76328E-03
(0.8,0.8) 5.18725E-03 1.21360E-02 9.01500E-03
(0.9,0.9) 7.80543E-03 9.42216E-03 9.02542E-03

Table 6. Comparison of the absolute errors for problem 2 with equally
space/shifted CGL collocation points for α = 1.85 and M = 5

(x,t) M = 5
Equally Space CGL

(0.2,0.2) 8.14293E-03 1.19147E-02
(0.4,0.4) 2.13116E-02 3.53204E-02
(0.6,0.6) 2.81564E-02 2.20159E-02
(0.8,0.8) 1.23640E-01 7.86163E-03

From the absolute error presented in Table (5) and (6), our method provide better result
compare to those in [30].

Problem 3. Consider the following linear time-fractional diffusion-wave equation with
damping as [6]

∂αu

∂tα
+ ∂u

∂t
− ∂2u

∂x2 = 2t2−α

Γ(3 − α)
+ 2x − 2, where(x, t)∈[0, 1] × [0, 1], 0 < α ≤ 1, (4.5)

where having the following initial and boundary conditions:
u(x, 0) = x2, u(0, t) = t2, u(1, t) = 1 + t2. (4.6)

This problem has the exact solution u(x, t) = x2 + t2. Taking M = 4 and using the
proposed method described above to find the solution, we present the comparison of the
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absolute errors with already published results [6] in Tables (7) and (8) for α = 0.5. Table
(9) shows the absolute error for α = 0.5, while Table (10) shows the comparison in term of
absolute error when equally space collocation is used compare to shifted CGL collocation,
both with Genocchi operational matrix.

Table 7. Comparison of the absolute errors of problem 3 with NLP by Ghande-
hari and Ranjbar [6] for α = 0.5 and M = 4.

x t = 0.1 t = 0.5
[6] Proposed method [6] Proposed method

0.1 3.8678E-04 1.7490E-05 3.7450E-04 1.3056E-05
0.2 6.9640E-04 3.1345E-05 6.5970E-04 2.4353E-05
0.3 9.3370E-04 4.1768E-05 8.5790E-04 3.3392E-05
0.4 1.1000E-03 4.8791E-05 9.8740E-04 3.9716E-05
0.5 1.2000E-03 5.2278E-05 1.0000E-03 4.2906E-05
0.6 1.2000E-03 5.1923E-05 8.9350E-04 4.2582E-05
0.7 1.1000E-03 4.7248E-05 6.4050E-04 3.8409E-05
0.8 9.9630E-04 3.7608E-05 2.3080E-04 3.0086E-05
0.9 7.4310E-04 2.2187E-05 1.8500E-04 1.7355E-05

Table 8. Comparison of the absolute errors of problem 3 with NLP by Ghande-
hari and Ranjbar [6] for α = 0.5 and M = 4.

x t = 1
[6] Proposed method

0.1 3.1600E-04 4.1324E-05
0.2 5.2900E-04 7.3127E-05
0.3 6.4100E-04 9.6523E-05
0.4 6.7800E-04 1.1206E-04
0.5 6.2700E-03 1.1973E-04
0.6 4.6800E-04 1.1895E-04
0.7 2.0100E-04 1.0857E-04
0.8 1.9700E-04 8.6901E-05
0.9 4.0000E-05 5.1654E-05

Table 9. Absolute errors of problem 3 for α = 0.5 and different values of t and M.

t M=5 M=6 M=8
0.1 1.6303E-05 1.1452E-05 2.8151E-06
0.5 1.1943E-05 3.1877E-06 1.1780E-06
1 1.7873E-05 8.9557E-06 2.8867E-06
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Table 10. Comparison of the absolute errors for problem 3 with Equally
space/shifted CGL collocation points for α = 0.5, M = 4 and different values
of t.

(x,t) t = 0.1 t = 0.5
Equally Space CGL Equally Space CGL

(0.2,0.2) 0.507858E-04 3.13452E-05 0.125709E-04 0.243533E-04
(0.4,0.4) 0.800191E-04 4.87915E-05 1.90050E-05 0.397165E-04
(0.6,0.6) 8.51427E-05 5.19230E-05 1.99898E-05 0.425829E-04
(0.8,0.8) 0.610328E-04 3.76082E-05 1.45404E-05 3.00861E-05

Problem 4. Let us now consider the linear time-fractional convection diffusion equation
is as follow [19]

∂αu

∂tα
+ x

∂u

∂x
+ ∂2u

∂x2 = 2tα + 2x2 + 2, (x, t)∈[0, 1] × [0, 1], 0 < α ≤ 1, (4.7)

with initial and boundary conditions:

u(x, 0) = x2, u(0, t) = 2Γ(α + 1)
Γ(2α + 1)

t2α, u(1, t) = 1 + 2Γ(α + 1)
Γ(2α + 1)

t2α. (4.8)

The exact solution of the problem (4) is u(x, t) = x2+ 2Γ(α+1)
Γ(2α+1) t2α. Proceeding as before and

taking different values of M we get the approximate solution. Table (11) and Table (12)
illustrate the comparison of the absolute errors with existing results (Table 4, Example 3)
in [19] for α = 0.5, where the writers used Sinc-Legendre collocation method for m = 15
and m = 25. Also Table (13) depicts the comparison of the absolute errors with result in
[1] where Sumudu decomposition method is applied for α = 0.75 and α = 0.95.

Table 11. Comparison of the obtained solutions of problem 4 with existing results
by Saadatmandi and Dehghan [19] for α = 0.5, t = 0.5 and M = 4.

x m=15 m=25 M=4
[19] [19] Proposed method

0.1 6.994E-05 6.462E-06 1.42760E-04
0.2 1.721E-04 1.578E-05 2.42446E-04
0.3 2.472E-04 2.272E-05 3.06440E-04
0.4 2.912E-04 2.674E-05 3.40341E-04
0.5 3.004E-04 2.759E-05 3.47955E-04

Table 12. Absolute errors of problem 4 for α = 0.5, t = 0.5 and different values of M .

x M=6 M=8
Proposed method Proposed method

0.1 4.62306E-05 6.93784E-06
0.2 7.44193E-05 2.10061E-05
0.3 9.02312E-05 3.51184E-05
0.4 9.79210E-05 4.37771E-05
0.5 1.00046E-04 4.40540E-05
0.6 9.73594E-05 3.60376E-05
0.7 8.88893E-05 2.25994E-05
0.8 7.22028E-05 8.54433E-06
0.9 4.38510E-05 6.24458E-07



1122 A. Kanwal, C. Phang, J.R. Loh

Table 13. Comparison of the obtained solutions of problem 4 with existing results
by Al-Khaled [1] for different values of α.

t x α = 0.75 α = 0.95
[1] Proposed method Exact [1] Proposed method

0.2 0.2 0.163679 0. 164034 0.16367554 0.090389 0.090417
0.4 0.283679 0. 284154 0.28367554 0.210389 0.210426
0.7 0.61368 0. 614087 0.61367554 0.540421 0.540421

0.5 0.2 0.530488 0. 528245 0.52887053 0.327330 0.327330
0.4 0.650675 0. 648210 0.64887053 0.447341 0.447341
0.7 0.981188 0. 978227 0.97887053 0.777334 0.777334

0.8 0.2 1.06802 1.029419 1.02940439 0.742482 0.742482
0.4 1.19247 1. 149374 1.14940439 0.862833 0.862833
0.7 1.53473 1. 479389 1.47940439 1.192619 1.192619

From Tables (11)- (13), it is to be noted that the proposed technique gives better results
as compare to the existing [19] and [1].

For the solution obtained with different α, we show it as in Figure (3) and (4).

Figure 3. Solution u(x, t) for different α, which α = 0.75 : Green, α = 0.95 :
Blue, α = 1 : Red

Figure 4. Solution u(x, 1) for different α, which α = 0.75 : Green, α = 0.95 :
Blue, α = 1 : Red
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Problem 5. Consider the following nonlinear FPDE as follow

∂αu

∂t0.5 + ∂u

∂t
+ sin(u) = 8

3
t3/2x√

π
+ sin

(
xt2
)

, (x, t)∈[0, 1] × [0, 1], (4.9)

where having the following initial and boundary conditions:

u(x, 0) = 0, u(0, t) = 0, u(1, t) = t. (4.10)

The exact solution of the problem (5) is u(x, t) = xt2. Using the suggested algorithm and
for the different values of M we obtained the numerical solutions. Table (14) shows the
approximate solution of problem 5.

Table 14. Absolute error for the solutions of problem 5

(x,t) M
M = 3 M = 6

(0.1,0.1) 8.64223E-04 7.61729E-04
(0.1,0.5) 1.02828E-02 9.98584E-03
(0.1,0.8) 2.19334E-02 2.13345E-02
(0.5,0.1) 1.20605E-05 3.35229E-05
(0.5,0.5) 1.93707E-04 7.86163E-05
(0.5,0.8) 2.78549E-04 1.73250E-04

From the result in Table (14), the propose scheme is also applicable to solve the nonlinear
FPDE.

5. Conclusion
In this paper, we used shifted Chebyshev-Gauss-Lobatto collocation points in conjunction
with Genocchi polynomials operational matrix of differentiation in Caputo sense to solve
fractional partial differential equations. The system of linear algebraic equations is ob-
tained when the main equation along with the initial as well as boundary conditions is
collocated by using shifted CGL collocation points, hence, greatly simplify the numerical
scheme. Comparison tables are given to show the accuracy of present technique. It is
worth noting that our propose method gives better results when compared with existing
work.
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