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Abstract
An integrated vendor-buyer model for deteriorating items is formulated in this study.
To control deterioration rate, the vendor adopts preservation technology. Shortages are
allowed for both vendor and buyer. During shortage period, the vendor simply doubles the
production rate to meet the demand of buyer. The vendor’s demand during non-shortage
period follows a constant rate but, the demand is a quadratic decreasing function of time
in shortage period. The buyer’s demand is a quadratic increasing function of time when
shortage does not occur but at shortages period, the demand is constant. The buyer
accepts an inspection policy for imperfect product. Total cost is calculated for both the
model and integrated system. Thereafter, the model is solved by minimizing the total
cost. Numerical examples are given to show the applicability of the model. A sensitivity
analysis is done to display the realistic applicability of our model and method.
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1. Introduction
Most of the companies found that they can obtain further advantages by establishing a

long-term relationship between supplier and retailer. Recently, a newly launched mobile
sim card is making a huge market from customers in India, where the sim card is delivered
by the retailer to the customer, not by the supplier to the customer. But, if there is a
misunderstanding between the supplier and retailer, it will be impossible to enjoy such a
profit from the customers. So, coordination between partners is a powerful promotional
tool to increase the profit and also an efficient key to achieve a global optimality of the
system. Hence, an integrated vendor-buyer model is formulated in this paper to obtain
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the minimum total relevant cost with a purpose of greater success, rather than by acting
separately.

In this highly competitive era, quality of products is an important competition weapon.
When a company is manufacturing its own product, the production process is not perfect
always. Imperfect production always leads to defective items. When a product is delivered
from supplier to retailer, it requires an inspection policy for maintaining the quality and
a smooth relationship between supplier and retailer. This imperfect production and in-
spection policy affects the firms profit negatively during the short- and long- term process.
This inspection can cause two types of errors. Type I is the error which occurs if the buyer
supplies some imperfect items as perfect. Type II happens if the buyer considers some
perfect items as imperfect. Moreover, the imperfect items may be reworked, salvaged or
refreshed at a discounted price, which may cause an additional cost. Therefore, imper-
fectness due to unavoidable factors and two types of inspection policy plays a crucial role
in an inventory model.

In many inventory models, it is assumed that the items can be preserved for an infinite
time without any change of their physical status. But in reality, many products become
partially or totally unusable after a certain time period. Deterioration is defined as (i) pil-
ferage, which is known as physical depletion or evaporation, mainly applicable for petrol,
diesel, alcohol or gasoline; (ii) spoilage occurs mainly for vegetables, fish, perishable food-
stuffs and fruits; (iii) decay, shown mainly for radioactive substances; (iv) degradation,
mainly revealed by pharmaceutical drugs, electronic components, etc. Therefore, the effect
of deterioration is vital in our daily life and to be considered in an inventory model.

As described previously, rate of deterioration cannot be removed but the rate of dete-
rioration can be controlled by looking for and developing a preservation technology. For
example, the rate of deterioration for fish can be reduced by storing the fish in a deep
fridge or by using ice. Applying cool supply-chain policy, the rate of deterioration for
fruits becomes less. Though the cost of preservation technology may be high, it will be
our attempt to reduce the total cost and to maximize the total profit.

Therefore, every factor described above has a high importance in formulating our model.
The main motivation of our work is as follows:

• Deteriorative items are considered; to reduce the rate of deterioration, preservation
technology is applied for perishable items.

• Demand for the vendor follows a constant rate during non-shortage period; at the
time of shortage, the demand decreases with a progression in time.

• Demand for the buyer during non-shortage period increases with progression in
time. At any time interval when shortages occur, the demand decreases as a
constant.

• During shortage period, the vendor will double the production to meet the demand
of the buyer’s and to maintain the reputation of his/her company.

• The buyer takes an inspection policy for checking the items. The non-defective
items are separated for selling, and defective items are returned to the vendor at
the next shipment. Type I and Type II, both types of errors are inspected at the
time of inspection to avoid the penalty cost for delivering imperfect items.

• Shortages are allowed for both vendor and buyer, and only a fraction of backorder
is allowed, whereas the rest is lost.

The rest of the paper is organized as follows: Section 2 provides a literature review
on previous research about inventory. The notations and assumptions which are used
throughout the paper are described in Section 3, which consists of four subsections. In
Subsection 3.1, notations that are used for vendor’s model are presented. In Subsection
3.2, buyer’s notations are stated. In Subsection 3.3, assumptions, which are essential, are
listed whereas in Subsection 3.4, buyer’s assumptions are given. Section 4 discusses the



1170 M. Pervin, S.K. Roy, G.W. Weber

mathematical model of our proposed inventory problem, subdivided in two halves. The
vendor’s model is displayed in Subsection 4.1, while the buyer’s model is derived in Sub-
section 4.2. Section 5 elaborates the heuristic solution method for the integrated system
which consists of four theorems (and instructions) and their proofs. Three illustrative nu-
merical examples are given in Section 6. Section 7 deals with computational experiments,
statistical and managerial analysis to identify the important and the further parameters
with an exclusive figure. Finally, Section 8 presents the conclusions and further research
avenues of our proposed model.

2. Motivation and review on research
The integrated vendor-buyer model has received much attention in the last few decades.

In particular, Goyal [6] suggested a lot-for-lot policy and that the vendors economic pro-
duction quantity should be an integer multiple of buyer’s purchase quantity. After that,
Ouyang et al. [14] addressed a production inventory model with lead time for a single-
vendor single-buyer supply chain. Chang et al. [2] discussed an integrated vendor-buyer
inventory system under trade-credit policy. An integrated inventory model with trans-
portation for a single-vendor and multi-buyer was described comprehensively by Jha and
Shanker [11]. An integrated production-distribution model with probabilistic defect and
errors under variable set-up cost was perfectly derived by Priyan and Uthayakumar [22].
Recently, Pervin et al. [20] derived an integrated model with variable holding cost under
trade-credit policy. Fauza et al. [5] provided a single-vendor and multiple buyers (SVMB)
model to obtain the food inventory policy. They developed a kinetic model, which was
utilized to present the quality degradation of the raw material at the vendor.

In a traditional EOQ model, it is assumed that the production process is perfect always
and no imperfect items are manufactured. In practice, imperfect items are always rejected
by the customers, repaired and reworked by the retailers on the basis of the percentage of
imperfection. The repairing process causes an extra charge, which generally means a loss
for the supplier. Several researchers considered the effect of imperfectness on production,
among them Rosenblatt and Lee [23] who studied an imperfect production process, where
the production cycle was optimized. Cárdenas Barrón [1] offered an EPQ model for
a single-stage manufacturing system, with a consideration of planned backorders. An
EOQ model with imperfect items, shortage and inspection errors, was derived by Hsu
and Hsu [9]. Hassan and Diab [7] incorporated a visual inspection policy to test the
multiple characteristics simultaneously. Yoo et al. [28] described an inventory model for
imperfect items and inspection process with various inspection options under one-time
and continuous improvement of investment. Chen [3] formulated an integrated model
with production, preventive maintenance, and inspection policy where rework/repair for
imperfect items was allowed. A multi-item deteriorating inventory model with trade-credit
policy was elaborated by Pervin et al. [21]. Ouyang et al. [13] examined the impacts of
collaborative investment and inspection policies on the integrated model of defective items.

Deterioration of products leads to a loss. To derive the sense perfectly, Pervin et
al. [17] considered an inventory model for deteriorating items under declining demand
market. Deterioration mainly happens due to overstocking or lack of demand. Researchers
generally avoid the loss due to deterioration. Avoidance of that loss can causes a huge
disaster in the profit of the company. Though cold chain policy can reduce the loss due
to deterioration, but it is not always applicable. Recently, Pervin et al. [19] described
a model with time-dependent demand and time-varying holding cost including stochastic
deterioration. Pervin et al. [18] also studied the effect of deterioration on inventory model
with stock-dependent demand under two-level trade credit policy. Recently, Roy et al.
[24] proposed a two-warehouse with price discount on backorders and trade-credit policy
where the demand function was depicted in probabilistic sense. However, deterioration
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can be controlled by following various Preservation Technology (PT). Rate of deterioration
for food, vegetables, fish or fruits can be controlled by applying refrigeration technology.
Drying or vacuum technology generally provides a better preserving facility for fruits,
flowers, medicine and foodstuff, which usually results in a lower rate of deterioration rate.
Ouyang et al. [15] noticed that if the retailer can decrease deteriorating by using the
storage facility, the total cost will be lowered. Tsao [25] described that the items with
higher deterioration rates produce less profit for the retailer. Yang et al. [26] found out
that if the deterioration rate is higher, then more investment is needed for preserving the
commodity. Hsu et al. [10] presented PT investment for deteriorating inventory. Dye
and Hsieh [4] derived an optimal policy by investing in PT. Yong and Huang [27] found
a pricing policy for seasonal products with PT. Mishra et al. [12] presented an inventory
model with price- and stock-dependent demand and preservation investment. Hsieh and
Dye [8] described a deteriorating model with PT under fluctuating demand. From the
above literature studies, one can find a research gap where an integrated model with this
type of demand factor, inspection policy and preservation technology for deteriorating
items is formulated. To fill the gap, we have derived an integrated inventory model for
deteriorating items with inspection policy and preservation technology, where shortages
with partial backorder are allowed.

The studies made by research groups related on our topic are surveyed in Table 1.
Table 1: Contributions of some authors related to inventory model.

Authors Integrated Quadratic Inspection Deterio- Preservation Partial
model demand policy rations technology backorder

Ouyang et al. (2015)
√

Chang et al. (2009)
√

Priyan and Uthayakumar (2017)
√ √

Cárdenas-Barrón (2009)
√ √

Chen (2013)
√ √

Hassan and Diab (2010)
√

Hsu and Hsu (2013)
√ √

Ouyang et al. (2013)
√ √

Yoo et al. (2012)
√ √

Dye and Hsieh (2012)
√ √

Hsu et al. (2010)
√ √

Mishra et al. (2015)
√ √ √

Yong and Huang (2013)
√ √

Yang et al. (2010)
√ √

Pervin et al. (2017)
√ √

Pervin et al. (2018)
√ √ √

Hsieh and Dye (2013)
√ √

This work
√ √ √ √ √ √

3. Notations and assumptions
For formulating the model, we introduce the following notations and assumptions to

execute an understandable form of our work.

3.1. Vendor’s notations
λ(α) deterioration rate per units per time unit when preservation technology is applied;

α unit cost for preservation technology investment per time unit (a decision variable);
I1(t) inventory level for vendor at time t during production period;
I2(t) inventory level for vendor at time t during nonproduction period;
I3(t) inventory level for vendor at time t during shortage period;
I4(t) inventory level for vendor at time t during reproduction period;

P unit production rate per items per unit of time;
D unit demand rate per items per unit of time;
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Q1 initial inventory level for vendor;
m number of shipment from vendor to buyer (a decision variable);
q size of each shipment from vendor to buyer (a decision variable);

A1 unit ordering cost per items per unit of time;
c1 unit fixed cost for transporting items from vendor to buyer;
c2 unit variable cost for transporting items from vendor to buyer;
c3 unit treatment cost for vendor’s per defective item;
c4 unit shortage cost per unit;
d1 unit deterioration cost per unit;
h1 unit holding cost per unit of item per time unit;
µ proportion of defective items per unit time (a decision variable);
δ1 backorder cost per order;

VT total cost for vendor per unit of time (a decision variable).

3.2. Buyer’s notations
I5(t) inventory level for buyer at time t during non-shortage period;
I6(t) inventory level for buyer at time t during shortage period;

Q2 initial inventory level for buyer;
q size of each shipment received from vendor (a decision variable);

A2 unit ordering cost per items per unit of time;
c5 unit inspection cost per item per time unit;
c6 unit penalty cost for items per unit of time;
c7 unit shortage cost;
d2 unit deterioration cost per items;
h2 unit holding cost for non-defective items per unit per time unit;
h3 unit holding cost for defective items per unit per time unit;
δ2 unit lost sale cost;

BT total cost for buyer per unit of time (a decision variable);
TC total cost for the integrated system (a decision variable).

3.3. Vendor’s assumptions
(1) The vendor applies preservation technology for deteriorating items to reduce the

deterioration with a rate λ(α), where λ(α) = λ0e−δα; here, λ0 is the deterioration
rate without preservation technology and δ is the parameter of investment for
deterioration rate. We assume that the deterioration rate satisfies the equation
∂λ(α)

∂α < 0 and ∂2λ(α)
∂α2 > 0.

(2) The demand during non-shortage period follows a constant rate k, and during
shortage period follows a quadratic decreasing function of time. Hence, the demand
D(t) = a0 + b0t − c0t2, where a0, b0 and c0 are constant.

(3) During shortage period, the vendor will double the production to meet the demand
of the buyer’s and to maintain the reputation of his company.

(4) Lead time is negligible.
(5) Shortages are allowed, and only a fraction β1, 0 ≤ β1 < 1, is backordered, whereas

the rest is lost.
(6) Due to a high demand from buyer, the vendor does not considered inspection policy

for their model to save the time and to maintain a good relationship between them
by delivering the items at proper time.
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3.4. Buyer’s assumptions
(1) The demand function for buyer during non-shortage period follows a quadratic

increasing function of time and is represented as D(t) = a + bt + ct2, where a, b
and c are positive constant.

(2) The demand function for the buyer during shortage period follows a constant rate
of time, given as a1.

(3) As the vendor applies a preservation technology for reducing the deterioration
rate, those items when supplied to buyer, the rate of deterioration will be very
low, which is taken as θ where 0 < θ < 1.

(4) The buyer takes an inspection policy for checking the imperfect items to increase
the integrated profit and to maintain the overall satisfaction level of the customer.
The non-defective items are separated for selling, and the defective items are re-
turned to the vendor at the next shipment.

(5) Shortages are allowed, and only a fraction β2, 0 ≤ β2 < 1, is backordered, whereas
the rest is lost.

4. Mathematical formulation
In this section, we consider two models, namely, vendor’s model which is discussed in

Subsection 4.1 and another buyer’s model, which is considered in Subsection 4.2.

4.1. Vendor’s model
At the beginning, the inventory starts with production P and demand D. The inventory

piles up and reaches to its highest level at time t = t1. Then the production stops
and the inventory level decreases with the joint effect of demand and deterioration and
drops to 0 at time t = t2. Shortages are allowed to occur within the interval [t2, t3] and
partially backordered. The demand for vendor during shortage period is considered as a
decreasing quadratic function of time. To meet the buyer’s demand, the vendor doubles
the production rate P during period [t3, t4]. After fulfilling the shortages amount, the
inventory level reaches to 0 at time t = t4 and then the excesses amount are piles up and
the cycle repeats in itself. Now, the instantaneous state of the inventory level is shown by
the following differential equations:

dI1(t)
dt

+ λ(α)I1(t) = P − k (t ∈ [0, t1]), (4.1)

with I1(0) = 0;

now, the solution of the differential equation (4.1) by using the boundary condition be

I1(t) = P − k

λ(α)

(
eλ(α)t − 1

)
(t ∈ [0, t1]);

dI2(t)
dt

+ λ(α)I2(t) = −k (t ∈ [t1, t2]), (4.2)

with I2(t2) = 0;

solving equation (4.2) with the help of boundary condition, we get

I2(t) = k

λ(α)
(
eλ(α)(t2−t) − 1

)
(t ∈ [t1, t2]);

dI3(t)
dt

= −β1(a0 + b0t − c0t2) (t ∈ [t2, t3]), (4.3)

with I3(t2) = 0;
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Figure 1. Vendor’s inventory model.

solving equation (4.3) with the help of boundary condition, we get

I3(t) = β1

[
a0(t2 − t) + b0

2
(t2

2 − t2) + c0
3

(t3 − t3
2)

]
(t ∈ [t2, t3]);

dI4(t)
dt

= 2P − (a0 + b0t − c0t2) (t ∈ [t3, t4]), (4.4)

with I3(t4) = 0;
solving equation (4.4) with the help of boundary condition, we get

I4(t) = (2P − a0)(t − t4) + b0
t2
4 − t2

2
+ c0

t3 − t3
4

3
(t ∈ [t3, t4]),

Q1 = I1(t1) = P − D

λ(α)

(
eλ(α)t1 − 1

)
.

Figure 1 gives a graphical presentation of the vendor’s inventory model.
The elements which are important for calculating vendor’s total cost are shown below:
(1) The vendor’s set-up cost is equal to mA1.
(2) The transportation cost for shifting items from vendor to buyer is the sum of a

fixed transportation cost per lot and a variable transportation cost. Its value is
represented by m(c1 + c2mq)

( ∫ t1
0 kdt +

∫ t2
t1

kdt
)

= m(c1 + c2mq)kt2.
(3) Total number of pieces of the product that becomes deteriorated during the time

interval [0, t1] and [t1, t2] is given by

Du = Q1 −
∫ t1

0
kdt −

∫ t2

t1
kdt = P − k

λ(α)
(
eλ(α)t1 − 1

)
− kt2

= P − k

λ(α)
(
eλ(α)t1 − λ(α)t2 − 1

)
.

Hence, deterioration cost is represented by md1Du = md1
P −k
λ(α)

(
eλ(α)t1 −λ(α)t2−1

)
.

(4) The inventory is available in the system during [0, t1] and [t1, t2]. Therefore, the
holding cost is calculated as

mh1
( q

P
+ (1 − µ)q

k

)( ∫ t1

0
I1(t)dt +

∫ t2

t1
I2(t)dt

)
= mh1

(λ(α))2
( q

P
+ (1 − µ)q

D

)[
P

[
eλ(α)t1 − λ(α)t1 − 1

]
− 2keλ(α)t1 + kλ(α)t2

]
.
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(5) In each shipment with size q, µq defective items will be returned by the buyer
at the end of each shipment cycle. Therefore, the treatment cost for returned
defective items per production cycle is of the value c3mµq.

(6) Preservation technology cost for preserving the deteriorating items is

α
( ∫ t1

0
I1(t)dt +

∫ t2

t1
I2(t)dt

)
= α

(λ(α))2

[
P

[
eλ(α)t1 − λ(α)t1 − 1

]
− 2keλ(α)t1 + kλ(α)t2

]
.

(7) Shortage cost during the period [t2, t3] is equal to

c4β1

∫ t3

t2
(a0 + b0t − c0t2)dt

= c4β1
[
a0(t3 − t2) + b0

(t2
3 − t2

2)
2

− c0
(t3

3 − t3
2)

3
]
.

(8) Due to shortage during the time interval [t2, t3], not all of the customers are in-
terested to wait for the coming lot size, which may cause a loss in profit. Hence,
lost-sale cost is stated as

δ1(1 − β1)
∫ t3

t2
I3(t)dt = δ1β1(1 − β1)

[
a0
2

(
2t2t3 − t2

2 − t2
3
)

+ b0
6

(
3t2

2t3 − 2t3
2 − t3

3
)

+ c0
12

(
t4
3 − 4t3

2t3 + 3t4
2
)]

.

Henceforth, the total cost for the vendor is expressed as
VT = set-up cost + transportation cost + deterioration cost + holding cost + treatment
cost + preservation technology cost + shortage cost + lost-sale cost.
Inserting all the parametric values, the total cost for the vendor becomes

VT = (1 − µ)q
k

[
mA1 + m(c1 + c2mq)kt1 + md1

P − k

λ(α)
(eλ(α)t1 − λ(α)t2 − 1)

+ mh1
(λ(α))2

( q

P
+ (1 − µ)q

D

)[
P

[
eλ(α)t1 − λ(α)t1 − 1

]
− 2keλ(α)t1 + kλ(α)t2

]
+c3mµq + α

(λ(α))2

[
P

[
eλ(α)t1 − λ(α)t1 − 1

]
− 2keλ(α)t1 + kλ(α)t2

]
+c4β1

[
a0(t3 − t2) + b0

(t2
3 − t2

2)
2

− c0
(t3

3 − t3
2)

3
]

+ δ1β1(1 − β1)[
a0
2

(
2t2t3 − t2

2 − t2
3
)

+ b0
6

(
3t2

2t3 − 2t3
2 − t3

3
)

+ c0
12

(
t4
3 − 4t3

2t3 + 3t4
2
)]

.

4.2. Buyer’s model
After receiving the products from the vendor, at the beginning, the buyer starts to

deliver the product as per demand during interval [0, t1]. Shortages occur during interval
[t1, t2] with a constant rate β2 and a constant demand a1. Now, the differential equation
of the inventory system is shown as:

dI5(t)
dt

+ θI5(t) = −(a + bt + ct2) (t ∈ [0, t1]), (4.5)

with I5(t1) = 0;
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Figure 2. Buyer’s inventory model.

now, the solution of the differential equation (4.5) by using the boundary condition be

I5(t) =
(a + bt + ct2

θ
− b + 2ct

θ2 + 2c

θ3
)
eθ(t1−t) − a + bt + ct2

θ
+ b + 2ct

θ2 − 2c

θ3 ;

dI6(t)
dt

= −β2a1 (t ∈ [t1, t2]), (4.6)

with I6(t1) = 0.

solving equation (4.6) with the help of boundary condition, we get
I6(t) = β2a1(t1 − t) (t ∈ [t1, t2]).

Now,

Q2 = I5(0) =
(a

θ
− b

θ2 + 2c

θ3
)
(eθt1 − 1) +

(bt1 + ct2
1

θ
− 2ct1

θ2
)
eθt1 .

The buyer’s inventory model is shown in Figure 2.
The elements which are important for calculating buyer’s total cost are shown below:
(1) The buyer’s ordering cost is of the value mA2.
(2) The buyer’s inspection cost for checking the imperfect items per lot is

qc5Q2 = qc5
[
(a

θ − b
θ2 + 2c

θ3 )(eθt1 − 1) + ( bt1+ct2
1

θ − 2ct1
θ2 )eθt1

]
.

(3) Total number of pieces of the product that become deteriorated during the time
interval [0, t1] is given by

Du = Q2 −
∫ t1

0
(a + bt + ct2)dt =

(a

θ
− b

θ2 + 2c

θ3
)
(eθt1 − 1) +

(bt1 + ct2
1

θ
− 2ct1

θ2
)
eθt1 −

(
at1 + bt2

1
2

+ ct3
1

3
)
.

Therefore, deterioration cost is expressed as

md2Du = md2
[
(a

θ
− b

θ2 + 2c

θ3 )(eθt1 − 1) + (bt1 + ct2
1

θ
− 2ct1

θ2 )eθt1 − (at1 + bt2
1

2
+ ct3

1
3

)
]
.
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(4) The inventory is available in the system during [0, t1]. Therefore, the holding cost
for non-defective items is calculated as

(1 − µ)qh2

∫ t1

0
I5(t)dt = (1 − µ)qh2

[(a + bt1 + ct2
1

θ2 − b + 2ct1
θ3 + 2c

θ4
)
(eθt1 − 1)

+( b

θ2 − a

θ
− 2c

θ3 )t1 + ( c

θ2 − b

2θ
)t2

1 − ct3
1

3θ

]
.

(5) The holding cost for defective items during [0, t1] is

µqh3

∫ t1

0
I5(t)dt = µqh3

[(a + bt1 + ct2
1

θ2 − b + 2ct1
θ3 + 2c

θ4
)
(eθt1 − 1)

+( b

θ2 − a

θ
− 2c

θ3 )t1 + ( c

θ2 − b

2θ
)t2

1 − ct3
1

3θ

]
.

(6) At the time of inspection, errors can be caused by the buyer. Actually, if the buyer
supplies some imperfect items by mistake, he has to pay the penalty cost to the
customer. Hence, the penalty cost for items per unit time be

c6µq

∫ t1

0
D(t)dt = c6µq

[
at1 + bt2

1
2

+ ct3
1

3
]
.

(7) Shortage cost during the period [t1, T ] is equal to

c7β2

∫ t2

t1
a1dt = c7β2a1(t2 − t1).

(8) Due to shortage during the time interval [t1, T ], not all of the customers are in-
terested to wait for the coming lot size, which may cause a loss in profit. Hence,
lost-sale cost is stated as

δ2(1 − β2)
∫ t2

t1
I6(t)dt = δ2(1 − β2)a1

(
t2t1 − t2

2 + t2
1

2
)
.

Therefore, the total cost for the buyer is expressed as
BT = ordering cost + inspection cost + deterioration cost + holding cost for non-defective
items + holding cost for defective items + penalty cost for defective items + shortage cost
+ lost-sale cost.
Buyer’s total relevant cost per unit time is the sum of the described cost, divided by the
length of the replenishment cycle (1−µ)q

D ; this is expressed by:

BT = (1 − µ)q
D

[
mA2 + qc5

[(a

θ
− b

θ2 + 2c

θ3
)
(eθt1 − 1) +

(bt1 + ct2
1

θ
− 2ct1

θ2
)
eθt1

]
+md2

[(a

θ
− b

θ2 + 2c

θ3
)
(eθt1 − 1) +

(bt1 + ct2
1

θ
− 2ct1

θ2
)
eθt1 −

(
at1 + bt2

1
2

+ ct3
1

3
)]

+(1 − µ)qh2
[(a + bt1 + ct2

1
θ2 − b + 2ct1

θ3 + 2c

θ4
)
(eθt1 − 1) + ( b

θ2 − a

θ
− 2c

θ3 )t1

+( c

θ2 − b

2θ
)t2

1 − ct3
1

3θ

]
+ µqh3

[(a + bt1 + ct2
1

θ2 − b + 2ct1
θ3 + 2c

θ4
)
(eθt1 − 1)

+( b

θ2 − a

θ
− 2c

θ3 )t1 + ( c

θ2 − b

2θ
)t2

1 − ct3
1

3θ

]
+ c6µq

[
at1 + bt2

1
2

+ ct3
1

3
]

+c7β2a1(t2 − t1) + δ2(1 − β2)a1
(
t2t1 − t2

2 + t2
1

2
)]

.



1178 M. Pervin, S.K. Roy, G.W. Weber

Now, the total cost for the integrated system becomes

TC = (1 − µ)q
D

[
m(A1 + A2) + m(c1 + c2mq)kt1 + md1

P − k

λ(α)
(eλ(α)t1 − λ(α)t2 − 1)

+ mh1
(λ(α))2

( q

P
+ (1 − µ)q

D

)[
P

[
eλ(α)t1 − λ(α)t1 − 1

]
− 2keλ(α)t1 + kλ(α)t2

]
+c3mµq + α

(λ(α))2

[
P

[
eλ(α)t1 − λ(α)t1 − 1

]
− 2keλ(α)t1 + kλ(α)t2

]
+c4β1

[
a0(t3 − t2) + b0

(t2
3 − t2

2)
2

− c0
(t3

3 − t3
2)

3
]

+ δ1β1(1 − β1)[
a0
2

(
2t2t3 − t2

2 − t2
3
)

+ b0
6

(
3t2

2t3 − 2t3
2 − t3

3
)

+ c0
12

(
t4
3 − 4t3

2t3 + 3t4
2
)]

+qc5
[(a

θ
− b

θ2 + 2c

θ3
)
(eθt1 − 1) +

(bt1 + ct2
1

θ
− 2ct1

θ2
)
eθt1

]
+md2

[(a

θ
− b

θ2 + 2c

θ3
)
(eθt1 − 1) +

(bt1 + ct2
1

θ
− 2ct1

θ2
)
eθt1 −

(
at1 + bt2

1
2

+ ct3
1

3
)]

+(1 − µ)qh2
[(a + bt1 + ct2

1
θ2 − b + 2ct1

θ3 + 2c

θ4
)
(eθt1 − 1) + ( b

θ2 − a

θ
− 2c

θ3 )t1

+( c

θ2 − b

2θ
)t2

1 − ct3
1

3θ

]
+ µqh3

[(a + bt1 + ct2
1

θ2 − b + 2ct1
θ3 + 2c

θ4
)
(eθt1 − 1)

+( b

θ2 − a

θ
− 2c

θ3 )t1 + ( c

θ2 − b

2θ
)t2

1 − ct3
1

3θ

]
+ c6µq

[
at1 + bt2

1
2

+ ct3
1

3
]

+c7β2a1(t2 − t1) + δ2(1 − β2)a1
(
t2t1 − t2

2 + t2
1

2
)]

.

5. Solution procedure
In this section, we establish some theorems to prove the convexity of the cost function

TC(m, α, µ, q) associated to the integrated system.

Theorem 5.1 (and Instruction). When preservation cost α, number of defective items
and size of each order are fixed, then the integrated cost function TC(m, α, µ, q) is convex
with respect to ordering frequency m.

Proof. The first-order partial derivatives of the integrated cost function TC(m, α, µ, q)
with respect to m is given below:

∂TC

∂m
= (A1 + A2) + (c1 + 2c2mq)kt1 + d1

P − k

λ(α)
[
eλ(α)t1 − λ(α)t2 − 1

]
+ h1

(λ(α))2( q

P
+ (1 − µ)q

D

)[
P

[
eλ(α)t1 − λ(α)t1 − 1

]
− 2keλ(α)t1 + kλ(α)t2

]
+ c3µq

+d2

[(a

θ
− b

θ2 + 2c

θ3
)
(eθt1 − 1)

(bt1 + ct2
1

θ
− 2ct1

θ2
)
eθt1 −

(
at1 + bt2

1
2

+ ct3
1

3
)]

.
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Setting ∂T C
∂m = 0 and solving it for optimal m∗, we obtain:

m∗ = d1(k − P )
2c2λ(α)qkt1

[
eλ(α)t1 − λ(α)t2 − 1

]
− c1

2c2q
− A1 + A2

2c2qkt1
+ h1

2c2(λ(α))2qkt1( q

P
+ (1 − µ)q

D

)[
P

[
eλ(α)t1 − λ(α)t1 − 1

]
− 2keλ(α)t1 + kλ(α)t2

]
− c3µ

2c2Dt1
−

d2
2c2qDt1

[(a

θ
− b

θ2 + 2c

θ3
)
(eθt1 − 1) +

(bt1 + ct2
1

θ
− 2ct1

θ2
)
eθt1 −

(
at1 + bt2

1
2

+ ct3
1

3
)]

.

The second-order partial derivatives of the integrated cost function TC(m, α, µ, q) with
respect to m is:

(∂2TC

∂m2 )|m=m∗ = 2c2qkt1 > 0.

Then, we can easily say that m∗ (optimal m, indicating the number of shipment from
vendor to buyer) has to be an integer and determination of the optimal m (i.e., m∗) will
lead us a local optimal solution. It is noticeable that the cost function TC(m, α, µ, q) is a
convex function of m. This completes the proof of the theorem. �

Theorem 5.2 (and Instruction). (i) For a known m and fixed µ and q, TC(m, α, µ, q) is
at its minimum when α∗ = 0.
(ii) For that known m∗, when (∂T C

∂α )|m=m∗ = 0, TC(m, α, µ, q) is convex and has its global
minimum at α∗.

Proof. The first- and second-order partial derivatives of TC(m, α, µ, q) with respect to α
are as follows:

∂TC

∂α
= (1 − µ)q

D

[
md1(P − k) 1

λ(α)
(
δeλ(α)t1 − δλ(α)eλ(α)t1λ0

)]
+ (P − k)mh1

( q

P
+ (1 − µ)q

D

)[ 1
(λ(α))2

(
2δeλ(α)t1 − λ(α)δeλ(α)t1

)
− t2

(λ(α))2 + 2
(λ(α))3

]
+α(P − k)

[ 1
(λ(α))2

(
2δeλ(α)t1 − λ(α)δeλ(α)t1

)
− t2

(λ(α))2 + 2
(λ(α))3

]
,

∂2TC

∂α2 = (1 − µ)q
D

[
md1(P − k)

( 1
λ(α)

(
δ2eλ(α)t1 − δ2λ(α)eλ(α)t1

)
+ δ2λ0λ(α)eλ(α)t1

)]
+(P − k)mh1

( q

P
+ (1 − µ)q

D

)[ 1
(λ(α))3

(
4δ2eλ(α)t1 − 2δ2(λ(α))2eλ(α)t1

)
+ 1

λ(α)

(
δ2λ(α)eλ(α)t1 − δ2eλ(α)t1

)
+ 2t2

(λ(α))3 − 6
(λ(α))4

]
+ α(P − d)[ 1

(λ(α))3

(
4δ2eλ(α)t1 − 2δ2(λ(α))2eλ(α)t1

)
+ 1

λ(α)

(
δ2λ(α)eλ(α)t1 − δ2eλ(α)t1

)
+ 2t2

(λ(α))3 − 6
(λ(α))4

]
.

Let us define

M(α) := (1 − µ)q
D

[
md1(P − k) 1

λ(α)
(
δeλ(α)t1 − δλ(α)eλ(α)t1λ0

)]
+ (P − k)mh1

( q

P
+ (1 − µ)q

D

)[ 1
(λ(α))2

(
2δeλ(α)t1 − λ(α)δeλ(α)t1

)
− t2

(λ(α))2 + 2
(λ(α))3

]
+α(P − k)

[ 1
(λ(α))2

(
2δeλ(α)t1 − λ(α)δeλ(α)t1

)
− t2

(λ(α))2 + 2
(λ(α))3

]
;
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thus,

M ′(α) = (1 − µ)q
D

[
md1(P − k)

λ(α)
(eλ(α)t1

λ(α)
+ 2δ2λ(α)eλ(α)t1λ0 − δλ0eλ(α)t1 − δ2eλ(α)t1big)

]
+

[
(P − k)mh1( q

P
+ (1 − µ)q

D
) + α(P − k)

][ 2
(λ(α))3 (2eλ(α)t1 − λ(α)eλ(α)t1)

+2δ2eλ(α)t1

(λ(α))2 (λ(α) − 1) − 2t2
δ(λ(α))3 + 6

δ(λ(α))4

]
+ (P − k)

[ 1
(λ(α))2(

2δeλ(α)t1 − λ(α)δeλ(α)t1
)

− t2
(λ(α))2 + 2

(λ(α))3

]
.

Therefore, we study on that

M ′(α)|m=m∗ > 0.

Let us introduce,

∆1 := M(α)|α=0 = (1 − µ)q
D

[
md1(P − k) 1

λ0

(
δeλ0t1 − δλ0eλ0t1λ0

)]
+ (P − k)mh1

( q

P
+ (1 − µ)q

D

)[ 1
λ2

0

(
2δeλ0t1 − λ0δeλ0t1

)
− t2

λ2
0

+ 2
λ3

0

]

and

∆2 := M(α)|α=α1 = (1 − µ)q
D

[
md1(P − k) 1

λ(α1)
(
δeλ(α1)t1 − δλ(α1)eλ(α1)t1λ0

)]
+(P − k)mh1

( q

P
+ (1 − µ)q

D

)[ 1
(λ(α1))2

(
2δeλ(α1)t1 − λ(α1)δeλ(α1)t1

)
− t2

(λ(α1))2 + 2
(λ(α1))3

]
+ α1(P − k)

[ 1
(λ(α1))2

(
2δeλ(α1)t1 − λ(α1)δeλ(α1)t1

)
− t2

(λ(α1))2 + 2
(λ(α1))3

]
.

Provided, M ′(α) > 0, hence, M(α) is strictly increasing in α.
Now, it is understandable from the aforementioned observations that:

• If ∆1 ≥ 0 and M(α) ≥ 0 ∀α ∈ [0, α1], then TC(m, α, µ, q) is increasing in α ∈
[0, α1]. Therefore, the optimal preservation cost is α∗ = 0.

• If ∆1 > 0 and ∆2 < 0, then by using Intermediate Value Theorem, we can conclude
that there exists a unique solution α ∈ (0, α1) which satisfies M(α∗) = 0; this
completes the proof.

�

Theorem 5.3 (and Instruction). There exists a unique µ∗ which minimizes the integrated
total cost
TC(m, α, µ, q), when ordering frequency m, ordering size q and preservation cost α are
fixed.
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Proof. The first-order partial derivative of TC(m, α, µ, q) with respect to µ is presented
below:

∂TC

∂µ
=(P − k)mh1

(λ(α))2
(2(µ − 1)q2

D2 − q2

PD

)[
P

[
eλ(α)t1 − λ(α)t1 − 1

]
− 2keλ(α)t1 + kλ(α)t2

]
− q

D

[
m(A1 + A2) + m(c1 + c2mq)kt1 + md1

P − k

λ(α)
(eλ(α)t1 − λ(α)t2 − 1)

]
+ c3mq2(1 − 2µ)

D
− q

D

[
α(P − k)
(λ(α))2

[
P

[
eλ(α)t1 − λ(α)t1 − 1

]
− 2keλ(α)t1 + kλ(α)t2

]
+ c4β1

[
a0(t3 − t2) + b0

(t2
3 − t2

2)
2

− c0
(t3

3 − t3
2)

3
]

+ δ1β1(1 − β1)
[

a0
2

(
2t2t3 − t2

2

− t2
3
)

+ b0
6

(
3t2

2t3 − 2t3
2 − t3

3
)

+ c0
12

(
t4
3 − 4t3

2t3 + 3t4
2
)]]

+ qc5
[(a

θ
− b

θ2

+ 2c

θ3
)
(eθt1 − 1) +

(bt1 + ct2
1

θ
− 2ct1

θ2
)
eθt1

]
+ md2

[(a

θ
− b

θ2 + 2c

θ3
)
(eθt1 − 1)

+
(bt1 + ct2

1
θ

− 2ct1
θ2

)
eθt1 −

(
at1 + bt2

1
2

+ ct3
1

3
)]]

+ 2q2h2(µ − 1)
D2

[(a + bt1 + ct2
1

θ2

− b + 2ct1
θ3 + 2c

θ4
)
(eθt1 − 1) + ( b

θ2 − a

θ
− 2c

θ3 )t1 + ( c

θ2 − b

2θ
)t2

1 − ct3
1

3θ

]
+ q2h3

D
(1 − 2µ)

[(a + bt1 + ct2
1

θ2 − b + 2ct1
θ3 + 2c

θ4
)
(eθt1 − 1) + ( b

θ2 − a

θ
− 2c

θ3 )t1 + ( c

θ2 − b

2θ
)t2

1

− ct3
1

3θ

]
+ c6q2

D
(1 − 2µ)

[
at1 + bt2

1
2

+ ct3
1

3
]

− q

D

[
c7β2a1(t2 − t1)

+ δ2(1 − β2)a1
(
t2t1 − t2

2 + t2
1

2
)]

.

Setting ∂T C
∂µ = 0 and solving it for optimal µ∗, we get

µ∗ = D2(λ(α))2

2q2(P − k)mh1

(
eλ(α)t1 − λ(α)t2 − 1

)−1 − D

2c3mq2 + D2

2q2h2

[(a + bt1 + ct2
1

θ2

− b + 2ct1
θ3 + 2c

θ4
)
(eθt1 − 1) + ( b

θ2 − a

θ
− 2c

θ3 )t1 + ( c

θ2 − b

2θ
)t2

1 − ct3
1

3θ

]
− 2q2h3

D

[(a + bt1 + ct2
1

θ2 − b + 2ct1
θ3 + 2c

θ4
)
(eθt1 − 1) + ( b

θ2 − a

θ
− 2c

θ3 )t1

+ ( c

θ2 − b

2θ
)t2

1 − ct3
1

3θ

]
− 2c6q2

D

[
at1 + bt2

1
2

+ ct3
1

3
]

+ D2(λ(α))2qc5
2q2mh1(P − k)

[(a

θ
− b

θ2 + 2c

θ3
)

(eθt1 − 1) +
(bt1 + ct2

1
θ

− 2ct1
θ2

)
eθt1

]
+ md2

[(a

θ
− b

θ2 + 2c

θ3
)
(eθt1 − 1)

+
(bt1 + ct2

1
θ

− 2ct1
θ2

)
eθt1 −

(
at1 + bt2

1
2

+ ct3
1

3
)]]

.
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Using the value of µ∗ and calculating the second-order partial derivative, we find that

∂2TC

∂µ2 = 2q2(P − D)mh1
D2(λ(α))2

(
eλ(α)t1 − λ(α)t1 − 1

)
− 2c3mq2

D
+ 2q2h2

D2
[(a + bt1 + ct2

1
θ2

−b + 2ct1
θ3 + 2c

θ4
)
(eθt1 − 1) + ( b

θ2 − a

θ
− 2c

θ3 )t1 + ( c

θ2 − b

2θ
)t2

1 − ct3
1

3θ

]
−2q2h3

D

[(a + bt1 + ct2
1

θ2 − b + 2ct1
θ3 + 2c

θ4
)
(eθt1 − 1) + ( b

θ2 − a

θ
− 2c

θ3 )t1

+( c

θ2 − b

2θ
)t2

1 − ct3
1

3θ

]
− 2c6q2

D

[
at1 + bt2

1
2

+ ct3
1

3
]
.

Now,

(∂2TC

∂µ2
)
|(µ = µ∗, α = α∗) > 0.

Then, we can draw the conclusion that µ∗ is the global optimum that minimizes
TC(m, α, µ, q), for fixed values of α, m and q. This completes the proof. �

Theorem 5.4 (and Instruction). The integrated cost function TC(m, α, µ, q) is globally
convex with respect to ordering size q, for fixed m∗, µ∗ and α∗.

Proof. The first- and second-order partial derivatives of TC(m, α, µ, q) with respect to q
are given as follows:

∂TC

∂q
=(1 − µ)m

D
(A1 + A2) + (1 − µ)mt1(c1 + 2c2mq) + (1 − µ)md1(P − k)

Dλ(α)
(
eλ(α)t1

− λ(α)t2 − 1
)

+ (1 − µ)mh1
D(λ(α))2

(2q

P
+ 2q(1 − µ)

D

)[
P

[
eλ(α)t1 − λ(α)t1 − 1

]
− 2keλ(α)t1

+ kλ(α)t2

]
+ 2q(1 − µ)c3mµ

D
+ (1 − µ)α(P − k)

D(λ(α))2

[
P

[
eλ(α)t1 − λ(α)t1 − 1

]
− 2keλ(α)t1 + kλ(α)t2

]
+ (1 − µ)c4β1

D
[a0(t3 − t2) + b0

(t2
3 − t2

2)
2

− c0
(t3

3 − t3
2)

3
]

+ (1 − µ)
D

δ1β1(1 − β1)
[

a0
2

(
2t2t3 − t2

2 − t2
3
)

+ b0
6

(
3t2

2t3 − 2t3
2 − t3

3
)

+ c0
12

(
t4
3 − 4t3

2t3 + 3t4
2
)]

+ 2q(1 − µ)c5
D

[(a

θ
− b

θ2 + 2c

θ3
)
(eθt1 − 1)

+
(bt1 + ct2

1
θ

− 2ct1
θ2

)
eθt1

]
+ (1 − µ)md2

D
+

[(a

θ
− b

θ2 + 2c

θ3
)
(eθt1 − 1)

+
(bt1 + ct2

1
θ

− 2ct1
θ2

)
eθt1 −

(
at1 + bt2

1
2

+ ct3
1

3
)]

+ 2q(1 − µ)2h2
D

[(a + bt1 + ct2
1

θ2

− b + 2ct1
θ3 + 2c

θ4
)
(eθt1 − 1) + ( b

θ2 − a

θ
− 2c

θ3 )t1 + ( c

θ2 − b

2θ
)t2

1 − ct3
1

3θ

]
+ 2q(1 − µ)µh3

D

[(a + bt1 + ct2
1

θ2 − b + 2ct1
θ3 + 2c

θ4
)
(eθt1 − 1)

+ ( b

θ2 − a

θ
− 2c

θ3 )t1 + ( c

θ2 − b

2θ
)t2

1 − ct3
1

3θ

]
+ 2q(1 − µ)µc6

D

[
at1 + bt2

1
2

+ ct3
1

3
]

+ α

(λ(α))2

[
P

[
eλ(α)t1 − λ(α)t1 − 1

]
− 2keλ(α)t1 + kλ(α)t2

]
+ (1 − µ)

D

[
c7β2a1(t2 − t1) + δ2(1 − β2)a1

(
t2t1 − t2

2 + t2
1

2
)]

,
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∂2TC

∂q2 =2c2(1 − µ)m2t1 + (1 − µ)(P − k)mh1
D(λ(α))2

( 2
P

+ 2(1 − µ)
D

)(
eλ(α)t1 − λ(α)t2 − 1

)
+ 2(1 − µ)c3mµ

D
+ 2(1 − µ)c5

D

[(a

θ
− b

θ2 + 2c

θ3
)
(eθt1 − 1) +

(bt1 + ct2
1

θ
− 2ct1

θ2
)
eθt1

]
+ 2(1 − µ)2h2

D

[(a + bt1 + ct2
1

θ2 − b + 2ct1
θ3 + 2c

θ4
)
(eθt1 − 1) + ( b

θ2 − a

θ
− 2c

θ3 )t1

+ ( c

θ2 − b

2θ
)t2

1 − ct3
1

3θ

]
+ 2(1 − µ)µh3

D

[(a + bt1 + ct2
1

θ2 − b + 2ct1
θ3 + 2c

θ4
)
(eθt1 − 1)

+ ( b

θ2 − a

θ
− 2c

θ3 )t1 + ( c

θ2 − b

2θ
)t2

1 − ct3
1

3θ

]
+ 2(1 − µ)c6µ

D

[
at1 + bt2

1
2

+ ct3
1

3
]
.

We can see that ∂2T C
∂q2 > 0 by inserting the values of m∗, µ∗ and α∗. Hence, we can easily

conclude that TC(m, α, µ, q) is a strictly convex function of q; in fact, there is a global
strict convexity. This completes the proof. �

Note. We would like to emphasize that Theorems 5.1-5.4 altogether establish and serve
as one Multi-Level Procedure. This algorithm has successfully been applied in our applica-
tions. To give a higher accuracy to this procedure, both analytically and algorithmically,
Implicit Functions (or their approximations) will need to be computed, at anyone of the
levels and inserted into the objective function at the following level. However, analytically
or numerically, finding those Implicit Functions and working further with them strongly
increases the complexity and computational expense of our method. We have studied on
this fact, and plan to include this Implicit Functions approach in future applications for
special cases, i.e., in less general problem classes.

6. Numerical examples
In this section, we solve three problems to give a realistic sense of our proposed model.

The numerical data are taken randomly and are validated by using Mathematica with a
suitable graph.

Example 6.1. Let us assume: A1 = $100/order, A2 = $200/order, λ0 = 0.05, T =
2 years, c1 = $20/unit, c2 = $15/unit, c3 = $50/unit, c4 = $5/unit/year, d1 = $40/unit,
h1 = $50/unit/year, δ = 0.5, δ1 = $10/order, c5 = $30/unit/year, c6 = $5/unit/year, c7 =
$8/unit/year, d2 = $36/unit, h2 = $30/unit/year, h3 = $70/unit/year, δ2 = $10/order.
Then, using Mathematica 9.0, we calculate the values of m for which the integrated cost is
minimal. We observe from Table 2 that the integrated cost is at its minimum for m = 4.
Therefore, for m = 4, we obtain α∗ = 1.8322, µ∗ = 21.8719, q = 49.1027, VT = 6674.25,
BT = 5940.36 and TC = 4562.91.

Example 6.2. In this example, we use the same parametric values as above. But, here
we consider the case when preservation technology is not allowed. Therefore, the data
are: A1 = $100/order, A2 = $200/order, T = 2 years, c1 = $20/unit, c2 = $15/unit, c3 =
$50/unit, c4 = $5/unit/year, d1 = $40/unit, h1 = $50/unit/year, δ1 = $10/order, c5 =
$30/unit/year, c6 = $5/unit/year, c7 = $8/unit/year, d2 = $36/unit, h2 = $30/unit/year,
h3 = $70/unit/year, δ2 = $10/order. Here, we assume: m = 4, µ∗ = 21.8719 and q =
49.1027. Then, with the help of Mathematica 9.0, we derive VT = 8526.17, BT = 6137.40
and TC = 5628.54.

Example 6.3. Now, we recall the same data as in Example 6.1, except that the buyer
does not allow an inspection policy on defective items. Then, the required data are: A1 =
$100/order, A2 = $200/order, T = 2 years, c1 = $20/unit, c2 = $15/unit, c3 = $50/unit,
c4 = $5/unit/year, λ0 = 0.05, d1 = $40/unit, h1 = $50/unit/year, δ1 = $10/order,
c7 = $8/unit/year, δ = 0.5, d2 = $36/unit, h2 = $30/unit/year, h3 = $70/unit/year,
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δ2 = $10/order. We also employ m = 4, α∗ = 1.8322, µ∗ = 21.8719 and q = 49.1027.
By using Mathematica 9.0, we work out the result as VT = 6772.15, BT = 7308.49 and
TC = 5822.30.

Table 2: Computational result.
Bold style represents the optimal solution.

m α∗ µ∗ q VT BT TC
1 1.5180 20.3428 45.6251 7225.11 6538.60 5341.05
2 1.6350 20.7926 46.5729 7618.64 6945.68 5720.83
3 1.7287 21.2476 47.6243 6927.51 6108.47 4971.27
4 1.8322 21.8719 49.1027 6674.25 5940.36 4562.91
5 1.9537 22.6773 49.6432 7180.49 6374.12 4833.75
6 2.1047 22.9844 50.5216 7319.37 6618.81 5079.14
7 2.2154 23.3560 51.2784 7538.06 6817.25 5146.36
8 2.3748 23.7836 51.7341 7726.92 7026.57 5268.60
9 2.4476 24.2608 52.3908 7941.85 7146.72 5432.47
10 2.5037 24.5738 52.8903 8047.20 7328.08 4793.91
11 2.6350 24.8902 53.2617 7841.39 7235.55 5327.79
12 2.8141 25.5437 53.5739 8140.59 7418.93 5542.82

7. Sensitivity analysis
We now analyze the effects of changes in the system parameters c2, c3, d1, δ1, h1, c5,

c6, d2, h2, h3, δ2 on the optimal values of α∗, µ∗ and the optimal cost TC. The sensitivity
analysis is performed by changing each of the parameters by +50%, +20%, -20% and
-50%, taking one parameter at a time and keeping the remaining parameters unchanged.
The results based on Example 6.1 are shown in Table 3 and, on the basis of these results,
the following observations are achieved:

(i) TC∗ increases moderately with an increase of the vendor’s variable transporting
cost c2 and treatment cost c3.

(ii) TC∗ is more sensitive with regard to change of the values of buyer’s inspection
cost c5 and penalty cost c6.

(iii) When the holding cost for both vendor and buyer (h1, h2, h3) increases, then the
optimal cost TC∗ for the integrated system also increases.

(iv) The value of TC∗ increases with an increase of the value of vendor’s backorder
cost δ1 and buyer’s lost sale cost δ2.

(v) When the deterioration costs d1 and d2 for vendor and buyer decrease, then the
integrated cost TC∗ decreases, respectively.

Based on Table 3, the following managerial insights are settled:
(a) The preservation technology cost is enhanced by increasing the values of λ0 and h1.

This implies that when the initial deterioration rate is very high, then the vendor
spends more to reduce the deterioration cost. But, when the deterioration rate is
very low, then it will be more beneficial if the vendor does not imply a preservation
technology. If the holding cost is very high, then the vendor can reduce the cost
by ordering more frequently rather than spending on preservation technology.

(b) In all the above cases, if the vendor and buyer invest jointly, then the integrated
cost will decrease, which helps to increase the profit of the system.

(c) A higher percentage of defective items in the system will rise the total of the
system during each production cycle. At the same time, the number of shipments
for repairing damageable items from the buyer to the vendor per lot becomes
higher, and also the shipment size increases, which will cause a loss for the buyer.
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Figure 3. The convexity of the integrated cost function when m = 4. Included
are µ∗, α∗ and the integrated cost TC, along the x-axis, the y-axis and the z-axis,
respectively.

Therefore, an inspection policy indirectly helps the buyer to maintain the quality
and increase the profit.

(d) It is also found that for low backorder cost, it will be beneficial for the inventory
manager to offer the customers a high discount on backorders.

(e) Since preservation technology is applied by the vendor, then the deterioration rate
will be lower for the buyer. Therefore, the buyer will order a quite significant
amount at a time to reduce the transportation cost.

(f) The model will be applied for perishable food products if the production rate be
variable and to be controlled and in that case the assumption that the vendor will
doubles the production rate in shortage period should not be applicable. Also, if
the products has a short shelf-life, it will be economical for the vendor to extend the
expiration date by applying preservation technology through handling, packaging
and storing.

Figure 3 shows the required inventory model based on our sensitivity analysis. The func-
tion displayed here is of a strictly convex nature. This is fully consistent with our assump-
tions. Herewith, Figure 3 indicates the feasibility and stability of our offered model.
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Table 3: Sensitivity analysis for different parameter values involved in Example 6.1.
Parameter % change value α∗ µ∗ T C∗

+50 22.5 2.5479 23.3110 5714.25
+20 18 2.3106 22.9257 5228.04

c2 -20 12 1.8762 22.3518 4832.91
-50 7.5 1.5824 21.7997 4586.37
+50 75 3.6400 25.7508 6722.00
+20 60 3.2681 24.5917 6469.74

c3 -20 40 2.8930 23.7240 6153.79
-50 25 2.6318 22.8637 5709.31
+50 60 2.7380 23.9463 5438.50
+20 48 2.5692 23.7259 5243.16

d1 -20 32 2.2435 23.4479 4973.68
-50 20 2.0038 23.2108 4784.35
+50 15 2.4739 22.8562 5522.24
+20 12 2.3392 22.7167 5317.48

δ1 -20 8 2.2014 22.5874 5197.57
-50 5 2.1503 22.3240 4956.33
+50 75 2.9871 23.8241 5735.72
+20 60 2.7432 23.6735 5523.01

h1 -20 40 2.5527 23.4106 5371.59
-50 25 2.3861 23.2729 5181.46
+50 45 2.7560 23.5307 5432.88
+20 36 2.6178 23.4119 5394.56

c5 -20 24 2.5448 23.3627 5245.15
-50 15 2.4610 23.2193 5174.38
+50 7.5 1.9142 22.095 4867.56
+20 6 1.8370 21.8305 4760.64

c6 -20 4 1.7552 21.5286 4692.21
-50 2.5 1.6867 21.2912 4576.49
+50 54 2.1770 22.8642 5381.06
+20 43.2 1.8913 22.3473 5247.38

d2 -20 28.8 21.9867 23.3627 5160.54
-50 18 1.5938 21.4654 5050.46
+50 45 2.5816 23.2100 5866.29
+20 36 2.4350 22.8739 5708.16

h2 -20 24 2.3864 22.1563 5581.73
-50 15 2.2853 21.7469 5433.41
+50 105 3.8945 24.4610 6510.95
+20 84 3.7058 24.2734 6435.64

h3 -20 56 3.6467 24.0389 6372.46
-50 35 3.5329 23.9113 6121.53
+50 15 2.5123 22.7901 5943.00
+20 12 2.4042 22.6536 5810.91

δ2 -20 8 2.2639 22.5407 5782.65
-50 5 2.1971 22.4632 5683.39
+50 0.75 2.8917 22.8601 6112.46
+20 0.6 2.769 22.7311 5950.79

δ -20 0.4 2.652 22.6918 5822.37
-50 0.25 2.508 22.5740 5763.28
+50 0.075 3.125 25.1423 6112.05
+20 0.06 2.979 24.9050 5920.00

λ0 -20 0.04 2.834 24.8247 5724.64
-50 0.025 2.790 24.7339 5594.83

8. Concluding remarks and future study
In this paper, we have formulated an integrated vendor-buyer model with quadratic

demand under inspection policy and preservation technology. The system is considered
for both vendor and buyer, and it follows our integrated model. The vendor applies the
preservation technology to reduce the loss due to deterioration. However, it is observable
from the model that while the initial deterioration rate is very low, spending money on
preservation technology will not be beneficial. It is also worth mentioning that if there
exists a budget on the investment capital, then there will be a possibility to acquire more
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profit for that organization. The buyer assumes an inspection policy for defective items
and the defective items are returned to the vendor for further reparation. The inspection
policy is taken by buyer not by vendor because the supplied perfect items can be broken
or defective at transportation time. For this reason, the inspection policy taken by buyer
will be more effective than vendor and it will also results to increase the integrated profit.
Initially, there seems to be a high loss of money; but from our model one can recognize
that investing money on inspection policy even improves the production process quality.
However, if the buyer’s inspection cost is very high, then the buyer does not inspect the
received items. Quadratic increasing or decreasing demand is considered for vendor or
buyer model because quadratic demand represents both retarded and accelerated growth
in demand with respect to time. Also, the most realistic assumptions for cosmetic, seasonal
fashion items or high-tech products is appropriately presented by quadratic demand. Two
different type of demands are allowed for vendor and buyer model because it covers a
vast area of the practical amplified demand function and also helps a company to handle
different type of demand faced from real ground. It is also noticeable from our analysis
that if vendor and buyer agree on a jointly investment, then the model easily improves
the production process.

Our main contributions to literature and to managerial practice are summarized as
follows: (i) This paper addresses a preservation technology for deteriorated items and
inspection policy for defective items in an integrated model, which was rarely considered
in the existing literature. (ii) We develop some useful theorems and prove them for de-
termining the unique optimal solution. (iii) We find that by applying the preservation
technology, we can reduce the deterioration rate which increases the total profit for the
system. (iv) The model allows for a conclusion that when the buyer follows an inspection
policy, it is more profitable to increase the production, while maintaining the quality. (v)
Lastly, the model shows that joint investment for vendor and buyer will decrease the cost
and increase the profit for the producer.

Regarding further research, we may consider multiple items with multiple replenishment
cycles under stochastic demand constraint. For an even more practical situation, one can
construct the model by introducing warehouses, quantity discounts, stochastic inflation,
deteriorating cost, time-dependent deterioration rate and permissible delay in payments
and demand under uncertainty. Consideration of a model with dynamic preservation tech-
nology and limited capacity of shelf space will mean another potential extension of our
paper. This research can also be continued by inserting unit purchase cost, inventory
holding cost and other related factors as time dependent instead of constant. We can also
add Collaborative Game Theory by utilizing the model given by Palanci et al. [16] for
a more extension of this work. Finally, the model will permit an interesting direction of
investigation by incorporating variable or stochastic inflation and time value of money,
and with an additional impact by selling defective items at a lower price on demand.
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