On K-pseudoframes for subspaces

Hamide Azarmi(©), Mohammad Janfada* (D), Rajab Ali Kamyabi-Gol©
Department of Pure Mathematics, Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad 91775, Iran

Abstract

In this paper, the concept of K-pseudoframes for subspaces of Hilbert spaces, as a generalization of both K-frames and pseudoframes, is introduced and some of their properties and their characterizations are investigated. Next, duals of K-pseudoframes are discussed. Finally, the concept of pseudoatomic system is introduced and its relations with K-pseudoframe are studied.

Mathematics Subject Classification (2010). 42C15, 47A05
Keywords. K-pseudoframe, K-pseudoatomic system, K-exact pseudoframe

1. Introduction

Frames in Hilbert spaces were first proposed by Duffin and Schaeffer to deal with nonharmonic Fourier series in 1952 [6], and were widely studied from 1986 since the great work by Daubechies et al. [4].

For special applications some types of frames were proposed, such as the fusion frames $[2,3]$ to deal with hierarchical data processing, g-frames [12] by Eldar, K-frames [7] by Găvruţa to study the atomic systems with respect to a bounded linear operator K in Hilbert spaces. From [7], we know that K-frames are more general than ordinary frames in the sense that the lower frame bound only holds for the elements in the range of K. Many properties for ordinary frames may not hold for K-frames, such as the corresponding synthesis operator for K-frames is not surjective, the frame operator for K-frames is not isomorphic for all $f \in \mathcal{H}$, the alternate dual reconstruction pair for K-frames is not interchangeable in general (see Example 3.2 in [13]). The concept of pseudoframe for subspaces was introduced by Li [11]. This sequences can go beyond a concerned subspace $X \subset \mathcal{H}$.
In Section 2, we review some of the standard facts on pseudoframes, K-frames and atomic systems. Section 3 contains our main results on a generalization of both pseudoframes and K-frames, namely K-pseudoframes. In the last section, we introduce the concept of pseudoatomic system and we discuss some relations between K-pseudoframes and pseudoatomic systems.

[^0]
2. Preliminary

In this section, we recall some necessary concepts for our main results.
Let \mathcal{H} be a separable Hilbert space and \mathcal{X} be a closed subspace of \mathcal{H}. Also let P_{x} be the orthogonal projection on \mathcal{X}. We denote by $B(\mathcal{H}, \mathcal{K})$ the set of all bounded linear operators from \mathcal{H} into a Hilbert space \mathcal{K} and we abbreviate $B(\mathcal{H}, \mathcal{H})$ by $B(\mathcal{H})$. For $K \in B(\mathcal{H}, \mathcal{K})$ let $R(K)$ denotes the range of K. Also we apply K^{\dagger} for the pseudoinverse of K (if exists).

Let $\mathbb{J} \subseteq \mathbb{Z}$. A sequence $\left\{x_{n}\right\}_{n \in \mathbb{J}}$ is a Bessel sequence in \mathcal{H} if there is a constant $M<\infty$ such that

$$
\sum_{n \in \mathbb{J}}\left|\left\langle f, x_{n}\right\rangle\right|^{2} \leq M\|f\|^{2}, \quad(f \in \mathcal{H})
$$

We shall say that $\left\{x_{n}\right\}_{n \in \mathbb{J}}$ is a Bessel sequence with respect to a closed subspace X of \mathcal{H} if there is a constant $M<\infty$ such that

$$
\sum_{n \in \mathbb{J}}\left|\left\langle f, x_{n}\right\rangle\right|^{2} \leq M\|f\|^{2}, \quad(f \in X) .
$$

Definition 2.1. ([10]) Let $\left\{x_{n}\right\}_{n \in \mathbb{J}}$ and $\left\{x_{n}^{*}\right\}_{n \in \mathbb{J}}$ be two sequences in \mathcal{H}. We say $\left\{x_{n}\right\}_{n \in \mathbb{J}}$ is a pseudoframe for the subspace X with respect to $\left\{x_{n}^{*}\right\}_{n \in \mathbb{J}}$ if

$$
f=\sum_{n \in \mathbb{J}}\left\langle f, x_{n}^{*}\right\rangle x_{n}, \quad(f \in \mathcal{X}) .
$$

This definition is not symmetric (see [10]), i.e., there exists $f \in X$ such that

$$
\sum_{n \in \mathbb{J}}\left\langle f, x_{n}^{*}\right\rangle x_{n} \neq \sum_{n \in \mathbb{J}}\left\langle f, x_{n}\right\rangle x_{n}^{*} .
$$

The sequence $\left\{x_{n}^{*}\right\}_{n \in J}$ is called a dual pseudoframe of $\left\{x_{n}\right\}_{n \in \mathbb{J}}$.
Let $x^{*}=\left\{x_{n}^{*}\right\}_{n \in \mathbb{J}}$ be a Bessel sequence with respect to X and $x=\left\{x_{n}\right\}_{n \in \mathbb{J}}$ be a Bessel sequence in \mathcal{H}. Define

$$
\begin{equation*}
U_{x^{*}}: X \longrightarrow l^{2}(\mathbb{J}), U f=\left\{\left\langle f, x_{n}^{*}\right\rangle\right\}_{n \in \mathbb{J}}, \quad(f \in \mathcal{X}) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{x}: l^{2}(\mathbb{J}) \longrightarrow \mathcal{H}, V\left(\left\{c_{n}\right\}_{n \in \mathbb{J}}\right)=\sum_{n \in \mathbb{J}} c_{n} x_{n}, \quad\left(\left\{c_{n}\right\}_{n \in \mathbb{J}} \in l^{2}(\mathbb{J})\right) . \tag{2.2}
\end{equation*}
$$

Then $\left\{x_{n}\right\}_{n \in \mathbb{J}}$ is a pseudoframe with respect to $\left\{x_{n}^{*}\right\}_{n}$ if and only if

$$
V_{x} U_{x^{*}} P_{x}=P_{x} .
$$

For more details see [11].
Now let us remind the concepts of K-frame, the atomic system of K, K-exact frame and K-minimal frame for $K \in B(\mathcal{H})$.
Definition 2.2. ([7]) A sequence $\left\{x_{n}\right\}_{n \in \mathbb{J}} \subseteq \mathcal{H}$ is called a K-frame for $\mathcal{X} \subseteq \mathcal{H}$, if there exist constants $A, B>0$ such that

$$
A\left\|K^{*} f\right\|^{2} \leq \sum_{n \in \mathbb{J}}\left|\left\langle f, x_{n}\right\rangle\right|^{2} \leq B\|f\|^{2}, \quad(f \in \mathcal{H}) .
$$

We call A and B the lower and the upper frame bounds for the K-frame $\left\{x_{n}\right\}_{n \in \mathbb{J}}$, respectively. Obviously if $K=I$, then the K-frame is the ordinary frame [13].

Definition 2.3. Let $\left\{x_{n}\right\}_{n \in \mathbb{J}}$ be a K-frame. A Bessel sequence $\left\{x_{n}^{*}\right\}_{n \in \mathbb{J}} \subseteq \mathcal{H}$ is called a K-dual of $\left\{x_{n}\right\}_{n \in J}$ if

$$
K f=\sum_{n \in \mathbb{J}}\left\langle f, x_{n}^{*}\right\rangle x_{n}, \quad(f \in \mathcal{H}) .
$$

For more details see [1].

Definition 2.4. A sequence $\left\{x_{n}\right\}_{n \in \mathbb{J}}$ is called an atomic system for K, if the following conditions are satisfied
(i) The sequence $\left\{x_{n}\right\}_{n \in \mathbb{J}}$ is a Bessel sequence;
(ii) For any $x \in \mathcal{H}$, there exists $a_{x}=\left\{a_{n}\right\}_{n \in \mathbb{J}} \in l^{2}(\mathbb{J})$ such that $K x=\sum_{n \in \mathbb{J}} a_{n} x_{n}$, where $\left\|a_{x}\right\|_{l^{2}(\mathbb{J})} \leq C\|x\|, C$ is a positive constant independently of x.
In Theorem 3.1 of [13], it is shown that $\left\{x_{n}\right\}_{n \in \mathbb{J}}$ is an atomic system for K if and only if $\left\{x_{n}\right\}_{n \in \mathbb{J}}$ is a K-frame for \mathcal{H}.
Definition 2.5. A K-frame $\left\{x_{n}\right\}_{n \in \mathbb{J}}$ of \mathcal{H} is called
(i) K-exact frame if for every j the sequence $\left\{x_{n}\right\}_{n \neq j}$ is not a K-frame for \mathcal{H},
(ii) K-minimal frame whenever for each $\left\{c_{n}\right\}_{n \in \mathbb{J}} \in l^{2}(\mathbb{J})$ with $\sum_{n \in \mathbb{J}} c_{n} x_{n}=0$ we get $c_{n}=0$ for all n.

Note that every K-exact frame is a K-minimal frame [1].
We need the following theorem for our next section.
Theorem 2.6. (Douglas Theorem) [5] Let $\mathcal{H}, \mathcal{H}_{1}$ and \mathcal{H}_{2} be Hilbert spaces. For any bounded linear operators $L_{1} \in B\left(\mathcal{H}_{1}, \mathcal{H}\right)$ and $L_{2} \in B\left(\mathcal{H}_{2}, \mathcal{H}\right)$, the following statements are equivalent
(i) $R\left(L_{1}\right) \subseteq R\left(L_{2}\right)$;
(ii) $L_{1} L_{1}^{*} \leq \lambda^{2} L_{2} L_{2}^{*}$ for some $\lambda \geq 0$ and
(iii) there exists a bounded operator $M \in B\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)$ so that $L_{1}=L_{2} M$.

For more results on K-frames, see $[8,9]$.

3. K-pseudoframe for subspaces

In this section, we define the concept of K-pseudoframes and after making an operator type equivalent condition, we give some properties of K-pseudoframes for subspaces. Also a characterization of K-dual pseudoframe is presented. Next a complete sequence in \mathcal{H} with respect to \mathcal{X} is introduced and its relations with K-pseudoframe and K-dual pseudoframe are studied.

Definition 3.1. Let X be a closed subspace of \mathcal{H} and $K \in B(\mathcal{H})$. Let $\left\{x_{n}\right\}_{n \in \mathbb{J}}$ and $\left\{x_{n}^{*}\right\}_{n \in \mathbb{J}}$ be sequences in \mathcal{H}. We say $\left\{x_{n}\right\}_{n \in \mathbb{J}}$ is a K-pseudoframe for the subspace X with respect to $\left\{x_{n}^{*}\right\}_{n \in J}$ if

$$
\begin{equation*}
K f=\sum_{n \in \mathbb{J}}\left\langle f, x_{n}^{*}\right\rangle x_{n}, \quad(f \in \mathcal{X}) . \tag{3.1}
\end{equation*}
$$

In general, for a K-frame $\left\{f_{n}\right\}_{n \in \mathbb{J}}$ we know that if $K f=\sum_{n \in \mathbb{J}}\left\langle f, g_{n}\right\rangle f_{n}$, then $K^{*} f=$ $\sum_{n \in \mathbb{J}}\left\langle f, f_{n}\right\rangle g_{n}$ for all $f \in \mathcal{H}$ (see [1]). Also for a pseudoframe $\left\{x_{n}\right\}_{n \in \mathbb{J}}$ with respect to $\left\{x_{n}^{*}\right\}_{n \in \mathbb{J}}$ it is well known that $\left.f=\sum_{n \in \mathbb{J}} \backslash f, x_{n}^{*}\right\rangle x_{n}$ dose not imply that $f=\sum_{n \in \mathbb{J}}\left\langle f, x_{n}\right\rangle x_{n}^{*}$, for any $f \in \mathcal{X}$.

Definition 3.2. Let $\left\{x_{n}\right\}_{n \in \mathbb{J}}$ is a K-pseudoframe for \mathcal{X} with respect to $\left\{x_{n}^{*}\right\}_{n \in J}$. We say that $\left\{x_{n}\right\}_{n \in \mathbb{J}}$ is interchangeable with $\left\{x_{n}^{*}\right\}_{n \in \mathbb{J}}$ for K if

$$
K^{*} f=\sum_{n \in \mathbb{J}}\left\langle f, x_{n}\right\rangle x_{n}^{*}, \quad(f \in \mathcal{X}) .
$$

Remark 3.3. Let $\left\{x_{n}\right\}_{n \in \mathbb{J}}$ be an interchangeable K-pseudoframe with respect to $\left\{x_{n}^{*}\right\}_{n \in \mathbb{J}}$. If $\mathcal{X}=\mathcal{H}$, then $\left\{x_{n}\right\}_{n \in \mathbb{J}}$ and $\left\{x_{n}^{*}\right\}_{n \in \mathbb{J}}$ are two atomic systems [7], so they are K-frames.

One can easily see that $\left\{x_{n}\right\}_{n \in \mathbb{J}}$ is a K-pseudoframe for X with respect to $\left\{x_{n}^{*}\right\}_{n \in \mathbb{J}}$ if and only if $V_{x} U_{x^{*}} P_{x}=K P_{x}$, where $U_{x^{*}}$ and V_{x} are defined as (2.1) and (2.2).
In the following theorem we construct some K-pseudoframe for a Bessel sequence.

Theorem 3.4. Let $x=\left\{x_{n}\right\}_{n \in \mathbb{J}}$ be a Bessel sequence in $\mathcal{H}, K \in B(\mathcal{H})$, X be a closed subspace of \mathcal{H} and $K(X) \subseteq X$. If $X \subseteq \overline{\operatorname{span}}\left\{x_{n}: n \in \mathbb{J}\right\}$ and $R\left(V_{x}\right)$ is closed, then the set of all linear operators $U: X \longrightarrow l^{2}(\mathbb{J})$ satisfying $V_{x} U P_{X}=K P_{X}$ is given by

$$
\begin{equation*}
U=V_{x}^{\dagger} K P_{x}+W-V_{x}^{\dagger} V_{x} W P_{x} \tag{3.2}
\end{equation*}
$$

where V_{x}^{\dagger} is the pseudoinverse of V_{x}, and $W: l^{2}(\mathbb{J}) \longrightarrow \mathcal{H}$ is a bounded linear operator. Moreover, let U be given by (3.2), then $\left\{x_{n}^{*}=U^{*} e_{n}\right\}_{n \in \mathbb{J}}$ is a dual K-pseudoframe for \mathcal{X} with respect to $\left\{x_{n}\right\}_{n \in \mathbb{J}}$, where $\left\{e_{n}\right\}_{n \in \mathbb{J}}$ is the standard orthonormal basis for $l^{2}(\mathbb{J})$.
Proof. Since $R\left(V_{x}\right)$ is closed, the pseudoframe V_{x}^{\dagger} of V_{x} exists and $V_{x} V_{x}^{\dagger}=P_{R\left(V_{x}\right)}$, where $P_{R\left(V_{x}\right)}$ stands for the orthogonal projection onto $R\left(V_{x}\right)$. It follows that, with U as in (3.2),

$$
\begin{aligned}
V_{x} U P_{x} & =V_{x}\left(V_{x}^{\dagger} K P_{x}+W-V_{x}^{\dagger} V_{x} W P_{x}\right) P_{x} \\
& =V_{x} V_{x}^{\dagger} K P_{x}^{2}+V_{x} W P_{x}-V_{x} V_{x}^{\dagger} V_{x} W P_{x}^{2} \\
& =P_{R\left(V_{x}\right)} K P_{x}+V_{x} W P_{x}-V_{x} W P_{x} \\
& =P_{R\left(V_{x}\right)} P_{x} K=P_{x} K=K P_{x}
\end{aligned}
$$

Now let $U: X \longrightarrow l^{2}(\mathbb{J})$ satisfies $V_{x} U P_{x}=K P_{x}$. Letting $W=U$ we get

$$
\begin{aligned}
V_{x}^{\dagger} K P_{x}+W-V_{x}^{\dagger} V_{x} W P_{x} & =V_{x}^{\dagger} K P_{x}+U-V_{x}^{\dagger} V_{x} U P_{x} \\
& =V_{x}^{\dagger} K P_{x}+U-V_{x}^{\dagger} K P_{x} \\
& =U .
\end{aligned}
$$

For the last part of theorem, let $x_{n}^{*}:=U^{*} e_{n}$ then for all $f \in \mathcal{H}$ we have

$$
\begin{aligned}
\sum_{n \in \mathbb{J}}\left\langle P_{x} f, x_{n}^{*}\right\rangle x_{n} & =\sum_{n \in \mathbb{J}}\left\langle P_{x} f, U^{*} e_{n}\right\rangle x_{n} \\
& =\sum_{n \in \mathbb{J}}\left\langle U P_{x} f, e_{n}\right\rangle x_{n} \\
& =\sum_{n \in \mathbb{J}}\left(U P_{x} f\right)(n) x_{n} \\
& =V_{x} U P_{x} f \\
& =K P_{x}
\end{aligned}
$$

In Theorem 3.4, we characterized all operators U satisfying $V_{x} U P_{x}=K P_{x}$. Now for a given $\left\{x_{n}^{*}\right\}_{n \in \mathbb{J}}$ we are going to characterize all operators V which satisfies $V U_{x^{*}} P x=K P_{x}$.

Theorem 3.5. Let $x^{*}=\left\{x_{n}^{*}\right\}_{n \in \mathbb{J}}$ be a Bessel sequence with respect to X such that $P_{x}\left(\overline{\operatorname{span}}\left\{x_{n}^{*}: n \in \mathbb{J}\right\}\right)=X$. If $R\left(U_{x^{*}} P_{x}\right)$ is closed and K is a bounded operator such that $K(\mathcal{X}) \subseteq X$, then the class of all operators satisfying $V U_{x^{*}} P_{X}=K P_{X}$ is given by

$$
\begin{equation*}
V=K\left(U_{x^{*}} P_{x}\right)^{\dagger}+W\left(I-U_{x^{*}} P_{x}\left(U_{x^{*}} P_{x}\right)^{\dagger}\right) \tag{3.3}
\end{equation*}
$$

Also $\left\{x_{n}\right\}_{n \in \mathbb{J}}:=\left\{V e_{n}\right\}_{n \in \mathbb{J}}$ is a K-dual pseudoframe for X with respect to $\left\{x_{n}^{*}\right\}_{n \in \mathbb{J}}$.
Proof. Since $R\left(U_{x^{*}} P_{x}\right)$ is closed the pseudoinverse $\left(U_{x^{*}} P_{x}\right)^{\dagger}$ exists.
Thus

$$
\begin{aligned}
V U_{x^{*}} P_{x} & =\left(K\left(U_{x^{*}} P_{x}\right)^{\dagger}+W\left(I-U_{x^{*}} P_{x}\left(U_{x^{*}} P_{x}\right)^{\dagger}\right)\right)\left(U_{x^{*}} P_{x}\right) \\
& =K\left(U_{x^{*}} P_{x}\right)^{\dagger} U_{x^{*}} P_{x}+W\left(I-U_{x^{*}} P_{x}\left(U_{x^{*}} P_{x}\right)^{\dagger}\right) U_{x^{*}} P_{x} \\
& =K\left(U_{x^{*}} P_{x}\right)^{\dagger}\left(U_{x^{*}} P_{x}\right)+W U_{x^{*}} P_{x}-W U_{x^{*}} P_{x} \\
& =K\left(U_{x^{*}} P_{x}\right)^{\dagger}\left(U_{x^{*}} P_{x}\right)=K P_{x}
\end{aligned}
$$

If $x_{n}:=V e_{n}$, then similar to the proof of Theorem 3.4, we obtain $\sum_{n \in \mathbb{J}}\left\langle P_{x} f, x_{n}^{*}\right\rangle x_{n}=$ $V U_{x^{*}} P_{x} f$.

Proposition 3.6. Let $\left\{x_{n}\right\}_{n \in \mathbb{J}}$ be a pseudoframe for \mathcal{X} with respect to $\left\{x_{n}^{*}\right\}_{n \in \mathbb{J}}$ and $K \in$ $B(\mathcal{H})$.
(i) If $K(X) \subseteq X$, then $\left\{x_{n}\right\}_{n \in \mathbb{J}}$ is a K-pseudoframe for X with respect to $\left\{K^{*} x_{n}^{*}\right\}_{n \in \mathbb{J}}$.
(ii) If $R\left(K^{*}\right)$ is closed and $\left\{x_{n}^{*}\right\}_{n \in \mathbb{J}} \subseteq R\left(K^{*}\right)$, then $\left\{x_{n}\right\}_{n \in \mathbb{J}}$ is a pseudoframe for $K(X)$ with respect to $\left\{K^{* \dagger} x_{n}^{*}\right\}_{n \in \mathbb{J}}$, where $K^{* \dagger}$ is the pseudoinverse of K^{*}.
Proof. (i) For all $f \in \mathcal{X}$ we have $f=\sum_{n \in \mathbb{J}}\left\langle f, x_{n}^{*}\right\rangle x_{n}$. Also $K(X) \subseteq \mathcal{X}$ implies that

$$
K f=\sum_{n \in \mathbb{J}}\left\langle K f, x_{n}^{*}\right\rangle x_{n}=\sum_{n \in \mathbb{J}}\left\langle f, K^{*} x_{n}^{*}\right\rangle x_{n}, \quad(f \in X) .
$$

Trivially $\left\{K^{*} x_{n}^{*}\right\}_{n \in J}$ is a Bessel sequence with respect to X. Indeed

$$
\sum_{n \in \mathbb{J}}\left|\left\langle f, K^{*} x_{n}^{*}\right\rangle\right|^{2}=\sum_{n \in \mathbb{J}}\left|\left\langle K f, x_{n}^{*}\right\rangle\right|^{2} \leq B\|K\|^{2}\|f\|^{2} \leq M\|f\|^{2}, \quad(f \in \mathcal{X}) .
$$

(ii) Since $R\left(K^{*}\right)$ is closed, the pseudoinverse of K^{*} exists. For any $f \in X$ we have

$$
\begin{equation*}
K f=\sum_{n \in \mathbb{J}}\left\langle f, x_{n}^{*}\right\rangle x_{n}=\sum_{n \in \mathbb{J}}\left\langle f, K^{*} K^{* \dagger} x_{n}^{*}\right\rangle x_{n}=\sum_{n \in \mathbb{J}}\left\langle K f, K^{* \dagger} x_{n}^{*}\right\rangle x_{n} . \tag{3.4}
\end{equation*}
$$

Also $\left\{K^{* \dagger} x_{n}^{*}\right\}_{n \in \mathrm{~J}}$ is a Bessel sequence with respect to $K(X)$, since for any $f \in K(X)$

$$
\sum_{n \in \mathbb{J}}\left|\left\langle f, K^{* \dagger} x_{n}^{*}\right\rangle\right|^{2}=\sum_{n \in \mathbb{J}}\left|\left\langle\left(K^{* \dagger}\right)^{*} f, x_{n}^{*}\right\rangle\right|^{2} \leq B\left\|\left(K^{* \dagger}\right)^{*}\right\|^{2}\|f\|^{2} \leq M\|f\|^{2} .
$$

As an application of Proposition 3.6, we get the following example.

An example of K-pseudoframe on $L^{2}(\mathbb{R})$

We know that an integral transform is any transform T on $L^{2}(\mathbb{R})$ of the following form

$$
(T f)(u)=\int_{\mathbb{R}} \kappa(t, u) f(t) d t
$$

where $\kappa \in L^{2}\left(\mathbb{R}^{2}\right)$. Also $\|T\|=\|\kappa\|$, so the fact that $\kappa \in L^{2}\left(\mathbb{R}^{2}\right)$ implies that T is bounded and $\left(T^{*} f\right)(u)=\int_{\mathbb{R}} \overline{\kappa(t, u)} f(t) d t$.

Let ϕ be defined by its Fourier transform as follows

$$
\hat{\phi}(\gamma)=\left\{\begin{array}{cc}
1 & \text { a.e. }-\frac{1}{4} \leq \gamma<\frac{1}{4} \\
2-4|\gamma| & \text { a.e. } \frac{1}{4} \leq|\gamma|<\frac{1}{2} \\
0 & \text { otherwise. }
\end{array}\right.
$$

Choose $\Omega=\{\gamma \in \mathbb{R}:|\hat{\phi}(\gamma) \geq 1|\}=\left[-\frac{1}{4}, \frac{1}{4}\right)$ and $X=P W_{\Omega}=\left\{f \in L^{2}(\mathbb{R}): \operatorname{Supp} \hat{f} \subseteq \Omega\right\}$. As in Example 1 of [10], select ϕ^{*} such that

$$
\hat{\phi}^{*}(\gamma)=\left\{\begin{array}{cc}
1 & \text { a.e. }-\frac{1}{4} \leq \gamma<\frac{1}{4} \\
3-8|\gamma| & \text { a.e. } \frac{1}{4} \leq|\gamma|<\frac{3}{8} \\
0 & \text { otherwise. }
\end{array}\right.
$$

Then $\left\{\tau_{n} \phi\right\}_{n \in \mathbb{J}}$ and $\left\{\tau_{n} \phi^{*}\right\}_{n \in \mathbb{J}}$ form a pair of pseudoframe for \mathcal{X}, where $\left(\tau_{n} f\right)(x)=f(x-n)$. Now for any $\kappa(x, y)=r(x) s(y)$ such that $r \in X, \kappa \in L^{2}\left(\mathbb{R}^{2}\right)$ we have

$$
(K f)(x)=\int_{\mathbb{R}} \kappa(x, y) f(y) d y=r(x) \int_{\mathbb{R}} s(y) f(y) d y
$$

, so K is a bounded linear operator on $L^{2}(\mathbb{R})$ and $K(X) \subseteq X$. As an example of such a κ, let

$$
r(x)=\frac{8 \sin \left(\frac{\pi}{4} x\right)}{\pi x}, s(y)=\frac{10 \sin \left(\frac{\pi}{5} y\right)}{\pi y} .
$$

Obviously,

$$
\hat{r}(\gamma)=\chi_{\left[-\frac{1}{8}, \frac{1}{8}\right)}(\gamma), \hat{s}(\gamma)=\chi_{\left[-\frac{1}{10}, \frac{1}{10}\right)}(\gamma) \in \mathcal{X}
$$

and so $\hat{r}, \hat{s} \in X$. Also

$$
(K f)(x)=r(x) \int_{\mathbb{R}} s(y) f(y) d y \in X, \quad(f \in X)
$$

Thus $K(X) \subseteq X$. Clearly K is self adjoint, which means $\left(K^{*} f\right)(x)=r(x) \int_{\mathbb{R}} s(y) f(y) d y$. Now by part (i) of Proposition 3.6, we have $\left\{\tau_{n} \phi\right\}_{n \in \mathbb{J}}$ is a K-pseudoframe for X with respect to
$\left\{K^{*} \tau_{n} \phi^{*}\right\}_{n \in \mathbb{J}}=\left\{\frac{8 \sin \left(\frac{\pi}{4} x\right)}{\pi x} \int_{\mathbb{R}} \frac{10 \sin \left(\frac{\pi}{y} y\right)}{\pi y} \tau_{n} \phi^{*}(y) d y\right\}_{n \in \mathbb{J}}$.
Proposition 3.7. Let $\left\{x_{n}\right\}_{n \in \mathbb{J}}$ and $\left\{x_{n}^{*}\right\}_{n \in \mathbb{J}}$ be two sequences in \mathcal{H}, the operators $U_{x^{*}}, V_{x}$ are defined as (2.1), (2.2) and $K \in B(\mathcal{H})$ with $K(X) \subseteq \mathcal{X}$. Then $\left\{x_{n}^{*}\right\}_{n \in \mathbb{J}}$ is K^{*} pseudoframe for \mathcal{X} with respect to $\left\{x_{n}\right\}_{n \in \mathbb{J}}$ if and only if $K P_{x}=P_{x} V_{x} U_{x^{*}}$.
Proof. For all $f, g \in \mathcal{H}$ we have

$$
\begin{aligned}
\left\langle P_{x} f, V_{x} U_{x^{*}} g\right\rangle & =\overline{\left\langle V_{x} U_{x^{*}} g, P_{x} f\right\rangle}=\overline{\left\langle\sum_{n \in \mathbb{J}}\left\langle g, x_{n}^{*}\right\rangle x_{n}, P_{x} f\right\rangle} \\
& =\sum_{n \in \mathbb{J}}\left\langle P_{x} f, x_{n}\right\rangle\left\langle x_{n}^{*}, g\right\rangle=\left\langle\sum_{n \in \mathbb{J}}\left\langle P_{x} f, x_{n}\right\rangle x_{n}^{*}, g\right\rangle \\
& =\left\langle K^{*} P_{x} f, g\right\rangle=\left\langle P_{x} f, K g\right\rangle .
\end{aligned}
$$

Hence

$$
P_{x} V_{x} U_{x^{*}}=P_{x} K=K P_{x} .
$$

Conversely, if $P_{x} V_{x} U_{x^{*}}=P_{x} K=K P_{x}$, then for any $f, g \in \mathcal{H}$

$$
\begin{aligned}
\left\langle P_{x} f, V_{x} U_{x^{*}} g\right\rangle & =\left\langle\sum_{n \in \mathbb{J}}\left\langle P_{x} f, x_{n}\right\rangle x_{n}^{*}, g\right\rangle \\
& =\left\langle P_{x} f, K g\right\rangle=\left\langle K^{*} P_{x} f, g\right\rangle .
\end{aligned}
$$

Thus $K^{*} P_{x} f=\sum_{n \in J}\left\langle P_{x} f, x_{n}\right\rangle x_{n}^{*}$.
Remark 3.8. By Proposition 3.7, $\left\{x_{n}\right\}_{n \in \mathrm{~J}}$ interchanges by $\left\{x_{n}^{*}\right\}_{n \in \mathrm{~J}}$ if and only if $P_{x} V_{x} U_{x^{*}}=$ $K P_{x}=V_{x} U_{x^{*}} P x$.

The following theorem is a characterization of K-dual pseudoframes for a closed subspace \mathcal{X} of \mathcal{H}.
Theorem 3.9. Let $K \in B(\mathcal{H})$ and $\left\{x_{n}\right\}_{n \in \mathbb{J}}$ be a K-pseudoframe for X with respect to $\left\{x_{n}^{*}\right\}_{n \in \mathbb{J}}$. If $\left\{y_{n}^{*}\right\}_{n \in \mathbb{J}}=\left\{x_{n}^{*}+\phi^{*} e_{n}\right\}_{n \in \mathbb{J}}$ for a bounded linear operator $\phi: \mathcal{X} \longrightarrow l^{2}(\mathbb{J})$, then $\left\{x_{n}\right\}_{n \in \mathbb{J}}$ is K-pseudoframe for X with respect to $\left\{y_{n}^{*}\right\}_{n \in \mathbb{J}}$ if and only if $V_{x} \phi=0$.
Proof. For all $f \in X$ we have

$$
\left(\sum_{n \in \mathbb{J}}\left|\left\langle f, y_{n}^{*}\right\rangle\right|^{2}\right)^{\frac{1}{2}} \leq\left(\sum_{n \in \mathbb{J}}\left|\left\langle f, x_{n}^{*}\right\rangle\right|^{2}\right)^{\frac{1}{2}}+\left(\left.\sum_{n \in \mathbb{J}}\left\langle f, \phi^{*} e_{n}\right\rangle\right|^{2}\right)^{\frac{1}{2}} \leq C\|f\|+\|\phi\|\|f\| .
$$

So $\left\{y_{n}^{*}\right\}_{n \in \mathbb{J}}$ is a Bessel sequence with respect to X. Also we have

$$
\begin{aligned}
\sum_{n \in \mathbb{I}}\left\langle f, y_{n}^{*}\right\rangle x_{n} & =\sum_{n \in \mathbb{J}}\left\langle f, x_{n}^{*}\right\rangle x_{n}+\left\langle f, \phi^{*} e_{n}\right\rangle \\
& =K f+\sum_{n \in \mathbb{J}}\left\langle\phi f, e_{n}\right\rangle x_{n}=K f+\sum_{n \in \mathbb{J}}(\phi f)(n) x_{n} \\
& =K f+V_{x} \phi f=K f .
\end{aligned}
$$

Another characterization of K-dual pseudoframes for $\left\{x_{n}\right\}_{n \in \mathbb{J}}$ is obtained in the following theorem.

Theorem 3.10. Let $K \in B(\mathcal{H})$ and $\left\{x_{n}\right\}_{n \in \mathbb{J}}$ be K-pseudoframe for \mathcal{X} with respect to $\left\{x_{n}{ }^{*}\right\}_{n \in \mathbb{J}}, U_{x^{*}}, V_{x}$ are defined by (2.1), (2.2) and $R\left(V_{x} U_{x^{*}}\right)$ be closed. If $\left\{y^{*}{ }_{n}\right\}_{n \in \mathbb{J}}$ be a K-dual pseudoframe for $\left\{x_{n}\right\}_{n \in \mathbb{J}}$ then there exists some bounded linear operator $\phi: \mathcal{X} \longrightarrow$ $l^{2}(\mathbb{J})$ such that $K^{*}\left(V_{x} U_{x^{*}}\right)^{\dagger^{*}} x_{n}{ }^{*}+\phi^{*} e_{n}=y_{n}^{*}$ and $V_{x} \phi=0$.

Proof. For any $f \in \mathcal{X}$

$$
\begin{aligned}
\sum_{n \in \mathbb{J}}\left\langle f, K^{*}\right. & \left.\left(V_{x} U_{x^{*}}\right)^{\dagger^{*}} P_{R\left(V_{x} U_{x^{*}}\right)} x_{n}^{*}\right\rangle x_{n} \\
& =\sum_{n \in \mathbb{J}}\left\langle P_{R\left(V_{x} U_{\left.x^{*}\right)}\right)}\left(V_{x} U_{x^{*}}\right)^{\dagger} K f, x_{n}^{*}\right\rangle x_{n} \\
& =V_{x} U_{x^{*}} P_{R\left(V_{x} U_{x^{*}}\right)}\left(V_{x} U_{x^{*}}\right)^{\dagger} K f \\
& =K f .
\end{aligned}
$$

So $\left\{K^{*}\left(V_{x} U_{x^{*}}\right)^{\dagger^{*}} P_{R(V U)} x_{n}^{*}\right\}_{n \in \mathbb{J}}$ is a K-dual pseudoframe.
Define $U_{y}: X \longrightarrow l^{2}(\mathbb{J})$ by $U_{y} f=\left\{\left\langle f, y_{n}^{*}\right\rangle\right\}_{n \in \mathbb{J}}$. Now letting

$$
\phi=U_{y}-U_{x^{*}}\left(V_{x} U_{x^{*}}\right)^{\dagger} K
$$

one can see that ϕ is bounded and

$$
\begin{aligned}
V_{x} \phi f & =V_{x} U_{y} f-V_{x} U_{x^{*}}\left(V_{x} U_{x^{*}}\right)^{\dagger} K f \\
& =K f-P_{R\left(V_{x} U_{x^{*}}\right)} K f=0, \quad(f \in X)
\end{aligned}
$$

Moreover, since $U_{x^{*}}^{*} e_{n}=x_{n}^{*}, U_{y}^{*} e_{n}=y_{n}^{*}$ we have

$$
\begin{aligned}
K^{*}\left(V_{x} U_{x^{*}}\right)^{t^{*}} x_{n}^{*} & +\left(U_{y}-U_{x^{*}}\left(V_{x} U_{x^{*}}\right)^{\dagger} K\right)^{*} e_{n} \\
& =K^{*}\left(V_{x} U_{x^{*}}\right)^{*} x_{n}^{*}+U_{y}^{*} e_{n}-K^{*}\left(V_{x} U_{x^{*}}\right)^{\dagger^{*}} U_{x^{*}}^{*} e_{n} \\
& =K^{*}\left(V_{x} U_{x^{*}}\right)^{\dagger^{*}} x_{n}^{*}+y_{n}^{*}-K^{*}\left(V_{x} U_{x^{*}}\right)^{\dagger^{*}} x_{n}^{*} \\
& =y_{n}^{*} .
\end{aligned}
$$

Proposition 3.11. If $\left\{x_{n}\right\}_{n \in \mathbb{J}}$ is a minimal sequence and $\left\{x_{n}^{*}\right\}_{n \in \mathbb{J}},\left\{y_{n}^{*}\right\}_{n \in \mathbb{J}}$ are two K dual pseudoframes of $\left\{x_{n}\right\}_{n \in \mathbb{J}}$. Then $\left\{P_{x} x_{n}^{*}\right\}_{n \in \mathbb{J}}=\left\{P_{x} y_{n}^{*}\right\}_{n \in \mathbb{J}}$.
Proof. If $\left\{y_{n}^{*}\right\}_{n \in \mathbb{J}}$ and $\left\{x_{n}^{*}\right\}_{n \in \mathbb{J}}$ are K-dual pseudoframes of $\left\{x_{n}\right\}_{n \in \mathbb{J}}$, then $\sum_{n \in \mathbb{J}}\left(\left\langle P_{x} f, x_{n}^{*}\right\rangle-\right.$ $\left.\left\langle P_{x} f, y_{n}^{*}\right\rangle\right) x_{n}=0$, for all $f \in \mathcal{H}$. So for all $f \in \mathcal{H}, n \in \mathbb{J}$, we have $\left\langle P_{x} f, x_{n}^{*}\right\rangle=\left\langle P_{x}, y_{n}^{*}\right\rangle$. Thus $\left\{P_{X} x_{n}^{*}\right\}_{n}=\left\{P_{x} y_{n}^{*}\right\}_{n}$.
Corollary 3.12. Let $\left\{x_{n}\right\}_{n \in \mathbb{J}}$ be a minimal K-pseudoframe with respect to $\left\{x_{n}^{*}\right\}_{n \in \mathbb{J}}$ and for some $x_{m}, x_{m} \neq 0,\left\{x_{n}\right\}_{n \neq m}$ is a K-pseudoframe with respect to $\left\{x_{n}^{*}\right\}_{n \neq m}$. Then $P_{x} x_{m}=0$. Moreover, for every K-dual pseudoframe $\left\{y_{n}^{*}\right\}_{n}, P_{x} y_{m}^{*}=0$.
Proof. For all $f \in \mathcal{H}$ we have

$$
K P_{X} f=\sum_{n \in \mathbb{J}}\left\langle P_{X} f, x_{n}^{*}\right\rangle x_{n}=\sum_{n \neq m}\left\langle P_{x} f, x_{n}^{*}\right\rangle x_{n}
$$

So $\left\langle P_{X} f, x_{m}^{*}\right\rangle=0$. Thus for all $f \in \mathcal{H},\left\langle f, P_{X} x_{m}^{*}\right\rangle=0$. This implies that $P_{x} x_{m}^{*}=0$.
Also by Proposition 3.11, for any K-dual pseudoframe $\left\{y_{n}^{*}\right\}_{n \in \mathbb{J}}, P_{x} y_{n}^{*}=0$.
A sequence $\left\{x_{n}\right\}_{n \in \mathbb{J}} \subseteq \mathcal{H}$ is called complete if $\left\langle f, x_{n}\right\rangle=0$, for all $f \in \mathcal{H}$ implies that $f=0$. Note that $\mathcal{N}\left(V_{x}\right)=\left\{\left\{c_{n}\right\}_{n \in \mathbb{J}} \in l^{2}(\mathbb{J}): V_{x}\left(\left\{c_{n}\right\}_{n \in \mathbb{J}}\right)=0\right\}$.

Lemma 3.13. Let $\left\{x_{n}\right\}_{n \in \mathbb{J}}$ is a K-pseudoframe for \mathcal{X} with respect to $\left\{x_{n}^{*}\right\}_{n \in \mathbb{J}}$ and $U_{x^{*}}, V_{x}$ defined by (2.1), (2.2) such that $R\left(U_{x^{*}}\right) \subseteq R\left(V_{x}^{*}\right)$. If $f \in X$ and $K f=\sum_{n \in \mathbb{J}} c_{n} x_{n}$ for some scaler coefficients $\left\{c_{n}\right\}_{n \in J}$, then

$$
\begin{align*}
\sum_{n \in \mathrm{~J}}\left|c_{n}\right|^{2}= & \sum_{n \in \mathrm{~J}} \mid\left\langle f, K^{*}\left(V_{x} U_{x^{*}}\right)^{\left.\dagger^{*} x_{n}^{*}\right\rangle\left.\right|^{2}}\right. \\
& +\sum_{n \in \mathrm{~J}}\left|c_{n}-\left\langle f, K^{*}\left(V_{x} U_{x^{*}}\right)^{\dagger^{*}} x_{n}^{*}\right\rangle\right|^{2} . \tag{3.5}
\end{align*}
$$

Proof. First we note that the condition $R\left(U_{x^{*}}\right) \subseteq R\left(V_{x}^{*}\right)$ implies that $\mathcal{N}\left(V_{x}\right) \subseteq R\left(U_{x^{*}}\right)^{\perp}$. Suppose that $K f=\sum_{n \in \mathbb{J}} c_{n} x_{n}$. We have

$$
\begin{aligned}
\left\{c_{n}\right\}_{n \in \mathbb{J}}=\left\{c_{n}\right\}_{n \in \mathbb{J}} & -\left\{\left\langle f, K^{*}\left(V_{x} U_{x^{*}}\right)^{\dagger^{*}} P_{R\left(V_{x} U_{x^{*}}\right)} x_{n}^{*}\right\rangle\right\}_{n \in \mathbb{J}} \\
& +\left\{\left\langle f, K^{*}\left(V_{x} U_{x^{*}}\right)^{\dagger^{*}} P_{R\left(V_{x} U_{x^{*}}\right)} x_{n}^{*}\right\rangle\right\}_{n \in \mathbb{J}} .
\end{aligned}
$$

On the other hand

$$
\sum_{n \in \mathbb{J}}\left(c_{n}-\left\langle f, K^{*}\left(V_{x} U_{x^{*}}\right)^{\dagger^{*}} P_{R\left(V_{x} U_{x^{*}}\right)} x_{n}^{*}\right\rangle\right) x_{n}=0 .
$$

So

$$
\left\{c_{n}\right\}_{n \in \mathbb{J}}-\left\{\left\langle f, K^{*}\left(V_{x} U_{x^{*}}\right)^{\dagger^{*}} P_{R\left(V_{x} U_{\left.x^{*}\right)}\right.} x_{n}^{*}\right\rangle\right\}_{n \in \mathbb{J}} \in \mathcal{N}\left(V_{x}\right) \subseteq R\left(U_{x^{*}}\right)^{\perp}
$$

Now by the fact that $\left\{\left\langle f, K^{*}\left(V_{x} U_{x^{*}} \dagger^{\dagger^{*}} P_{R\left(V_{x} U_{x^{*}}\right)} x_{n}^{*}\right\rangle\right\}_{n \in \mathbb{J}}\right.$ belongs to $R\left(U_{x^{*}}\right)$, we obtain (3.5).

Theorem 3.14. Let $\left\{x_{n}\right\}_{n \in \mathbb{J}}$ be a K-pseudoframe for \mathcal{X} with respect to $\left\{x_{n}^{*}\right\}_{n \in \mathbb{J}}$ for a closed range operator $K \in B(\mathcal{H})$ and $R\left(U_{x^{*}}\right) \subseteq R\left(V_{x}\right)$. If $\left\langle K^{\dagger} P_{R(K)} x_{j}, x_{j}^{*}\right\rangle=1$, then $\left\{x_{n}^{*}\right\}_{n \neq j}$ is not complete.

Proof. Choose an arbitrary $j \in \mathbb{J}$. We know that

$$
P_{R(K)} x_{j}=K K^{\dagger} P_{R(K)} x_{j}=\sum_{n \in \mathbb{J}}\left\langle K^{\dagger} P_{R(K)} x_{j}, x_{n}^{*}\right\rangle x_{n},
$$

so

$$
P_{R(K)} x_{j}=P_{R(K)}^{2} x_{j}=\sum_{n \in \mathbb{J}}\left\langle K^{\dagger} P_{R(K)} x_{j}, x_{n}^{*}\right\rangle P_{R(K)} x_{n} .
$$

On the other hand we have

$$
P_{R(K)} x_{j}=\sum_{n \in \mathbb{J}} \delta_{n j} P_{R(K)} x_{n} .
$$

Now by Lemma 3.13, we obtain

$$
\begin{aligned}
1=\sum_{n \in \mathbb{J}}\left|\delta_{j n}\right|^{2}= & \sum_{n \in \mathbb{J}}\left|\left\langle K^{\dagger} P_{R(K)} x_{j}, x_{n}^{*}\right\rangle\right|^{2}+\sum_{n \in \mathbb{J}}\left|\left\langle K^{\dagger} P_{R(K)} x_{j}, x_{n}^{*}\right\rangle-\delta_{j n}\right|^{2} \\
= & \left|\left\langle K^{\dagger} P_{R(K)} x_{j}, x_{j}^{*}\right\rangle\right|^{2}+\sum_{n \neq j}\left|\left\langle K^{\dagger} P_{R(K)} x_{j}, x_{n}^{*}\right\rangle\right|^{2} \\
& +\left|\left\langle K^{\dagger} P_{R(K)} x_{j}, x_{j}^{*}\right\rangle-\delta_{j j}\right|^{2}+\sum_{n \neq j}\left|\left\langle K^{\dagger} P_{R(K)} x_{j}, x_{n}^{*}\right\rangle\right|^{2} .
\end{aligned}
$$

So $\sum_{n \neq j}\left|\left\langle K^{\dagger} P_{R(K)} x_{j}, x_{n}^{*}\right\rangle\right|^{2}=0$. This implies that for all $n \neq j,\left|\left\langle K^{\dagger} P_{R(K)} x_{j}, x_{n}^{*}\right\rangle\right|^{2}=0$, which shows that $K^{\dagger} P_{R(K)} x_{j}$ is orthogonal to $x_{n}^{*}, n \neq j$. Thus $\left\{x_{n}^{*}\right\}_{n \neq j}$ is not complete.

4. Pseudoatomic systems

In this section, we introduce the concept of the pseudoatomic systems for a bounded operator K and its relation with K-pseudoframe is studied.

Definition 4.1. Let \mathcal{X} is a closed subspace of \mathcal{H}. A sequence $\left\{x_{n}\right\}_{n \in \mathbb{J}} \subset \mathcal{H}$ is called a pseudoatomic system for K, if the following conditions are satisfied
(i) $\left\{x_{n}\right\}_{n \in \mathbb{J}}$ is a Bessel sequence;
(ii) For any $f \in \mathcal{X}$, there exists $a_{f}=\left\{a_{n}\right\}_{n \in \mathbb{J}} \in l^{2}(\mathbb{J})$ such that $K f=\sum_{n \in \mathbb{J}} a_{n} x_{n}$, where $\left\|a_{f}\right\|_{l^{2}(\mathbb{J})} \leq C\|f\|, C$ is positive constant.
The following Theorem shows the relation between K-pseudoframe and pseudoatomic system for K for a closed subspace $X \in \mathcal{H}$.
Theorem 4.2. Let K be a bounded operator. A sequence $\left\{x_{n}\right\}_{n \in \mathbb{J}}$ is a K-pseudoframe with respect to $\left\{x_{n}^{*}\right\}_{n \in \mathbb{J}}$ for X if and only if $\left\{x_{n}\right\}_{n \in \mathbb{J}}$ is a pseudoatomic system for K with respect to X.
Proof. By Definition 3.1, if $\left\{x_{n}\right\}_{n \in \mathbb{J}}$ is a K-pseudoframe for X with respect to $\left\{x_{n}^{*}\right\}_{n \in \mathbb{J}}$, then $\left\{x_{n}^{*}\right\}_{n \in \mathbb{J}}$ is a Bessel sequence with respect to X and $K f=\sum_{n \in \mathbb{J}}\left\langle f, x_{n}^{*}\right\rangle x_{n}$ for all $f \in \mathcal{X}$. Thus the condition (ii) in Definition 4.1 holds. Also by Definition 3.1, $\left\{x_{n}\right\}_{n \in J}$ is a Bessel sequence, so the condition (i) in Definition 4.1 is valid.

Conversely, by Definition 4.1, $\left\{x_{n}\right\}_{n \in \mathbb{J}}$ is a Bessel sequence and so there exists a bounded linear operator $T: l^{2}(\mathbb{J}) \longrightarrow \mathscr{H}$ such that $T e_{n}=x_{n}, n \in \mathbb{J}$. Since $K f=\sum_{n \in \mathbb{J}} a_{n} x_{n}$, then $R(K) \subseteq R(T)$. Now by Theorem 2.6 there exists a bounded linear operator M : $\mathcal{H} \longrightarrow l^{2}(\mathbb{J})$ such that $K=T M$. Now set $a_{n}(f)=(M f)_{n}$, where $(M f)_{n}$ denotes the $n^{t h}$ component of $M f$, we have

$$
\left|a_{n}\right| \leq\left(\sum_{n \in \mathbb{J}}\left|a_{n}\right|^{2}\right)^{\frac{1}{2}}=\left\|a_{f}\right\|_{l^{2}(\mathbb{J})} \leq\|M\|\|f\|, \quad(f \in \mathcal{X}) .
$$

Then by Riesz representation theorem, there exists x_{n}^{*} such that $a_{n}(f)=\left\langle f, x_{n}^{*}\right\rangle$. Hence for all $f \in \mathcal{X}$ we have

$$
K f=T M f=T\left(\left\{a_{n}\right\}_{n \in \mathbb{J}}\right)=\sum_{n \in \mathbb{J}}\left\langle f, x_{n}^{*}\right\rangle x_{n} .
$$

Also for all $f \in X$

$$
\sum_{n \in \mathbb{J}}\left|\left\langle f, x_{n}^{*}\right\rangle\right|^{2}=\sum_{n \in \mathbb{J}}\left|a_{n}\right|^{2} \leq\|M\|^{2}\|f\|^{2} .
$$

So $\left\{x_{n}^{*}\right\}_{n \in J}$ is a Bessel with respect to X.
As an application of Theorem 4.2, we get a relation between K-exact and K-minimal pseudoframes.
Definition 4.3. Let $\left\{x_{n}\right\}_{n \in J}$ be K-pseudoframe for X with respect to $\left\{x_{n}^{*}\right\}_{n \in \mathbb{J}}$. We say $\left\{x_{n}\right\}_{n \in \mathbb{J}}$ is an K-exact pseudoframe with respect to $\left\{x_{n}^{*}\right\}_{n \in J}$ if for every $j \in J$ the sequence $\left\{x_{n}\right\}_{i \neq j}$ is not a K-pseudoframe for X.
Proposition 4.4. Every K-exact pseudoframe is a K-minimal pseudoframe.
Proof. Assume that $\left\{x_{n}\right\}_{n \in J}$ is not a minimal pseudoframe. Let $x_{i} \neq 0$ for each i. Then there exists $\left\{c_{n}\right\}_{n \in \mathbb{J}}$ with $c_{m} \neq 0$ such that $x_{m}=\frac{-1}{c_{m}} \sum_{i \neq m} c_{i} x_{i}$, for some m. This implies that $\left\{x_{i}\right\}_{i \neq m}$ is a pseudoatomic system. Thus by Theorem 4.2, it is a K-pseudoframe. This shows that $\left\{x_{n}\right\}_{n \in \mathbb{J}}$ is not a K-exact pseudoframe.
Acknowledgment. This research was supported by a grant from Ferdowsi University of Mashhad (No: 50218).

References

[1] F. Arabyani Neyshaburi and A.A. Arefijamaal, Some constructions of K-frames and their duals, Rocky Mountain J. Math. 47 (6), 1749-1764, 2017.
[2] P.G. Casazza and G. Kutyniok, Frames of subspaces. Wavelets, frames and operator theory, College Park, MD, Contempt. Math. 345, American Mathematical Society, Providence, 87-113, 2004.
[3] P.G. Casazza and S. Li, Fusion frames and distributed processing, App. Comput. Harmon. Anal. 25, 114-132, 2008.
[4] I. Daubechies, A. Grossmann and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys. 27, 1271-1283, 1986.
[5] R.G. Douglas On majoration, factorization and range inclusion for operators on Hilbert spaces, Proc. Amer. Math. Soc. 17 (2), 413-415, 1966.
[6] R.J. Duffin and A.C. Schaeffer, A class of nonharmonic Fourier series, Trans. Math. Soc. 72, 341-366, 1952.
[7] L. Găvruţa, Frames for operators, Appi. Comput. Harmon. Anal. 32, 139-144, 2012.
[8] L. Găvruţa, New results on operators, Anal. Univ. Oradea, Fasc. Mat. 19, 55-61, 2012.
[9] L. Găvruţa, Atomic decompositions for operators in reproducing kernel Hilbert spaces, Math. Reports. 17 (67-3), 303-314, 2015.
[10] S. Li, A theory of generalized multiresolution structure and pseudoframes of translation, J. Fourier Anal. Appl. 7 (1), 23-40, 2001.
[11] S. Li and H. Ogawa, A theory of pseudoframes for subspaces with applications, Tokyo Institute of Technology, Technical Report, 1998.
[12] W.C. Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl. 322, 437-452, 2006.
[13] X. Xiao, Y. Zhu and L. Găvruţa, Some properties of K-frames in Hilbert spaces, Results Math. 63, 1243-1255, 2013.

[^0]: * Corresponding Author.

 Email addresses: azarmi_1347@yahoo.com (H. Azarmi), janfada@um.ac.ir (M. Janfada), kamyabi@um.ac.ir (R. A. Kamyabi-Gol)
 Received: 01.07.2018; Accepted: 18.07.2019

