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Abstract: The present review provided an overview of past studies on solid and liquid desiccants. Moreover, the main flow 

configurations for desiccant dehumidifiers have also been discussed briefly. Another objective is to investigate the mathematical 

models of the liquid desiccant dehumidifier. Finally, for the first time, a summary of recent studies regarding the effect of 

nanoparticles on liquid desiccants have been especially reviewed in detail as well as the applications of computational fluid dynamics 

(CFD) for modeling the desiccant cooling system. This study has beneficial for the research and technical development process of 

desiccant air conditioning systems. 
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Kurutucu Klima Sistemlerinin Teknik İncelemesi 

Özet: Bu derleme, katı ve sıvı kurutucular üzerine yapılan geçmiş çalışmalara genel bir bakış sağlamıştır. Ayrıca, kurutucu nem alma 

cihazları için ana akış konfigürasyonları da kısaca tartışılmıştır. Diğer bir amaç, sıvı kurutuculu nem alma cihazının matematiksel 

modellerini incelemektir. Son olarak, ilk kez, nanopartiküllerin sıvı kurutucular üzerindeki etkisine ilişkin son çalışmaların bir özeti, 

kurutucu soğutma sistemini modellemek için hesaplamalı akışkanlar dinamiği (CFD) uygulamalarının yanı sıra özellikle ayrıntılı 

olarak incelenmiştir. Bu çalışma, kurutucu iklimlendirme sistemlerinin araştırma ve teknik geliştirme süreçlerinde faydalı olmuştur. 

Anahtar kelimeler: Nem Alma Cihazı, Sıvı Kurutucu, Katı Kurutucu, Nanopartikül, Hesaplamalı Akışkanlar Dinamiği (CFD). 
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1. Introduction 

In the past decades, desiccant cooling systems have received 

much attention. These systems are considered as an 

alternative way to decrease energy consumption and 

greenhouse gas emissions in humid and hot locations [1-3]. 

Researchers demonstrate that these systems can decrease 

total energy consumption by shifting the energy used away 

from electricity and towards renewable, cheaper fuels and 

waste energy which are good for solar energy [4,5]. 

Desiccants have the ability to absorb water moisture, so they 

can be applied effectively for overcoming the latent part of 

the cooling load. As desiccants can be either solid or liquid 

[6], they can be categorized into solid desiccant air 

conditioning systems, which include fixed bed type and 

rotary wheel type, and liquid desiccant air conditioning 

systems. Liquid desiccants have some advantages over solid 

desiccants [7,8]. The basic components of liquid desiccant air 

conditioning (LDAC) systems are the dehumidifier, 

regenerator, cooling coil, heating coil, and solution heat 

exchanger which is illustrated in Figure 1 (a). The main 

operating fluid in LDAC systems is the liquid desiccant 

solution, which is used for absorbing/desorbing water vapor 

from/to an air stream which can be seen from Figure 1 (b) 

[9]. Due to being advantageous in handling latent heat load, 

LDAC systems have been used widely [10,11].  

 

Figure 1. (a) LDAC system (b) liquid desiccant cycle [9,12]. 

In the present study, a review of desiccant air conditioning 

systems is presented by focusing on the past works on solid 

and liquid desiccants, the main flow configurations for 

desiccant dehumidifiers, especially the effect of nanoparticles 

on liquid desiccants, the mathematical models of the liquid 

desiccant dehumidifier and finally summarizing the recent 

works on modeling desiccant cooling system using CFD. 

2. Solid and liquid desiccants 

Desiccant cooling systems can be categorized into liquid 

desiccant and solid desiccant [13]. Commonly, many types of 

solid desiccants are applied such as calcium chloride, silica 

gel, zeolite, lithium chloride, lithium bromide, and alumina, 

which are presented by Sultan et al. [14]. Srivastava and 

Eames [15] concluded that silica gel is a solid desiccant used 

in drying out outdoor air before it is circulated inside a 

building [16]. Liquid desiccant is the most substantial 

component of desiccant systems. Among all of its properties, 

the surface vapor pressure is one of the most significant 

parameters which cause heat and mass transfer in the 

dehumidifier [17]. Generally, liquid desiccants are non-

flammable, odorless, non-toxic, and inexpensive [18]. Figure 

2 indicates the shortlisted properties of good desiccants. 

 

Figure 2. Shortlisted properties of good desiccants [19-21]. 

Commonly used liquid desiccants include lithium bromide 

(LiBr), lithium chloride (LiCl), and calcium chloride (CaCl2). 

Among all of them, the absorption ability of calcium chloride 

(CaCl2) is least. Choosing a desiccant material significantly 

affects the desiccant dehumidifier design [22]. Zuber et al. 

[23] and Ahmed et al. [24] introduced thermodynamic 

properties of single desiccants. Among them, LiCl has the 

lowest vapor pressure but it is very expensive as compared to 

the other ones. Park et al. [25] examined and added four 8-C 

alcohol additives to liquid desiccant for lowering its surface 

vapor pressure. Ertas et al. [26] provided the properties of 

LiCl and CaCl2 mixture. They concluded that viscosity of the 

mixture is low and it is highly soluble. As compared to pure 

CaCl2 solution the mixture has a lower vapor pressure. Liu et 

al. [27] compared the performance of two commonly used 

liquid desiccants namely LiBr and LiCl. Also, they 

considered the reasons for replacing tri-ethylene glycol 

(TEG) with other aqueous salts.  

3. The main flow configurations for dehumidifiers 

Generally, there are three different flow patterns for the 

dehumidifier such as parallel flow, counterflow, and cross-

flow which are illustrated in Figure 3 [17]. 

 

Figure 3. The main flow configurations [17]. 

Rahamah et al. [28] analyzed parallel flow in liquid desiccant 

using the control volume method. Their results indicated that 

low air flow rate and the increment of channel height cause to 

have better dehumidification and cooling processes. Counter-
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flow is the most widely used flow pattern in design of 

dehumidifiers as it can be seen in many related studies [29]. 

Ali et al. [30] studied the effects of addition of Cu-ultrafine 

particles in increasing heat and mass transfer in a cross-flow 

configuration of air and falling solution film. Also, the 

addition of Cu-ultrafine particles causes to improve heat and 

mass transfer between liquid desiccant and air. Yoon et al. 

[31] numerically investigated the heat and mass transfer 

between process air and desiccant solution in inner water-

cooled plates with a cross-flow arrangement to demonstrate 

the changes of process air humidity and temperature along 

the plate. Nada [32] numerically considered the air 

dehumidification by a liquid desiccant falling on rectangular 

finned-tubes configuration for parallel, counter and cross-

flow based on desiccant liquid film (Figure 4). Also, heat 

transfer between desiccant film, air, and the finned-tube 

arrangements was studied. 

 

Figure 4. Different flow configurations [32]. 

Salah Hassan and Hassan [33] analyzed the performance of a 

counterflow channel type liquid desiccant dehumidifier. They 

found that with high temperature of inlet air and relative 

humidity, a better dehumidification process was obtained. 

Shahzad et al. [34] experimentally studied the performance of 

a solid desiccant dehumidifier integrated with Maisotsenko 

Cycle based cross-flow heat and mass exchanger. They found 

that the MC-DAC system gives higher temperature 

effectiveness than that of DAC even under low temperatures.  

4. Effect of nanoparticles on liquid desiccants 

A nanofluid is a fluid in which nanoparticles of less than 100 

nm in diameter are stably suspended in a base fluid [35-37]. 

Many researchers considered heat transfer in nanofluids. 

Most studies investigated enhanced heat characteristics of 

nanofluids, such as convective heat transfer coefficient and 

thermal conductivity relative to their base fluids [38-40]. Few 

investigations have been done to analyze the enhancement of 

mass properties of nanofluids, such as diffusion coefficient 

and mass transfer coefficient [41-43]. Kim et al. [44] 

examined the vapor absorber performance by SiO2 

nanoparticles in LiBr/H2O nanofluid. They concluded that the 

maximum increase in the heat and mass transfer rates was 

46.8 % and 18 %, respectively. Kang et al. [45] investigated 

the vapor absorption and heat transfer rates in the falling film 

flow of nanofluids containing LiBr/H2O solution with 

nanoparticles. They found that vapor absorption was higher 

than for fluids without nanoparticles and that mass transfer 

rate increase was much more important than heat transfer rate 

increase in nanofluids. Ali and Vafai [46] considered heat and 

mass transfer between air and falling desiccant film in 

inclined parallel and counter flow arrangements. Also, Cu-

ultrafine nanoparticles were added to desiccant film to 

consider the improvement in heat and mass transfer between 

the air and desiccant film. The inclined parallel and counter 

flow channels between air and desiccant film are illustrated 

in Figure 5 (a) and (b), respectively. 

 

Figure 5. Schematic of inclined (a) parallel and (b) 

counterflow arrangements [46]. 

They found that the inclination angle plays a major role to 

augment dehumidification and regeneration process of liquid 

desiccant for both inclined parallel and counter flow channels 

[46]. Ali et al. [47] numerically analyzed the heat and mass 

transfer using nanoparticles between air and falling film 

desiccant in parallel and counter flow arrangements. They 

found that the parallel flow channel gives better 

dehumidification and cooling processes of the air than the 

counter flow arrangement. Also, the dehumidification and 

cooling rates of air were increased with an enhancement in 

the volume fraction of nanoparticles and dispersion factor. 

Omidvar et al. [48] experimentally investigated air 

dehumidification using LiBr/H2O solution with and without 

nanoparticles as a desiccant. They concluded that the average 

increment of mass transfer rate was 12.23 % and heat transfer 

rate was 13.22 % when nanoparticles were added to the 

solution.  

5. Mathematical models of liquid desiccant 

dehumidifier 

In A mathematical model is a set of equations to specify the 

unknown parameters based on known variables [49]. Luo et 

al. [50] reviewed some common mathematical models to 

predict heat and mass transfer processes in the liquid 

desiccant dehumidifier. For an adiabatic dehumidifier finite-
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difference model, effectiveness-NTU model, and simple 

analytical model are the three commonly used mathematical 

models [51]. Table 1 indicates a list of various types of 

models. 

Table 1. Summary of mathematical models. 

Type of model Flow Reference 

Effectiveness NTU 

model 

Counter-

flow 
[52,53] 

Simple/quick 

prediction 

Counter-

flow 
[54] 

Empirical 

correlations 
Cross-flow [55] 

Artificial neural 

network 

Counter-

flow 
[56] 

The kinetic mass 

transfer model 
Cross-flow [57] 

Simple hybrid model 
Counter-

flow 
[58] 

Model based on 

Runge-Kutta fixed 

step method 

Counter-

flow 
[59] 

Simple analytical Cross-flow [60] 

Simple analytical 
Counter-

flow 
[61,62] 

Salarian et al. [52] experimentally investigated the 

performance of a packed-tower dehumidifier. They 

presented the influence of dimensionless parameter air 

to liquid desiccant flow rate ratio (ASMR) on its 

performance. There is an optimum air-to-desiccant 

ratio, which is very beneficial in the design of 

dehumidifiers and regenerators. In Figure 6, enthalpy 

efficiency is shown against m
*
 for different NTU 

values.  

 

Figure 6. Effect of m* and NTU on the enthalpy [6]. 

As it can be seen, there is an optimum number for the 

efficiency of enthalpy. Furthermore, their results 

demonstrated that there is maximal humidity effectiveness at 

a suitable humidity of the ASMR. Qi et al. [61] analytically 

analyzed a 2D theoretical model to predict the falling film 

desiccant dehumidification process. Based on their results, it 

is theoretically possible for evaluating the properties of a 

wave-wise liquid/air interface with heat and mass transfer, 

which could enhance the evaluation accuracy of falling film 

liquid desiccant. Bassuoni [60] applied an analytical method 

using Engineering Equations Solver (EES) for estimating all 

exit parameters of a cross-flow air dehumidifier using CaCl2 

as the liquid desiccant. Liu et al. [62] validated a simplified 

analytical solution for the heat and mass transfer model of a 

liquid desiccant dehumidifier. They concluded that the 

enthalpy efficiency of the dehumidifier equaled moisture 

efficiency. Gandhidasan and Mohandes [56] used an artificial 

neural network model and investigated the dehumidification 

unit for random packing using lithium chloride. Another such 

model was developed by Parmar and Hindoliya. They based 

their model on the desiccant wheel. Both the models were in 

excellent agreement with experimental results [57]. 

6. CFD Modeling of the desiccant cooling system 

The prediction of fluid flow fields can be obtained by CFD 

based on numerical analysis relating to continuity, 

momentum and energy equations [64,65]. The numerical 

analysis can be done using Ansys Fluent [66] based on the 

CFD codes which are used to describe the complex behaviors 

of the heat and mass transfer in the absorption and separation 

process [63] and describing the fluid flow in diverse 

problems [67-73]. Although the absorption processes of the 

liquid desiccant dehumidifier modeled with CFD technique 

are seldom reported. In the dehumidifier, the fluid dynamics 

and vapor absorption of the desiccant solution are mutually 

coupled, so this case can be modeled with the CFD method 

[63]. Luo et al. [67] numerically analyzed the flow in the 

liquid desiccant dehumidifier using CFD solver. They 

concluded that the model predicted accurately the optimum 

flow rates of the solution and air. Also, Luo et al. [69] used a 

2D CFD model to consider dehumidifier performance under 

different conditions. In their study, by increasing the 

desiccant temperature, the moisture concentration of outlet 

air enhanced dramatically. In the study of Luo et al. [63], a 

new simulation model based on CFD for simultaneous heat 

and mass transfer combined with the volume of fluid (VOF) 

method has been carried out for a liquid desiccant 

dehumidifier. The contour of the mass fraction of water vapor 

in the interior of the dehumidifier is illustrated in Figure 7 

under different inlet air velocities.  

 

Figure 7. Contour of the mass fraction of water vapor [63]. 

It is found that for optimizing the operating condition, the air 
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velocity should be set based on the channel size, including 

the channel length and width. Furthermore, they found that 

the CFD model has been proved to be reliable due to the 

good agreement results with other models. Recently, Lin et 

al. [74] numerically analyzed the cross-flow flat-plate 

membrane liquid desiccant dehumidifier using the 3D CFD 

model. A correlation is specifically developed for the 

dehumidified air temperature and humidity, respectively. Tao 

et al. [75] applied a 3D CFD simulation model for a falling 

film dehumidifier and compared the CFD results with 

experimental data. The simulation was able to analyze the 

impact of contact angle on dehumidification performance. 

Wen et al. [76] presented a novel quasi-3D model for 

simulation of heat and mass transfer process in a falling film 

dehumidifier. They concluded that the non-wetting of falling 

film and mass transfer resistance in the airside hindered the 

dehumidification performance. Consequently, the CFD 

simulation was proved to be reliable for simulating the 

dehumidification process. 

7. Conclusion 

This review provided an overview of past studies on the main 

flow configurations for desiccant dehumidifiers, solid and 

liquid desiccants and the mathematical models of a liquid 

desiccant dehumidifier. Moreover, for the first time, a 

summary of recent studies regarding the effect of 

nanoparticles on liquid desiccants have been especially 

reviewed in detail as well as the application of Computational 

Fluid Dynamics (CFD) within the desiccant cooling system. 

As referred previously in the body of the paper, the liquid 

desiccant is the most substantial component of desiccant 

systems. Among all of its properties, the surface vapor 

pressure is one of the most significant parameters which 

cause heat and mass transfer in the dehumidifier. It is 

noteworthy that the convective motion of nanoparticles had a 

considerable effect on the increase in heat and mass transfer 

of desiccant. Also, for an adiabatic dehumidifier, finite 

difference model, effectiveness-NTU model, and simple 

analytical model are the three commonly used mathematical 

models.  Finally, according to the past studies on CFD 

modeling of the desiccant cooling system, it can be said that 

the CFD model was proved to be reliable for simulating the 

dehumidification process and desiccant cooling systems. 
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