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ABSTRACT 
 

In this paper, we examine the image of geodesic curves of Riemann 2-manifolds under the isometric immersions in three 

dimensional Euclidean space. We show that the curvature of these curves is equal to the normal curvature of the manifold in 

the direction of tangent vector field of the geodesics. Moreover, we prove that if the parameter curves of the manifold are the 

line of curvature, then the geodesic torsion of geodesics is equal to the torsion of the image curve.  
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1. INTRODUCTION 
 

In [1], the isometric immersions are considered in four and 𝑛 −dimensional Euclidean space. The 

authors gave some results about Riemannian 2-manifolds through the geodesic curves such that these 

geodesic curves are considered as a curve with constant curvature (W-curve) in 4-dimensional 

Euclidean space. Note that the circles and right circular helices are the only W-curves in two and three 

dimensional Euclidean space, respectively. For a special case of Riemann 2-manifolds, Ferus and 

Schirrmacher [1] gave the characterization theorem in four dimensional Euclidean space, by the 

following: 

Theorem 1.1  Let 𝑀 be a closed, connected  Riemannian 2-manifold, and 𝑓:𝑀 → 𝔼4  be an isometric 

immersion such that for each unit speed geodesic 𝛼:ℝ → 𝑀, the image curve 𝛾 = 𝑓 ∘ 𝛼  be a 

𝑊 −curve. Then there are two possibilities: 

i) If 𝑀 contains a non-periodic geodesic, then 𝑓 covers a standard torus 𝑆1(𝑟1) × 𝑆1(𝑟2) ⊂ 𝔼4 . 

ii) If all geodesics in 𝑀 are periodic, then 𝑓 is an isometry onto Euclidean 2 −sphere 𝑆2(𝑟) ⊂ 𝔼3. 

In [2], the calculations in proof of Theorem 1.1 are extended and interpreted, by elementary 

approaches.   

In this study, we investigate the curvatures of curve-surface (manifold) pair, in terms of Darboux 

frame, in three dimensional Euclidean space. Especially, we consider the curvatures of Riemannian 2-

manifolds and their geodesics.     

2. PRELIMINARIES 

Let us give the inner product of 𝑢 and 𝑣 in the 𝑛 −dimensional Euclidean space by 

 𝑢 ⋅ 𝑣 = ∑ 𝑢𝑖𝑣𝑖
𝑛
𝑖=1  
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where 𝑢 = (𝑢1, 𝑢2, . . . , 𝑢𝑛) and 𝑣 = (𝑣1, 𝑣2, . . . , 𝑣𝑛). Let 𝑀 be a hypersurface, 𝑃 ∈ 𝑀, and 𝑢 ∈ 𝑇𝑝𝑀. 

The normal curvature of 𝑀 in the 𝑢 −direction is 

 𝑘(𝑢) = 𝑆𝑝(𝑢) ⋅ 𝑢 

where 𝑆𝑝 is the shape operator of the surface at the point 𝑃.  

Let 𝛾 be a curve on hypersurface 𝑀 and {𝑡(𝑠), 𝑉(𝑠), 𝑈(𝑠)} be the moving Darboux frame where 𝑡(𝑠) 

is the unit tangent vector field of the curve, 𝑈(𝑠) is the unit normal vector field of the surface which is 

restricted to 𝛾, and 𝑉(𝑠) = 𝑈(𝑠) × 𝑡(𝑠). Also, the derivative formulas of this frame is given by  

𝑡′ = 𝜅𝑔𝑉 + 𝜅𝑛𝑈

𝑉′ = −𝜅𝑔𝑡 + 𝜏𝑔𝑈

𝑈′ = −𝜅𝑛𝑡 − 𝜏𝑔𝑉

 

where 𝜅𝑛, 𝜅𝑔 and 𝜏𝑔 are the normal curvature, the geodesic curvature and the geodesic torsion of the 

curve, respectively [3]. 

Besides, the geodesic torsion is given by 

𝜏𝑔 = 𝜏 +
𝑑𝜙

𝑑𝑠
                                                               (2.1) 

where 𝜏 is ordinary torsion of 𝛾(𝑠) and 𝜙 is the angle between the osculating plane of the curve and 

the tangent plane to the surface. 

Definition 2.1 Let 𝛻 and 𝛻 be the Levi-Civita connections in Euclidean space 𝔼𝑛 and hypersurface 𝑀  

respectively. The Gauss equation is given by      

𝛻𝑇𝑇 = 𝛻𝑇𝑇 + ℎ(𝑇, 𝑇)𝑈 

where ℎ is the second fundemental form of the surface, 𝑇 ∈ 𝜒(𝑀), and 𝑈 is the unit normal vector 

field of 𝑀. 

Let us give the Euler’s formula by following: 

Lemma 2.2 Let 𝑀 be a hypersurface and 𝑢 = 𝑐𝑜𝑠𝜃 𝑢1 + 𝑠𝑖𝑛𝜃 𝑢2 be a unit principal vector that 

makes positive oriented angle 𝜃 with vector 𝑢1, in tangent space of 𝑀. Then the normal curvature of 

𝑀, in the direction of 𝑢 is given by 

 𝑘(𝑢) = 𝑘1𝑐𝑜𝑠
2𝜃 + 𝑘2𝑠𝑖𝑛

2𝜃 

for some 𝜃 ∈ (0, 𝜋/2) where 𝑘1, 𝑘2 principal curvatures of  𝑀. 

Let us give the useful property in [4]: 

Lemma 2.3 Let the parameter curves of the hypersurface through the all 𝑃 ∈ 𝑀 be a line of curvature 

and 𝑒1 be a unit principal vector of the surface . If the curve 𝛼 on 𝑀 makes the positive oriented angle 

𝜃 with 𝑒1, then the geodesic torsion of (𝛼,𝑀) is given by 

 𝜏𝑔 = (𝑘2 − 𝑘1) 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 

where 𝑘1 and 𝑘2 are the principal curvatures of the surface.  
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3. IMMERSIONS IN EUCLIDEAN SPACE 

 

In this section we give our main results by following two theorems. 

Theorem 3.1 Let 𝑀 be a closed, connected Riemannian 2-manifold and 𝑓:𝑀 → 𝔼3 be a isometric 

immersion. Let us define the curve 𝛾 = 𝑓 ∘ 𝛼 such that 𝛼:ℝ → 𝑀 is the unit speed geodesic curve. In 

this case, the curvature 𝜅(𝑠) of 𝛾 is equal to the normal curvature of 𝑀 in the direction of 𝛼′(𝑠) at 

𝛼(𝑠).  

Proof. Let ∇ and ∇ be the Levi-Civita connections in Euclidean space 𝔼3 and 𝑀, respectively. 𝑓:𝑀 →

𝔼3 be a isometric immersion and 𝛼:ℝ → 𝑀 be a unit speed geodesic curve. It is obvious that 

 𝛾′(𝑠) = (𝑓 ∘ 𝛼)′(𝑠) = 𝑇(𝑠) 

where 𝑇 is the unit tangent vector field of 𝛾(𝑠). Since 𝑓 is an isometric immersion, the unit tangent 

vector field of 𝛼 and 𝑇 can be considered as the same vectors. It follows from Definition 2.1 that 

 𝛻𝑇𝑇 = 𝛻𝑇𝑇 + ℎ(𝑇, 𝑇)𝑈 

Since 𝛼 is geodesic, ∇𝑇𝑇 = 0 and so 

 𝛻𝑇𝑇 = 𝛾′′(𝑠) = ⟨𝑆(𝑇(𝑠)), 𝑇(𝑠)⟩𝑈 (3.1) 

It follows from (3.1) that 

 𝜅(𝑠) = ‖⟨𝑆(𝑇(𝑠)), 𝑇(𝑠)⟩𝑈‖. (3.2) 

Let us state the principal curvatures of 𝑀 as (𝑘1, 𝑘2) and the unit principal vectors (𝑒1, 𝑒2) that 

correspond to (𝑘1, 𝑘2) respectively. Thus, we write 𝑆(𝑒1) = 𝑘1𝑒1 and 𝑆(𝑒2) = 𝑘2𝑒2. Moreover, the 

unit tangent vector field of the curve is written by 𝑇(𝑠) = cos𝑠𝑒1 + sin𝑠𝑒2 for suitable 𝑠 ∈ (0, 𝜋/2). 

Since 𝑆 is linear operator, we get 𝑆(𝑇(𝑠)) = 𝑘1cos𝑠𝑒1 + 𝑘2sin𝑠𝑒2. Hence, we find 

 ⟨𝑆(𝑇(𝑠)), 𝑇(𝑠)⟩ = 𝑘1𝑐𝑜𝑠
2𝑠 + 𝑘2𝑠𝑖𝑛

2𝑠. (3.3) 

It follows from (3.2) and (3.3) that 

 𝜅(𝑠) = 𝑘1𝑐𝑜𝑠
2𝑠 + 𝑘2𝑠𝑖𝑛

2𝑠. 

From Lemma 2.2, the normal curvature of 𝑀 in the direction of  𝑇 is 

 𝑘(𝑇(𝑠)) = 𝑘1𝑐𝑜𝑠
2𝑠 + 𝑘2𝑠𝑖𝑛

2𝑠 = 𝜅(𝑠) 

which is intended.    

Theorem 3.2 Let 𝑀 be a closed, connected Riemannian 2-manifold and 𝑓:𝑀 → 𝔼3 be a isometric 

immersion. Let us define the curve 𝛾 = 𝑓 ∘ 𝛼 such that 𝛼:ℝ → 𝑀 is the unit speed geodesic curve. If 

the parameter curves of the surface through the all 𝑃 ∈ 𝑀 are the line of curvature, then the geodesic 

torsion of (𝛼,𝑀) is equal to the torsion of  𝛾.  

Proof. Let us state the principal curvatures of 𝑀 as (𝑘1, 𝑘2) and unit principal vectors (𝑒1, 𝑒2) that 

correspond to (𝑘1, 𝑘2) respectively. The unit tangent vector field of any curve on 𝑀 is written by 

 𝑇(𝑠) = 𝑐𝑜𝑠𝑠 𝑒1 + 𝑠𝑖𝑛𝑠 𝑒2 

for suitable 𝑠 ∈ (0, 𝜋/2). Let the parameter curves be a line of curvature that through all 𝑃 ∈ 𝑀. It 
follows from Lemma 2.3 that 
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 𝜏𝑔(𝑠) = (𝑘2 − 𝑘1) 𝑠𝑖𝑛𝑠 𝑐𝑜𝑠𝑠 

Besides, the orthonormal Frenet frame of 𝛾 is given by {𝑉1, 𝑉2, 𝑉3} such that 

 

𝑉1(𝑠) = 𝑇(𝑠) = 𝐸1(𝑠)

𝑉2(𝑠) =
𝐸2(𝑠)

‖𝐸2(𝑠)‖
=

⟨𝑆(𝑇(𝑠)),𝑇(𝑠)⟩𝑈

‖⟨𝑆(𝑇(𝑠)),𝑇(𝑠)⟩𝑈‖

𝑉3(𝑠) =
𝐸3(𝑠)

‖𝐸3(𝑠)‖

 

where 𝐸3(𝑠) = 𝛾′′′(𝑠) −
⟨𝛾′′′(𝑠),𝐸1(𝑠)⟩

⟨𝐸1(𝑠),𝐸1(𝑠)⟩
𝐸1(𝑠) −

⟨𝛾′′′(𝑠),𝐸2(𝑠)⟩

⟨𝐸2(𝑠),𝐸2(𝑠)⟩
𝐸2(𝑠).  

It follows from ([1], p.61) that 

 𝜏(𝑠) = ⟨𝑉2
′(𝑠), 𝑉3(𝑠)⟩ = (𝑘2 − 𝑘1) 𝑠𝑖𝑛𝑠 𝑐𝑜𝑠𝑠 = 𝜏𝑔(𝑠) 

This completes the proof. 

Corollary 3.3 In terms of Theorem 3.2, the angle between the osculating plane of 𝛾 and the tangent 

plane to the 𝑀 at any point is fixed. 

Proof. It follows from (2.1) and Theorem 3.2 that 

                                                                                     
𝑑𝜙

𝑑𝑠
= 0                     (3.4) 

where 𝜙 is the angle between the osculating plane of 𝛾 and the tangent plane to the manifold at any 

point. It is obvious from (3.4) that 𝜙 is fixed. 

Example 3.4 Let us consider the 2-dimensional circular cylinder such that 𝜑:ℝ2 → ℝ3, 

𝜑(𝑥1, 𝑥2) = (𝑐𝑜𝑠𝑥2, 𝑠𝑖𝑛𝑥2, 𝑥1). 

The unit speed circular helix on 𝜑 can be given as 

𝛾(𝑠) = (𝑐𝑜𝑠
𝑠√2

2
, 𝑠𝑖𝑛

𝑠√2

2
,
𝑠√2

2
). 

It is easy to see that 𝛾 is a geodesic on the surface. The partial derivatives of 𝜑 are, 

𝑑𝜑

𝑑𝑥1
= 𝜑1 = (0,0,1) ; 

𝑑𝜑

𝑑𝑥2
= 𝜑2 = (−𝑠𝑖𝑛𝑥2, 𝑐𝑜𝑠𝑥2, 0).  

Since the unit normal vector �⃗� ∘ 𝜑=
𝜑1×𝜑2

‖𝜑1×𝜑2‖
,  

�⃗� ∘ 𝜑 = |
𝑖 𝑗 𝑘
0 0 1

−𝑠𝑖𝑛𝑥2 𝑐𝑜𝑠𝑥2 0
| = (−𝑐𝑜𝑠𝑥2, −𝑠𝑖𝑛𝑥2, 0). 

Therefore, 

𝑈 = �⃗� (𝛾(𝑠)) = �⃗� (𝜑 (
𝑠√2

2
,
𝑠√2

2
)) = (−𝑐𝑜𝑠

𝑠√2

2
,−𝑠𝑖𝑛

𝑠√2

2
, 0). 

From the derivative formulas we get, 
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𝜅𝑛(𝛾′(𝑠)) = 〈𝛾′′, 𝑈〉 =
1

2
 

Also the curvature of the curve 𝜅(𝑠) = ‖𝛾′′(𝑠)‖ =
1

2
 . Thus, 𝜅𝑛(𝛾′(𝑠)) = 𝜅(𝑠) which realise the 

Theorem 3.1. 
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