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Abstract

In this paper, we introduce the notion of F -contraction in the setting of complete metric space and we prove
a fixed point theorem for F -contractive iteration.
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1. Introduction and Preliminaries

Banach fixed-point theorem [8] has plenty of extension. One of them is the following theorem, in the
setting of contractive iterate, given by Bryant.

Theorem 1.1. [10] If f is a mapping of a complete metric space into itself and if, for some positive integer
k, fk is a contraction, then f has a unique fixed point.

It is clear that the iterate of fk is necessarily continuous. On the other hand, continuity of the iterate
fk does not imply the continuity of f . The example of Bryant illustrate this observation:

Example 1.2. [10] Let T : [0, 2]→ [0, 2] be defined by

T (x) =

{
0 if x ∈ [0, 1],
1 if x ∈ (1, 2].

Then 2nd iteration of T is equal to 0 for all x ∈ [0, 2] although T is not continuous.
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This interesting result of Bryant [10] was improved by Sehgal [18] by proposing the idea of the "contractive
iterate at each point".

The significant result of Sehgal is the following:

Theorem 1.3. [18] Let (X, d) be a complete metric space, q ∈ [0, 1) and T : X → X be a continuous
mapping. If for each x ∈ X there exists a positive integer k = k(x) such that

d(T k(x)x, T k(x)y) ≤ qd(x, y) (1)

for all y ∈ X, then T has a unique fixed point u ∈ X. Moreover,for any x ∈ X, u = lim
n→∞

Tnx.

Following this result, number of authors research on iteration of the mapping, see e.g., [2, 3, 4, 9, 11, 12,
16].

Another interesting extension of the Banach contraction mapping principle was given by Wardowski [19]
in 2012. Roughly speaking, he transformed the contraction inequality by using an auxiliary function.

First of all we shall fix the basic notations: Throughout the paper, N and N0 denote the set of positive
integers and the set of nonnegative integers. Similarly, let R, R+ and R+

0 represent the set of reals, positive
reals and the set of nonnegative reals, respectively. Throughout the paper, all consider set X is non-empty.

We start with the definition of auxiliary function that was used by Wardowski [19] to define the new type
contraction.

Definition 1.4. [19] Let F : R+ → R and we are considering the following conditions:

(F1) F is strictly increasing, that is, for all ξ, η ∈ R+ if ξ < η then F (ξ) < F (η).

(F2) For every sequence {tn}∞n=1 of positive real numbers

lim
n→∞

tn = 0 if and only if lim
n→∞

F (tn) = −∞.

(F3) There is k ∈ (0, 1) such that lim
t→0+

(
tkF (t)

)
= 0.

Example 1.5. [19] Let Fi : R+ → R where i = 1, 2, 3, 4 define by

(e1) F1(t) = ln t,

(e2) F2(t) = t+ ln t,

(e3) F3(t) = −1/
√
t,

(e4) F4(t) = ln(t2 + t).

Then F1, F2, F3, F4 ∈ F .

Definition 1.6. [19] Let (X, d) be a metric space. A map T : X → X is said to be an F−contraction on
(X, d) if there exists F ∈ F and τ > 0 such that for all x, y ∈ X

d(Tx, Ty) > 0⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y)) (2)

From (F1) and (F2) easily conclude that every F -contraction is a contractive mapping, that is, for all
x, y ∈ X with Tx 6= Ty, we have

d(Tx, Ty) < d(x, y)

Theorem 1.7. [19] Let T be a self-mapping on a complete metric space (X, d). If T forms an F−contraction,
then it possesses a unique fixed point u. Moreover, for any x ∈ X the sequence {Tnx} is convergent to u.
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Remark 1.8. From (F1) and (2) it follows that

F (d(Tx, Ty)) ≤ F (d(x, y))− τ < F (d(x, y))⇒
⇒ d(Tx, Ty) < d(x, y)

for all x, y ∈ X such that Tx 6= Ty. Also, T is a continuous operator.

There are many result regarding F -contraction, see e.g.[1, 5, 7, 13].

Definition 1.9. A simulation function is a mapping ζ : [0,∞)× [0,∞)→ R satisfying the following condi-
tions:

(ζ1) ζ(t, s) < s− t for all t, s > 0;

(ζ2) if {tn}, {sn} are sequences in (0,∞) such that lim
n→∞

tn = lim
n→∞

sn > 0, then

lim sup
n→∞

ζ(tn, sn) < 0. (3)

In [15], there was an additional condition, ζ(0, 0) = 0, that was dropped since this condition is superfluous.
Let Z denote the family of all simulation functions ζ : [0,∞)× [0,∞)→ R, that is, verifying (ζ1) and (ζ2).

On account (ζ1), we have
ζ(t, t) < 0 for all t > 0. (4)

The following example is derived from [6, 15, 17].

Example 1.10. Let µi : [0,∞) → [0,∞) be continuous functions such that µi(t) = 0 if and only if, t = 0.
For i = 1, 2, 3, 4, 5, 6, we define the mappings ζi : [0,∞)× [0,∞)→ R, as follows

(i) ζ1(t, s) = µ1(s)−µ2(t) for all t, s ∈ [0,∞), where µ1, µ2 : [0,∞)→ [0,∞) are two continuous functions
such that µ1(t) = µ2(t) = 0 if and only if t = 0 and µ1(t) < t ≤ µ2(t) for all t > 0.

(ii) ζ2(t, s) = s − f(t, s)

g(t, s)
t for all t, s ∈ [0,∞), where f, g : [0,∞)2 → (0,∞) are two continuous functions

with respect to each variable such that f(t, s) > g(t, s) for all t, s > 0.

(iii) ζ3(t, s) = s− µ3(s)− t for all t, s ∈ [0,∞).

(iv) ζ4(t, s) = sϕ(s)− t for all s, t ∈ [0,∞), where ϕ : [0,∞)→ [0, 1) is a function such that lim sup
t→r+

ϕ(t) < 1

for all r > 0.

(v) ζ5(t, s) = η(s) − t for all s, t ∈ [0,∞), where η : [0,∞) → [0,∞) is an upper semi-continuous mapping
such that η(t) < t for all t > 0 and η(0) = 0.

(vi) ζ6(t, s) = s−
∫ t
0 µ(u)du for all s, t ∈ [0,∞), where µ : [0,∞)→ [0,∞) is a function such that

∫ ε
0 µ(u)du

exists and
∫ ε
0 µ(u)du > ε, for each ε > 0.

It is clear that each function ζi (i = 1, 2, 3, 4, 5, 6) forms a simulation function.

Inspired from the results in [14], we combine the approaches of Seghal [18] with the notions of F-
contraction and simulation functions to get a more general contraction type mappings. We investigate
the existence and uniqueness of a fixed point for such contractions.
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2. Main results

Now we are ready to state our main theorem that is the extension of Theorem 1.3

Theorem 2.1. Let (X, d) be a complete metric space and T : X → X a mapping which satisfies the condition:
If there exists F ∈ F and τ > 0 such that for each x ∈ X there is a positive integer n(x) such that for all
y ∈ X

d(Tn(x)(x), Tn(x)(y)) > 0⇒ ζ(F (d(x, y)), τ + F (d(Tn(x)(x), Tn(x)(y)))) ≥ 0. (5)

Then, T has a unique fixed point z ∈ X and Tn(x0)→ z for each x0 ∈ X, as n→∞.

Proof. We shall built a recursive sequence {xk} as follows: For the chooses arbitrary point x0 ∈ X with
n0 = n(x0), we set x1 = Tn0x0 and inductively we get

xi+1 = Tnixi with ni = n(xi).

We assert that xi 6= xi+1 for all i ∈ N0. Suppose, on the contrary, there exists i0 ∈ N0 such that
xi0 = xi0+1 = Tni0xi0 . Then, xi0 turns to be a fixed point of Tni0 . On the other hand,

Txi0 = T (Tni0xi0) = Tni0 (Txi0).

Thus, Txi0 form a fixed point of Tni0 . If Txi0 = xi0 , then we conclude that T has a fixed point and that
terminate the proof. Suppose, on the contrary, that Txi0 6= xi0 and hence d(Tni0 (Txi0), T

ni0 (xi0)) > 0.
Then, by (5) we have

0 ≤ ζ(F (d(xi0 , Txi0)), τ + F (d(xi0 , Txi0))),

which is equivalent to

τ + F (d(xi0 , Txi0)) = τ + F (d(Tni0xi0 , T
ni0Txi0)) ≤ F (d(xi0 , Txi0)), (6)

a contradiction. Consequently, we deduce that

xi 6= xi+1 for all i ∈ N0. (7)

Taking the expression (7) into account (5) implies that

d(xi+1, xi) > 0⇒ 0 ≤ ζ(F (d(xi, xi−1)), τ + F (d(xi+1, xi))),

turns to be
τ + F (d(xi+1, xi)) ≤ F (d(xi, xi−1)),

which yields
F (d(xi+1, xi)) ≤ F (δi−1)− τ ≤ F (δi−1)− 2τ ≤ ... ≤ F (δ0)− iτ, (8)

where δj = d(Tnixj , xj) for all j ∈ N0.
As i→∞ the inequality above yields that limi→∞ F (d(xi+1, xi)) = −∞. On account of axiom (F2), we

conclude that
lim
n→∞

d(xi+1, xi) = 0. (9)

Taking the axiom (F3) into the account, we find a k ∈ (0, 1) such that

lim
i→∞

(d(xi+1, xi))
kF (d(xi+1, xi)) = 0. (10)

On the other hand, by regarding (8), we find that

(d(xi+1, xi))
kF (d(xi+1, xi))− (d(xi+1, xi))

kF (δ0) ≤ (d(xi+1, xi))
k(F (δ0)− iτ)− (d(xi+1, xi))

kF (δ0)
= −(d(xi+1, xi))

kiτ ≤ 0.
(11)
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Keeping, (9) and (10), in mind, by letting n→∞ in (11), we obtain that

lim
i→∞

i(d(xi+1, xi))
k = 0. (12)

Here, (12) implies that there exists n1 ∈ N such that iδki ≤ 1 for all i ≥ n1. Attendantly, for all i ≥ n1, we
find

(d(xi+1, xi))
k ≤ 1

i1/k
. (13)

After the estimation (13), we shall show that the recursive sequence {xi} is Cauchy. Consider m,n ∈ N such
that m > n ≥ n1. On account of the estimation (13) together with the triangle inequality, we find that

d(xm, xn) ≤ δm−1 + δm−2 + ...+ δn <
∞∑
j=n

δj ≤
∞∑
j=n

1

j1/k
. (14)

It is clear that the series
∑∞

j=n
1

j1/k
converges and hence we conclude that {xi} is a Cauchy sequence.

Regarding the completeness of (X, d), there exists u ∈ X such that limi→∞ xi = x∗.
As a next step, we show that x∗ is a fixed point of Tn(x∗). Indeed, due to the continuity of T , we have

d(Tx∗, x∗) = lim
i→∞

d(Txi, xi) = lim
n→∞

d(xi+1, xi) = 0,

For the proving the uniqueness of the fixed point let us consider x∗ and y∗ be two distinct fixed point and
n = n(x∗). So, we have d(x∗, y∗) > 0 and hence we get that

d(Tx∗, T y∗) > 0⇒ 0 ≤ ζ(F (d(x∗, y∗)), τ + F (d(Tx∗, T y∗)))

which is equivalent to
τ + F (d(Tx∗, Ty∗)) ≤ F (d(x∗, y∗)), (15)

a contradiction.

It is clear that if we let F (t) = ln t, then we deduce Theorem 1.3 that is the main result of Seghal[18].
Notice also that, for n(x) = 1 for all x ∈ X, Theorem 1.3 implies the well-known Banach contraction mapping
principle.
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