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Abstract
In this work, we prove that Bernstein estimator always converges to the true copula
under Sobolev distances. The rate of convergences is provided in case the true copula
has bounded second order derivatives. Simulation study has also been done for Clayton
copulas. We then use this estimator to estimate measures of complete dependence for
weather data. The result suggests a nonlinear relationship between the dust density in
Chiang Mai, Thailand and the temperature and the humidity level.
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1. Introduction
Sklar’s Theorem[15] states that any joint distribution function can be written as a

composition of a copula and its marginal distribution functions. In this sense, copulas
represent links between random variables. Copulas model are then use in several fields
such as economics, finance, drought, hydrology, etc.

In practice, the true copula is unknown; it has to be estimated from data. This situation
is similar to that of (joint) distribution functions. It is well-known that the empirical copula
always converges to the true copula under the uniform metric which proved to be sufficient
in most cases. This type of convergence, never the less, is not sufficient for the estimation
of measures of (mutual) complete dependence.

The concept of complete dependence can be traced back to Rényi [11] and Lancaster [9].
Both of them propose axioms for measuring association between random variables. These
axioms include (1) the measure should be defined for all continuous random variables with
its range between zero and one, (2) the measure should be zero only when the random
variables are independent from each other, and (3) the measure should be invariant of
the marginal distributions of random variables, in other words, it should be independent
on rescaling of random variables. Rényi additionally requires that the measure takes the
extreme value one if and only if both random variables are completely dependence of one
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another, viz., one is a bijective function of another while Lancaster only require that one
is a function of another and not necessary vice versa.

Similar to the classical Pearson correlation coefficient and the Spearman’s rank cor-
relation coefficient, measures of complete dependence can be used to detect relationship
between random variables. The difference is that the Pearson correlation coefficient only
reach the maximum value when one random variable is a linear function of another and
the Spearman’s rank correlation coefficient only reach the maximum value when one ran-
dom variable is a monotone function of another. Thus, these two measures might miss
nonlinear relationship between these random variables. For example, it might be possible
that both of these coefficients are roughly zero but the measures of complete dependence
yield positive value.

Several decades later, measures of complete dependence has been proposed based on
copulas[3, 14, 18]. Even though these measures are functions of copulas, they are not
continuous with respect to the uniform convergence. Thus, the fact that empirical copulas
converge to the true copula uniformly will not imply the convergences of these measures.
Moreover, these measures are defined in term of derivative of copulas which implies a
modified version of empirical copulas is needed since their partial derivatives do not exist.

Recently, Janssen et al.[6] consider the Bernstein estimator instead of the empirical
copulas and they proved that this estimator also converges uniformly to the true copula.
Also, this estimator is differentiable. Thus, it is natural to ask whether this estimator can
be used to estimate measures of complete dependence. After all, the Bernstein copulas
converge to the true copula under the Sobolev distance [16, Theorem 3]. This result does
not directly implies the Bernstein empirical copulas converge to the true copula under
the Sobolev distance, nevertheless. This is because the latter is based on the empirical
copula which is varied with statistical samples. This fact also implies that the latter can
be computed and be used as an estimator while the former is unknown because it is based
on the true copula. Note that an estimator based on kernel method has also been defined
for the measure in [3] for copulas which are thrice continuously differentiable.

In this work, we show that the Bernstein estimator converges to the true copula under
Sobolev distance regardless of the differentability of the true copulas. The rate of con-
vergences can also be computed as long as that of Bernstein copulas is known. We also
compute the rate of convergence in case the true copula has bounded second order deriva-
tives. Our result weaken the assumption of the kernel estimator in [3] but at the same
time also weaken the conclusion. Here we only prove the law of large number while in [3],
the central limit theorem is proven. We also provide numerical study of our estimator.
The choice of copulas is chosen to match that of [3] for comparison.

Computation of measures of dependence for weather data is also shown. The dust den-
sity have significantly increase in Northern Thailand in recent years. It is a challenge to
understand the dust behavior and to control it. Several censors have been installed to
collect data. The weather data used in this work is taken from the Climate Change Data
Center of Chiang Mai University†. The 966 sets of hourly average open data from 6 cen-
sors located within the Mueang District, Chiang Mai between September 14th, 2018 and
September 25th, 2018 are used to compute the value of measures of complete dependence.
The location of these censors are given in Table 1.

The source variable considered is either the temperature or the humidity level and
the target variable is the dust density (ug/m3) in the air. The Pearson correlation and
the Spearman’s rank correlation are also computed for comparison (see Table 11). We
confirm that the dust density depends on the humidity level and the temperature. Their
relationship is nonlinear, however, due to the fact that both Pearson correlation and the
Spearman’s rank correlation are small. Unfortunately, the current data is collected during

†website: www.cmuccdc.org

http://www.cmuccdc.org
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Table 1. Censor locations

Location Latitude Longitude
Pa Dad Subdistrict 18.745484 98.980442
CMU, Mae Hia 18.761371 98.931855
Chiang Mai Chamber 18.791512 99.018145
Ban Thammapakorn 18.782758 98.993233
Night Bazaar 18.7854765 98.9996602
CMRU 18.804701 98.986802

low dust density period. These values will have to be recomputed again when the data is
ready in the future. An estimator in the case that the source variable is a random vector,
such as temperature and humidity level, also has to be constructed.

The organization of this work is as follows. The next section provides basic concepts
and terminologies needed for this work. Section 3 provides the proof of convergences of
Bernstein estimator. Section 4 provides numerical results of this estimator.

2. Basic concepts and terminologies
Henceforth, let I denote the unit interval and R denote the set of real numbers. A

copula is simply a (bivariate) joint distribution function with uniform marginals restricted
to I2. A subcopula is then a restriction of a copula on some closed subset A × B of I2

containing {0, 1}2. Analytically, a subcopula is a function S : A × B → I such that
(1) S is grounded, viz., S(0, v) = 0 = S(u, 0) for all u ∈ A and v ∈ B,
(2) S(1, v) = v and S(u, 1) = u for all u ∈ A and v ∈ B, and
(3) S (u2, v2)−S (u2, v1)−S (u1, v2)+S (u1, v1) ≥ 0 whenever (ui, vi) ∈ A×B, u1 ≤ u2,

and v1 ≤ v2.
A copula is then a subcopula with domain I2. Also, any copula is differentiable a.e. and
its derivative is between zero and one. The usage of copulas in modeling dependence
structure is due to the following Sklar’s Theorem.

Sklar’s Theorem. For any joint distribution H : R2 → I with marginal distributions
F : R → I and G : R → I, there is a copula C : I2 → I such that

H(x, y) = C(F (x), G(y))
for all x, y ∈ R. Moreover, this copula C is unique if both F and G are continuous.

According to Sklar’s Theorem, copulas capture relationships between random variables
while their marginal distributions capture individual behaviors. Thus, a measure of depen-
dence should be defined in term of copulas if it is to be invariant under rescaling of random
variables. This leads to the construction of several copula-based measures of dependence
[1–5,7,8,10,12–14,17,19,20]. Most of these measures are continuous with respected to the
uniform convergence excepted for measures of complete dependence defined in [3, 14,18].

Truschnig [18] defines a measure of complete dependence ζ1 (Y |X) = ζ1 (CX,Y ) based
on the Sobolev L1-distance via

ζ1 (CX,Y ) = 3
∫
I

∫
I
|∂uCX,Y (u, v) − v| dudv

while Siburg and Stoimenov[14] define a measure of complete dependence ω (X,Y ) =
ω (CX,Y ) based on the Sobolev L2-distance via

ω (CX,Y ) =
√

3
(∫

I

∫
I
|∂uCX,Y (u, v)|2 dudv +

∫
I

∫
I
|∂vCX,Y (u, v)|2 dudv

)
− 2
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where CX,Y is the copula associated with the joint distribution of (continuous) random
variables X and Y as in the Sklar’s Theorem. Note that an asymmetric version of ω is
also defined by [3] via

r (Y |X) = r (CX,Y ) = 6
∫
I

∫
I
|∂uCX,Y (u, v)|2 dudv − 2.

It can be easily seen that

ω (X,Y ) =
√

1
2

(r (Y |X) + r (X|Y )).

These measures all have ranges between zero and one. Also, ζ1 (Y |X) and r (Y |X) reach
the extreme value one if and only if Y is a function of X. Since the set of such copulas
is dense in the space of copula under the uniform convergence, these measures can not
be continuous under the uniform metric. Otherwise, these measures would take constant
value one.

In practice, the true copula associated with random variables X and Y are unknown
and has to be estimated from data. Let (X1, Y1) , . . . , (Xn, Yn) be an i.i.d. sample of
(X,Y ). Recall that the empirical joint distribution function of (X,Y ) is defined by

Hn (x, y) = 1
n

n∑
i=1

1{Xi≤x,Yi≤y}

for all x, y ∈ R. The empirical marginal distribution functions Fn and Gn of X and Y are
defined similarly. The empirical copula is then defined, for all u, v ∈ I, by

Cn(u, v) = Hn
(
F−

n (u), G−
n (v)

)
= 1
n

n∑
i=1

1{Fn(Xi)≤u,Gn(Yi)≤v}

where F− stands for the quantile function associated with the distribution function F . It
has been proved that Cn → CX,Y uniformly.

Theorem 2.1. [6, Lemma 1] Let Cn be the empirical copula of the copula C = CX,Y as
defined above. Then

d∞ (Cn, C) = sup
u,v∈I

|Cn(u, v) − C(u, v)| = O

√ ln lnn
n

 a.s.

as n → ∞.

Note that Cn is not a (random) copula. It is not even a (random) distribution function.
If Cn is restricted on

{
0, 1

n , . . . ,
n−1

n , 1
}2

, however, it is a subcopula. Janssen et al. [6]
use the idea of Bernstein copulas to modify Cn so that it becomes copula and prove the
convergence theorem. Recall that the Bernstein copula Bm(S) of a subcopula S in which
its domain contains

{
0, 1

m , . . . ,
m−1

m , 1
}2

is defined by

Bm(S)(u, v) =
m∑

i=0

m∑
j=0

S

(
i

m
,
j

m

)
Pi,m(u)Pj,m(v)

for all u, v ∈ I where Pi,m(u) =
(m

i

)
ui(1 − u)m−i is the mass function of the binomial

distribution. Any Bernstein copula is always a copula and it is smooth on the interior of
I2. Moreover, Bm(C) → C under the Sobolev distance for all copula C [16]. In general,
Bm(A) can be defined for any function A : I2 → R although Bm(A) might not be a copula
in this case. Still, we have

∂uBm (A) (u, v) = m
m−1∑
i=0

m∑
j=0

(
A

(
i+ 1
m

,
j

m

)
−A

(
i

m
,
j

m

))
Pi,m−1(u)Pj,m(v)
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for all u, v ∈ I [16, Equation 3].
The empirical Bernstein copula is defined to be

Cm,n = Bm (Cn)

where Cn is the empirical copula. Note that Cm,n is a (random) copula when m divides n.
Also, 0 ≤ ∂uCm,n(u, v) ≤ 2 when m ≤ n regardless of whether m divides n. This follows
from the fact that

0 ≤ Cn

(
i+ 1
m

,
j

m

)
− Cn

(
i

m
,
j

m

)
= Cn

( 1
n

⌈
n(i+ 1)
m

⌉
,
j

m

)
− Cn

( 1
n

⌈
ni

m

⌉
,
j

m

)
≤ 1
n

⌈
n(i+ 1)
m

⌉
− 1
n

⌈
ni

m

⌉
≤ 1
n

(
n(i+ 1)
m

+ 1 − ni

m

)
= m+ n

mn
.

The following result provides a rate in which the Bernstein empirical copula Cm,n uni-
formly converges to the true copula C.

Theorem 2.2. [6, Theorem 1] If m is a function of n for which m = m(n) → ∞ and
n

m ln ln n → c < ∞, then

d∞ (Cm,n, C) = O

√ ln lnn
n

 a.s.

as n → ∞.

Henceforth, denote ∥·∥p the (modified) Sobolev Lp-norm, that is,

∥A∥p =
(∫

I

∫
I
|∂uA|p dudv

)1/p

for all differentiable function A : I2 → R. Note that ∥·∥p is an actual norm on the vector
space spanned by copulas since all copulas are grounded. Moreover,

∥A−B∥p
p ≤ ∥A−B∥1 ≤ ∥A−B∥p

for all copulas A and B since their partial derivatives lie in I. Thus, all Sobolev Lp-norm
induce the same topology. It is also known that the Sobolev norm is stronger than uniform
norm but these two are equivalent since the set of shuffles of min is dense in the space of
copulas under the uniform norm but it is nowhere dense under the Sobolev norm.

In the next section, we will show that Cm,n also converges to the true copula C under
Sobolev norm. We will also provide the rate of convergence in case C has bounded second
order derivatives. The proofs rely on the following simple facts regarding the binomial
distribution.

Theorem 2.3. For any i = 0, . . . ,m and any 0 < u < 1,

(1) ∂uPi,m(u) = i−mu
u(1−u)Pi,m(u),

(a)
m∑

i=0
(i−mu)2 Pi,m(u) = mu(1 − u),

(b)
m∑

i=0
(i−mu)4 Pi,m(u) = mu(1 − u) ((3m− 6)u(1 − u) + 1).
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3. Sobolev convergence of Bernstein estimator
Using the same notations as in the previous section, we will prove that ∥Cm,n − C∥p → 0

a.s.

Lemma 3.1. If m is a function of n for which m = m(n) → ∞ and n
m ln ln n → c < ∞,

then

Ed∞ (Cm,n, C) = O

√ ln lnn
n


as n → ∞.

The proof of this lemma is actually adapted from [6, Lemma 3] with the help of the law
of iterated logarithm.

Proof. Let Ui = F (Xi) and Vi = G (Yi). Then (Ui, Vi) are i.i.d. with the copula C as their
joint distribution function. Denote H̄n the empirical distribution function of C defined
using (Ui, Vi) as the sample, and let F̄n and Ḡn be the marginals of H̄n. Then F̄−

n = FF−
n

and Ḡ−
n = GG−

n which implies Cn(u, v) = H̄n

(
F̄−

n (u), Ḡ−
n (v)

)
for all u, v ∈ I.Thus,

d∞ (Cn, C) = sup
u,v∈I

∣∣∣H̄n

(
F̄−

n (u), Ḡ−
n (v)

)
− C(u, v)

∣∣∣
≤ sup

u,v∈I

∣∣∣H̄n

(
F̄−

n (u), Ḡ−
n (v)

)
− C(F̄−

n (u), Ḡ−
n (v))

∣∣∣
+ sup

u∈I

∣∣∣F̄−
n (u) − u

∣∣∣+ sup
v∈I

∣∣∣Ḡ−
n (v) − v

∣∣∣
≤ d∞

(
H̄n, C

)
+ sup

u∈I

∣∣∣∣U(⌈nu⌉) − 1
n

⌈nu⌉
∣∣∣∣+ sup

u∈I

∣∣∣∣u− 1
n

⌈nu⌉
∣∣∣∣

+ sup
v∈I

∣∣∣∣V(⌈nv⌉) − 1
n

⌈nv⌉
∣∣∣∣+ sup

u,v∈I

∣∣∣∣v − 1
n

⌈nv⌉
∣∣∣∣

≤ d∞
(
H̄n, C

)
+ sup

u∈I

∣∣∣U(⌈nu⌉) − F̄n

(
U(⌈nu⌉)

)∣∣∣
+ sup

v∈I

∣∣∣V(⌈nv⌉) − Ḡn

(
V(⌈nv⌉)

)∣∣∣+ 2
n

≤ d∞
(
H̄n, C

)
+ d∞

(
F̄n, Id

)
+ d∞

(
Ḡn, Id

)
+ 2
n

≤ 3d∞
(
H̄n, C

)
+ 2
n

where Id : I → I is the identity function. By law of iterated logarithm,

lim sup
n→∞

√
nd∞ (Cn, C)√

2 ln lnn
≤ 3

2
a.s.

which implies lim supn→∞

√
nEd∞(H̄n,C)√

2 ln ln n
≤ 1

2 as well. Thus, the result follows. �

Theorem 3.2. For any copula C,

∥Cm,n − C∥p = O

(
∥Bm(C) − C∥p +

(
m ln lnn

n

)1/4p
)

a.s.

and

E ∥Cm,n − C∥p = O

(
∥Bm(C) − C∥p +

(
m ln lnn

n

)1/4p
)

as m,n → ∞. In particular, ∥Cm,n − C∥p → 0 whenever m,n → ∞ with m = o
(

n
ln ln n

)
.
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Proof. Since 0 ≤ ∂uCm,n ≤ 2 and 0 ≤ ∂uBm(C) ≤ 1, |∂uCm,n − ∂uBm(C)| ≤ 2 and

∥Cm,n −Bm(C)∥p
p ≤

∫
I

∫
I
2p−1 |∂uCm,n(u, v) − ∂uBm(C)(u, v)| dudv

= 2p−1 ∥Cm,n −Bm(C)∥1 .

This implies

∥Cm,n − C∥p = ∥Bm(C) − C∥p + ∥Cm,n −Bm(C)∥p

≤ ∥Bm(C) − C∥p + 2(p−1)/p ∥Cm,n −Bm(C)∥1/p
1 .

Thus, it is sufficient to show that ∥Cm,n −Bm(C)∥1 = O

((
m ln ln n

n

)1/4
)

a.s. and

E ∥Cm,n −Bm(C)∥1 = O

((
m ln ln n

n

)1/4
)

. Now,

|∂uCm,n − ∂uBm(C)| ≤
m∑

i=0

m∑
j=0

∣∣∣∣Cn

(
i

m
,
j

m

)
− C

(
i

m
,
j

m

)∣∣∣∣ |∂nPi,m(u)|Pj,m(v)

≤
m∑

i=0

m∑
j=0

d∞ (Cn, C)
∣∣∣∣ k −mu

u(1 − u)

∣∣∣∣Pi,m(u)Pj,m(v)

= d∞ (Cn, C)
u(1 − u)

m∑
i=0

|k −mu|Pi,m(u)

≤ d∞ (Cn, C)
u(1 − u)

(
m∑

i=0
|k −mu|2 Pi,m(u)

)1/2

= d∞ (Cn, C)
u(1 − u)

(mu(1 − u))1/2

=
√
md∞ (Cn, C)√
u(1 − u)

.

Thus,

∥Cm,n −Bm(C)∥1 ≤
√
md∞ (Cn, C)

∫
I

1√
u(1 − u)

du

= π
√
md∞ (Cn, C)

= O

√m ln lnn
n


a.s. as desire. Similarly,

E ∥Cm,n −Bm(C)∥1 ≤ π
√
mEd∞ (Cn, C) = O

√m ln lnn
n

 .
�

As an immediate application, we have the following result.
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Corollary 3.3. For any copula C, we have ζ1 (Cm,n) → ζ1(C), ω (Cm,n) → ω(C), and
r (Cm,n) → r(C) a.s. whenever m,n → ∞ with m = o

(
n

ln ln n

)
. Moreover,

E (ζ1 (Cm,n) − ζ1(C))2 = O

(
∥Bm(C) − C∥2

1 +
(
m ln lnn

n

)1/2
)
,

E (r (Cm,n) − r(C))2 = O

(
∥Bm(C) − C∥2

1 +
(
m ln lnn

n

)1/2
)
, and

E (ω (Cm,n) − ω(C))2 = O

(
∥Bm(C) − C∥1 +

∥∥∥Bm(C⊥) − C⊥
∥∥∥

1
+
(
m ln lnn

n

)1/4
)

where C⊥(u, v) = C(v, u) for all u, v ∈ I.
Proof. These statements follow from the fact that

|ζ1 (Cm,n) − ζ1(C)| ≤ 3 ∥Cm,n − C∥1 ,

|r (Cm,n) − r(C)| ≤ 2
∣∣∣∣√r (Cm,n) −

√
r(C)

∣∣∣∣
≤ 12 ∥Cm,n − C∥2

2
≤ 24 ∥Cm,n − C∥1 ,

and ω (Cm,n) =
√

1
2

(
r (Cm,n) + r

(
C⊥

m,n

))
. �

From the above result, in order to obtain the rate of convergence, we necessary have to
obtain the rate that Bm(C) converges to C under Sobolev L1-distance. We will provide
an example of this computation in case the true copula C has bounded second order
derivatives. The proof is actually an adaptation of [16, Theorem 3].
Theorem 3.4. Assume that the Hessian of a copula C is bounded. Then,

∥Bm(C) − C∥1 = O

( 1√
m

)
.

Proof. Consider the Taylor expansion,

C

(
i

m
,
j

m

)
= C(u, v) +

(
i

m
− u

)
∂uC(u, v) +

(
j

m
− v

)
∂vC(u, v)

+ η

(
i

m
, u,

j

m
, v

)((
i

m
− u

)2
+
(
j

m
− v

)2
)

around the point (u, v). Since the Hessian of the copula C is bounded, there is a constant
M > 0 such that

∣∣∣η ( i
m , u,

j
m , v

)∣∣∣ ≤ M for all u, v ∈ I and i, j = 0, . . . ,m. Now,

∂uBm(C)(u, v) =
m∑

i=0

m∑
j=0

C

(
i

m
,
j

m

)
∂uPi,m(u)Pj,m(v)

=
m∑

i=0

m∑
j=0

C(u, v)∂uPi,m(u)Pj,m(v)

+
m∑

i=0

m∑
j=0

(
i

m
− u

)
∂uC(u, v)∂uPi,m(u)Pj,m(v)

+
m∑

i=0

m∑
j=0

(
j

m
− v

)
∂vC(u, v)∂uPi,m(u)Pj,m(v)

+
m∑

i=0

m∑
j=0

ξ

(
i

m
− u,

j

m
− v

)
∂uPi,m(u)Pj,m(v)
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where ξ
(

i
m − u, j

m − v
)

= η
(

i
m − u, j

m − v
)((

i
m − u

)2
+
(

j
m − v

)2
)

. Notice that

m∑
i=0

m∑
j=0

C(u, v)∂uPi,m(u)Pj,m(v) = C(u, v)
u(1 − u)

m∑
i=0

(i−mu)Pi,m(u) = 0,

m∑
i=0

m∑
j=0

(
i

m
− u

)
∂uC(u, v)∂uPi,m(u)Pj,m(v) = ∂uC(u, v)

mu(1 − u)

m∑
i=0

(i−mu)2Pi,m(u)

= ∂uC(u, v),

and
m∑

i=0

m∑
j=0

(
j

m
− v

)
∂vC(u, v)∂uPi,m(u)Pj,m(v)

= ∂vC(u, v)
mu(1 − u)

m∑
i=0

(i−mu)(j −mv)Pi,m(u)Pj,m(v)

m∑
i=0

m∑
j=0

(
j

m
− v

)
∂vC(u, v)∂uPi,m(u)Pj,m(v)

= ∂vC(u, v)
mu(1 − u)

m∑
i=0

(i−mu)(j −mv)Pi,m(u)Pj,m(v)

= 0.

When m ≥ 2, we have 3m− 6 ≥ 0 and hence

|∂uBm(C)(u, v) − ∂uC(u, v)|

≤ mM

u(1 − u)

m∑
i=0

m∑
j=0

((
i

m
− u

)2
+
(
j

m
− v

)2
) ∣∣∣∣ im − u

∣∣∣∣Pi,m(u)Pj,m(v)

≤ mM

u(1 − u)

(
m∑

i=0

(
i

m
− u

)4
Pi,m(u)

)3/4

+ mM

u(1 − u)

√√√√ m∑
i=0

(
i

m
− u

)2
Pi,m(u)

m∑
j=0

(
j

m
− v

)2
Pj,m(v)

= mM

u(1 − u)

(
mu(1 − u) ((3m− 6)u(1 − u) + 1)

m4

)3/4

+ mM

u(1 − u)

(
v(1 − v)

m

)√
u(1 − u)

m

= M

u1/4(1 − u)1/4
((3m− 6)u(1 − u) + 1)3/4

m5/4 + Mv(1 − v)√
mu(1 − u)

≤ M

u1/4(1 − u)1/4
(3m/4)3/4

m5/4 + M/4√
mu(1 − u)

≤ 3M/4√
mu(1 − u)

+ M/4√
mu(1 − u)

≤ M√
mu(1 − u)
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where the second inequality follows from Jensen’s inequality and the third inequality
follows from x(1 − x) ≤ 1/4 for all x ∈ I. Thus,

∥Bm(C) − C∥1 =
∫
I

M√
mu(1 − u)

du = 1√
m
πM.

�

Remark 3.5. The above result can also be relaxed to the case that the Hessian of C is
bounded only on Ω ⊆ I2. In this case, ∥Bm(C) − C∥1 =

∫
1I2\Ωdudv + O

(
1√
m

)
which

implies the same result as long as
∫

1I2\Ωdudv = O
(

1√
m

)
. For example, in case of a

Clayton copula Cθ(u, v) =
(
u−θ + v−θ − 1

)−1/θ
where θ > 0, its Hessian is bounded on

Ωδ = [δ, 1]2 for all δ > 0 but not for δ = 0. Thus, ∥Bm(Cθ) − Cθ∥1 = O
(

1√
m

)
also.

Corollary 3.6. Assume that the Hessian of a copula C is bounded, then we have

E (ζ1 (Cm,n) − ζ1(C))2 = O

(
1
m

+
(
m ln lnn

n

)1/2
)
,

E (r (Cm,n) − r(C))2 = O

(
1
m

+
(
m ln lnn

n

)1/2
)
, and

E (ω (Cm,n) − ω(C))2 = O

(
1√
m

+
(
m ln lnn

n

)1/4
)
.

Note that the above corollary can be used to find an optimal choice of m for which
the asymptotic mean square error of the estimator converges to zero the fastest. For
example, consider the function ϕ(x) = 1

x +
(

x ln ln n
n

)1/2
where 0 ≤ x ≤ n. This function

has a unique minimum at x =
(

4n
ln ln n

)1/3
. Thus, m ≈ 1.58

(
n

ln ln n

)1/3 will provide optimal

rates of convergence for ζ1 (Cm,n) and r (Cm,n) which are O
((

ln ln n
n

)1/3
)

. Similarly, the

function ψ(x) = 1√
x

+
(

x ln ln n
n

)1/4
has a unique minimum at x =

(
16n

ln ln n

)1/3
. Thus,

m ≈ 2.52
(

n
ln ln n

)1/3 will provide an optimal rate of convergence for ω (Cm,n) which is

O

((
ln ln n

n

)1/6
)

.
In general, we will also have

∥Cm,n − C∥p = O

(( ln lnn
n

)1/6p
)

a.s.

and

E ∥Cm,n − C∥p = O

(( ln lnn
n

)1/6p
)

where m ≈
(

n
ln ln n

)1/3 is an optimal choice for all p ≥ 1. Note that this rate of convergence
is slower than that in 2.2 and 3.1 which is normally expected.

Also, the kernel estimator for r (C) has been provided in case the true copula C is thrice
continuously differentiable in the first variable and twice continuously differentiable in the
second variable [3]. This assumption is stronger than requiring the Hessian of C to be
bounded. Nevertheless, the result in [3] is also stronger than ours. In [3], Dette et al. were
able to prove the central limit theorem for their estimator while our result is only that of
the law of large number.
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4. Numerical study
4.1. Simulation

In this part, we will study asymptotic behavior of the estimators ζ1 (Cm,n), ω (Cm,n),
and r (Cm,n) via simulations. We already proved that these estimators converge to their
respective measures ζ1 (C), ω (C), and r (C). Rate of convergences are also given up to
some constants which might be useless if these constants are too large. We will confirm
that this is not the case by showing that the asymptotic errors is already acceptable for a
reasonable sample size n = 50, 100, 200, and 400.

The value m = m(n) is chosen to optimize the rate of convergence as stated at the
end of the previous section. Specifically, m ≈ 1.58

(
n

ln ln n

)1/3 for ζ1 (Cm,n) and r (Cm,n)
while m ≈ 2.52

(
n

ln ln n

)1/3 for ω (Cm,n). Thus, the pair (n,m) of the sample size n and the
value m = m(n) will be (50, 5), (100, 6), (200, 8), and (400, 10) for ζ1 (Cm,n) and r (Cm,n)
while (n,m) will be (50, 8), (100, 10), (200, 13) and (400, 15) for ω (Cm,n). Asymptotic
mean square error (AMSE), asymptotic bias, and asymptotic variance based on 10, 000
simulation runs will be given. The families of Clayton copulas will be chosen as true
copulas for the simulation. The result of the simulation is as follows.

Table 2. The AMSE of ζ1 (Cm,n) for Clayton copulas Cθ.

n\θ 0.0 0.5 1.0 2.0
50 8.05 × 10−3 8.69 × 10−3 2.29 × 10−2 4.94 × 10−2

100 5.37 × 10−3 7.14 × 10−3 1.80 × 10−2 3.88 × 10−2

200 3.57 × 10−3 4.13 × 10−3 9.90 × 10−3 2.22 × 10−2

400 2.25 × 10−3 2.69 × 10−3 6.62 × 10−3 1.52 × 10−2

Table 3. The asymptotic bias of ζ1 (Cm,n) for Clayton copulas Cθ.

n\θ 0.0 0.5 1.0 2.0
50 8.21 × 10−2 −7.33 × 10−2 −1.39 × 10−1 −2.17 × 10−1

100 6.82 × 10−2 −7.07 × 10−2 −1.26 × 10−1 −1.94 × 10−1

200 5.61 × 10−2 −5.20 × 10−2 −9.29 × 10−2 −1.46 × 10−1

400 4.51 × 10−2 −4.29 × 10−2 −7.67 × 10−2 −1.21 × 10−1

Table 4. The asymptotic variance of ζ1 (Cm,n) for Clayton copulas Cθ.

n\θ 0.0 0.5 1.0 2.0
50 1.30 × 10−3 3.31 × 10−3 3.56 × 10−3 2.36 × 10−3

100 7.29 × 10−4 2.14 × 10−3 2.06 × 10−3 1.30 × 10−3

200 4.17 × 10−4 1.43 × 10−3 1.27 × 10−3 8.04 × 10−4

400 2.17 × 10−4 8.46 × 10−4 7.34 × 10−4 4.62 × 10−4

First, consider the case of ζ1 (Cm,n). The asymptotic mean square of the simulation
seem acceptable with only a small contribution form the asymptotic variance. The bias,
however, is a bit high when θ ≥ 1. Overall, the estimator seem to perform worse when θ
becomes bigger suggesting that larger sample size is needed for a more accurate estimation.
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Table 5. The AMSE of ω (Cm,n) for Clayton copulas Cθ.

n\θ 0.0 0.5 1.0 2.0
50 4.62 × 10−2 2.73 × 10−3 1.75 × 10−2 3.98 × 10−2

100 7.28 × 10−2 2.83 × 10−3 2.89 × 10−3 1.25 × 10−2

200 5.90 × 10−2 1.09 × 10−3 3.24 × 10−3 1.11 × 10−2

400 6.27 × 10−2 1.67 × 10−3 1.35 × 10−3 6.55 × 10−3

Table 6. The asymptotic bias of ω (Cm,n) for Clayton copulas Cθ.

n\θ 0.0 0.5 1.0 2.0
50 2.11 × 10−1 −3.14 × 10−2 −1.21 × 10−1 −1.94 × 10−1

100 2.69 × 10−1 4.44 × 10−2 −3.82 × 10−2 −1.06 × 10−1

200 2.43 × 10−1 2.20 × 10−2 −4.81 × 10−2 −1.02 × 10−1

400 2.50 × 10−1 3.65 × 10−2 −2.92 × 10−2 −7.86 × 10−2

Table 7. The asymptotic variance of ω (Cm,n) for Clayton copulas Cθ.

n\θ 0.0 0.5 1.0 2.0
50 1.51 × 10−3 1.75 × 10−3 2.82 × 10−3 2.36 × 10−3

100 2.76 × 10−4 8.55 × 10−4 1.42 × 10−3 1.18 × 10−3

200 2.01 × 10−4 6.01 × 10−4 9.27 × 10−4 7.20 × 10−4

400 7.77 × 10−5 3.34 × 10−4 5.00 × 10−4 3.68 × 10−4

Next, consider the case of ω (Cm,n). Again, most of the contribution to the AMSE is
from the asymptotic bias. When comparing to ζ1 (Cm,n), the estimator seem to perform
worse when θ = 0. The situation is a bit different with r (Cm,n). In this case, the AMSE,
the asymptotic bias, and variance all seem reasonable. Comparing to the kernel estimator
by Dette et al.[3], both AMSE are roughly of the same level, the asymptotic bias of the
Bernstein estimator are higher but the asymptotic variance are significantly lower.

Table 8. The AMSE of r (Cm,n) for Clayton copulas Cθ.

n\θ 0.0 0.5 1.0 2.0
50 5.16 × 10−3 4.08 × 10−4 4.45 × 10−3 3.39 × 10−2

100 2.99 × 10−3 1.54 × 10−4 5.87 × 10−3 3.44 × 10−2

200 4.37 × 10−3 3.97 × 10−4 2.15 × 10−3 1.82 × 10−2

400 4.17 × 10−3 4.28 × 10−4 1.35 × 10−3 1.29 × 10−2

Table 9. The asymptotic bias of r (Cm,n) for Clayton copulas Cθ.

n\θ 0.0 0.5 1.0 2.0
50 7.11 × 10−2 1.32 × 10−2 −6.24 × 10−2 −1.82 × 10−1

100 5.41 × 10−2 −3.04 × 10−3 −7.42 × 10−2 −1.84 × 10−1

200 6.59 × 10−2 1.64 × 10−2 −4.28 × 10−2 −1.33 × 10−1

400 6.44 × 10−2 1.85 × 10−2 −3.37 × 10−2 −1.12 × 10−1
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Table 10. The asymptotic variance of r (Cm,n) for Clayton copulas Cθ.

n\θ 0.0 0.5 1.0 2.0
50 1.12 × 10−4 1.75 × 10−4 5.59 × 10−4 7.92 × 10−4

100 6.62 × 10−5 8.55 × 10−4 3.70 × 10−4 5.27 × 10−4

200 3.04 × 10−5 6.01 × 10−4 3.16 × 10−4 4.27 × 10−4

400 1.68 × 10−5 3.34 × 10−4 2.11 × 10−4 2.69 × 10−4

4.2. Data Sample
In this part, we provide an example study of a relationship between dust density, tem-

perature, and humidity. The data is taken from the Climate Change Data Center of
Chiang Mai University‡. The hourly average data from 6 censors within the Mueang
District between September 14th, 2018 and September 25th, 2018 with the total of 966
sets of data are used to compute the value of ζ1 (Y |X), r (Y |X), and ω (X,Y ) where X
is either the temperature or the humidity level and Y is either the density (ug/m3) of
dust with diameter at most 10 micron (PM10) or the density of dust with diameter at
most 2.5 micron (PM2.5). The Pearson correlation Corr (X,Y ) and the Spearman’s rank
correlation ρ (X,Y ) between X and Y are also computed for comparison.

Table 11. Estimate values for assoication level among climate data within the
Mueang District, Chiang Mai, Thailand

X Temperature Humidity level
Y PM2.5 density PM10 density PM2.5 density PM10 density

ζ1 (Y |X) 0.16386 0.16678 0.44264 0.42667
r (Y |X) 0.08887 0.09397 0.32856 0.31442
ω (X,Y ) 0.29978 0.30255 0.67051 0.65936

Corr (X,Y ) -0.01068 -0.04218 0.02354 0.08263
ρ (X,Y ) 0.09650 0.06329 -0.06942 -0.00724

From the estimated value, the Pearson correlation betweenX and Y are small suggesting
that they do not have a linear relationship. The Spearman’s rank correlation is also quite
small which again suggesting that X and Y might not have monotone relationship. The
higher values of ζ1 (Y |X), r (Y |X), and ω (X,Y ) suggest that the dust density actually
depends on the temperature and the humidity level to a certain degree. Their relationship,
however, might be nonlinear and might not be monotone. The fact that ζ1 (Y |X), r (Y |X),
and ω (X,Y ) are higher when X is the humidity level also suggest that the dust density
depends more on humidity level than the temperature. The fact that these values are
not close to one is only natural since there are more than one variables (temperature
and humidity level) that are the source of the dust density. Perhaps, an estimator of a
multivariate version of these measures have to be constructed and used in the studied of
these data in the future.
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