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Abstract
In this study, the forecasting accuracy of a new forecasting method that is alternative
to two major forecasting approaches: exponential smoothing (ES) and ARIMA, will be
evaluated. Using the results from the M3-competition, the forecasting performance of
this method will be compared to not only these two major approaches but also to other
successful methods derived from these two approaches with respect to simplicity and cost
in addition to accuracy.
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1. Introduction
“Better predictions remain the foundation of all science..." [1]. There are still two

major univariate forecasting approaches: exponential smoothing (ES) and ARIMA [2].
Exponential smoothing is inarguably one of the most widely used forecasting methods
available due to its simplicity, adaptiveness and accuracy [3]. The main idea behind ES
is to assign recent observations more weight compared to the distant past when obtaining
forecasts. The ETS state space models [4–6] brought exponential smoothing to a higher
level by providing the method with a solid theoretical background. They extended the
earlier classifications by [7] and [8] so that there are 30 potential ES models for various
types of trend, seasonality and errors. The most popular of these are the simple ES, Holt’s
linear trend model and Holt-Winter’s model. Later damped trend model was proposed
[8] to help deal with over-trending. The popularity of exponential smoothing can also
be attributed to its proven record against more sophisticated approaches [1, 9, 10]. For a
model to be considered as an alternative model to ES, it should be simpler, more accurate,
faster than ES and should not be a special case of it.

The decomposition based Theta method [11], later shown to be equivalent to a simple
exponential model with drift by [12], stood out in the M3-competition. [11] removed the
curvature of the original time series and called the resulting series that maintained only the
mean and slope of the original series Theta-lines. They decomposed the original series into
two or more Theta-lines and extrapolated these lines separately to obtain forecasts that
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in the end are combined to produce forecasts for the 3003 series in the M3-competition.
As confirmed once again in [11], it is well known that combining forecasts [13, 14] under
certain circumstances improves forecasting accuracy [15–18]. Because of this, the research
since the beginning of this competition mainly focuses on certain transformations, decom-
positions, rules and combinations of ES and ARIMA (a few examples are [14, 19–21]) to
improve the forecasting performance rather than proposing new forecasting methods.

Recently [22] proposed a simple modification of the exponential smoothing model, gen-
eralized here as the ATA method, which produces surprising results in terms of forecasting
accuracy and simplicity. The ATA method eliminates the initialization problem and is eas-
ier to optimize compared to its counter ES models. This method is shown to have better
forecasting accuracy for the M-competition data when equivalent parameterizations of
simple exponential smoothing and ATA models are compared on post sample forecasting
powers. Later [23] extended these ideas to Holt’s linear trend method. They compared
four versions of ATA (a modified simple exponential smoothing model, a modified Holt’s
trend model with trend parameter equal to 1, the best out of these two models and finally
a fully optimized version) and showed that the proposed modification performs as well
as and in most cases much better than the other pure major (exponential smoothing and
ARIMA based) methods for the M3-competition data.

Even though ATA can be adapted to all ES models, in this paper we focus on just the
additive ATA model with linear trend component and combine forecasts from this model
for two pre-determined trend parameter values (0 and 1). The fact that the combination
of forecasts from this one model alone can compete with all other approaches proves how
much potential ATA has.

2. ATA method
The ATA method has similar form to ES but the smoothing parameters are modified

so that when obtaining a smoothed value at a specific time point the weights among the
observations are distributed taking into account how many observations can contribute
to the value being smoothed. Therefore the smoothing parameter for this method is
a function of t unlike exponential smoothing where no matter where the value you are
smoothing resides on the time line, the observations receive weights only depending on
their distances from the value being smoothed. In this paper, the proposed combination
will be obtained from the forecasts from two parameterizations of the ATA(p, q) model.
For the series Xt, t = 1, . . . , n, the ATA(p, q) model can be written as:
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p

t

)
Xt +

(
t − p

t

)
(St−1 + Tt−1) (2.1)

Tt =
(

q

t

)
(St − St−1) +

(
t − q

t

)
Tt−1 (2.2)

X̂t(h) = St + hTt, (2.3)
for p ∈ {1, . . . , n}, q ∈ {0, 1, . . . , p} and t > p ≥ q. For t ≤ p let St = Xt, for t ≤ q
let Tt = Xt − Xt−1 and let T1 = 0. It is worth pointing out that when q = 0 ATA(p, q)
reduces to a simple model that has similar form to simple ES, i.e. for t > p:

St =
(

p

t

)
Xt +

(
t − p

t

)
St−1, (2.4)

and St = Xt for t ≤ p.
The ATA(p, q) model defined in equations (2.1)- (2.3) has similar form to the Holt linear

trend model. While the functional form of ATA models are generally very similar to those
of exponential smoothing models, there are distinctive features of ATA that separate it
from ES. The main difference lies in the weights assigned to observations by these two
approaches. ATA can be parameterized so that all past observations receive equal weights
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while this is not possible for any ES model. Also when the ATA and ES models that assign
equal weights to the most recent observation are compared, it can be seen that ATA tends
to assign more weight to the other recent observations while assigning less weight to the
distant past compared to ES. While all ES models require initialization and the initial
values affect the quality of forecasts especially for small values of n and α, ATA does not
require initialization and the optimization of the other parameters are simpler and faster
since the parameter values are restricted to integers.

3. Results from the M3-competition
Since the M-3 competition data [1] is still one of the the most recent and comprehensive

time-series data collections available, the performance of the proposed combination will
be evaluated by applying the proposed method to this collection. The results from this
competition are verified except for slight inconsistencies between the errors for the Theta
method reported in [11] and the ones obtained from the M-3 data set with forecasts for
all competing methods available in the International Journal of Forecasting’s website. For
some forecasting horizons and some subsets of data, the errors obtained from the data
set are slightly bigger. To stay consistent with other papers in this area, we compare our
findings to the results presented in [11].

Before ATA method is applied, the data sets were deseasonalized by the classical mul-
tiplicative decomposition method, when necessary. The parameters are optimized by min-
imizing the in-sample one-step-ahead sMAPE and to stay consistent with rest of the
literature forecasts up to 18 steps ahead (the number of steps as specified in the M3-
competition) are computed and again sMAPE for all forecast horizons are computed and
averaged across all 3003 series.

Results from three different applications of the ATA method will be considered here.

(i) ATA(p, 0) where p is optimized for q = 0
(ii) ATA(p, 1) where p is optimized for q = 1
(iii) ATA − comb where a simple average of the forecasts from the two models in (i) and

(ii) is used as a forecast

Reseasonalized forecasts are produced when necessary for all versions for as many steps
ahead as required. The results are given in Tables 1- 7.

Table 1. Average symmetric MAPE across different forecast horizons: all 3003 series

.

Forecasting horizons Averages

Method 1 2 3 4 5 6 8 12 15 18 1-4 1-6 1-8 1-12 1-15 1-18

Naive2 10.5 11.3 13.6 15.1 15.1 15.9 14.5 16.0 19.3 20.7 12.62 13.57 13.76 14.24 14.81 15.47
Single 9.5 10.6 12.7 14.1 14.3 15.0 13.3 14.5 18.3 19.4 11.73 12.71 12.84 13.13 13.67 14.32

Holt 9.0 10.4 12.8 14.5 15.1 15.8 13.9 14.8 18.8 20.2 11.67 12.93 13.11 13.42 13.95 14.60
B-J automatic 9.2 10.4 12.2 13.9 14.0 14.6 13.0 14.1 17.8 19.3 11.42 12.39 12.52 12.78 13.33 13.99

ForecastPro 8.6 9.6 11.4 12.9 13.3 14.2 12.6 13.2 16.4 18.3 10.64 11.67 11.84 12.12 12.58 13.18
THETA 8.4 9.6 11.3 12.5 13.2 13.9 12.0 13.2 16.2 18.2 10.44 11.47 11.61 11.94 12.41 13.00

RBF 9.9 10.5 12.4 13.4 13.2 14.1 12.8 14.1 17.3 17.8 11.56 12.26 12.40 12.76 13.24 13.74
ForcX 8.7 9.8 11.6 13.1 13.2 13.8 12.6 13.9 17.8 18.7 10.82 11.72 11.88 12.21 12.80 13.48

ETS 8.8 9.8 12.0 13.5 13.9 14.7 13.0 14.1 17.6 18.9 11.04 12.13 12.32 12.66 13.14 13.77

AT A(p, 0) 8.9 10.0 12.1 13.7 13.9 14.7 12.8 13.9 17.3 18.9 11.16 12.21 12.34 12.64 13.13 13.77
AT A(p, 1) 8.4 9.7 11.5 12.9 13.6 14.2 12.9 15.4 18.9 20.9 10.64 11.72 11.94 12.66 13.32 14.09

AT A − comb 8.5 9.6 11.4 12.8 13.0 13.6 12.0 13.1 16.3 17.4 10.56 11.47 11.58 11.94 12.40 12.94
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Table 2. Average symmetric MAPE across different forecast horizons: 862 sea-
sonal series

.

Forecasting horizons Averages

Method 1 2 3 4 5 6 8 12 15 18 1-4 1-6 1-8 1-12 1-15 1-18

Naive2 8.0 8.1 9.5 9.5 9.9 11.5 12.1 11.0 14.0 15.5 8.77 9.41 10.12 10.54 10.91 11.40
Single 7.1 7.4 8.8 8.7 9.3 10.9 11.3 10.7 13.1 14.6 8.02 8.71 9.42 9.78 10.13 10.62

Holt 6.5 6.9 8.2 8.4 9.4 10.6 11.2 11.5 13.2 15.3 7.50 8.33 9.15 9.66 10.09 10.67
B-J automatic 7.1 7.4 8.0 8.8 9.2 10.3 10.5 10.5 13.3 14.5 7.82 8.46 9.03 9.31 9.79 10.37

ForecastPro 6.2 6.6 7.5 8.1 8.4 9.7 10.0 9.6 11.5 13.1 7.12 7.76 8.38 8.64 8.98 9.45
THETA 6.5 6.9 7.8 8.0 8.9 10.2 9.9 10.2 12.0 13.6 7.30 8.05 8.64 9.03 9.37 9.84

RBF 8.0 8.0 8.7 8.6 8.7 10.1 10.5 10.6 12.4 13.3 8.30 8.68 9.23 9.59 9.92 10.29
ForcX 6.4 6.8 7.6 8.3 8.6 10.0 10.5 10.0 12.5 13.7 7.26 7.93 8.63 8.93 9.35 9.86

ETS 6.2 6.4 7.7 8.2 8.9 10.2 10.6 10.1 12.0 14.0 7.12 7.93 8.67 9.01 9.35 9.87

AT A(p, 0) 6.5 6.9 8.0 8.3 9.2 10.9 11.1 10.7 12.3 14.2 7.45 8.30 9.09 9.44 9.75 10.22
AT A(p, 1) 6.2 7.0 7.7 8.0 9.1 10.2 10.2 10.8 12.3 14.0 7.23 8.03 8.69 9.20 9.59 10.09

AT A − comb 6.3 6.8 7.6 7.9 8.9 10.2 10.3 10.4 11.8 13.4 7.18 7.97 8.66 9.05 9.36 9.81

Table 3. Average symmetric MAPE across different forecast horizons: 2141 non-
seasonal series

.

Forecasting horizons Averages

Method 1 2 3 4 5 6 8 12 15 18 1-4 1-6 1-8 1-12 1-15 1-18

Naive2 11.5 12.6 15.3 17.3 17.1 17.5 15.9 19.2 22.8 24.1 14.17 15.22 15.32 15.97 16.73 17.54
Single 10.4 11.9 14.3 16.3 16.3 16.5 14.5 17.0 21.8 22.5 13.22 14.28 14.30 14.70 15.40 16.21

Holt 10.0 11.9 14.8 17.4 18.1 18.5 16.2 17.8 23.5 24.8 13.52 15.10 15.23 15.69 16.43 17.26
B-J automatic 10.0 11.6 13.9 15.9 16.0 16.4 14.4 16.4 20.7 22.4 12.87 13.97 14.04 14.43 15.09 15.85

ForecastPro 9.6 10.8 13.0 14.9 15.3 15.9 14.1 15.6 19.5 21.7 12.05 13.25 13.34 13.78 14.37 15.09
THETA 9.2 10.6 12.7 14.3 14.9 15.4 13.2 15.1 19.0 21.2 11.71 12.85 12.90 13.32 13.91 14.62

RBF 10.6 11.6 13.9 15.3 15.0 15.6 14.1 16.3 20.4 20.7 12.87 13.69 13.78 14.27 14.88 15.51
ForcX 9.6 11.1 13.2 15.1 15.1 15.4 13.8 16.5 21.2 22.0 12.25 13.24 13.29 13.77 14.51 15.34

ETS 9.9 11.2 13.7 15.6 15.9 16.6 14.4 16.7 21.3 22.2 12.61 13.83 13.91 14.39 15.03 15.77

AT A(p, 0) 9.8 11.3 13.7 15.8 15.8 16.3 13.8 16.0 20.6 21.9 12.66 13.79 13.76 14.16 14.81 15.58
AT A(p, 1) 9.3 10.8 13.1 14.9 15.4 15.8 14.4 18.4 23.2 25.4 12.02 13.21 13.36 14.30 15.17 16.15

AT A − comb 9.3 10.7 12.9 14.7 14.7 15.0 12.9 14.8 19.3 19.9 11.92 12.88 12.86 13.31 13.90 14.55

Table 4. Average symmetric MAPE across different forecast horizons: 645 annual series

.

Forecasting horizons Averages

Method 1 2 3 4 5 6 1-4 1-6

Naive2 8.5 13.2 17.8 19.9 23.0 24.9 14.85 17.88
Single 8.5 13.3 17.6 19.8 22.8 24.8 14.82 17.82

Holt 8.3 13.7 19.0 22.0 25.2 27.3 15.77 19.27
B-J automatic 8.6 13.0 17.5 20.0 22.8 24.5 14.78 17.73

ForecastPro 8.3 12.2 16.8 19.3 22.2 24.1 14.15 17.14
THETA 8.0 12.2 16.7 19.2 21.7 23.6 14.02 16.90

RBF 8.2 12.1 16.4 18.3 20.8 22.7 13.75 16.42
ForcX 8.6 12.4 16.1 18.2 21.0 22.7 13.80 16.48

ETS 9.3 13.6 18.3 20.8 23.4 25.8 15.48 18.53

AT A(p, 0) 9.1 13.5 17.6 19.9 22.8 25.1 15.04 18.00
AT A(p, 1) 8.3 12.2 16.8 18.6 21.5 23.3 13.95 16.78

AT A − comb 8.4 12.3 16.5 18.3 21.0 22.7 13.87 16.54
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Table 5. Average symmetric MAPE across different forecast horizons: 756 quar-
terly series.

.

Forecasting horizons Averages

Method 1 2 3 4 5 6 8 1-4 1-6 1-8

Naive2 5.4 7.4 8.1 9.2 10.4 12.4 13.7 7.55 8.82 9.95
Single 5.3 7.2 7.8 9.2 10.2 12.0 13.4 7.38 8.63 9.72

Holt 5.0 6.9 8.3 10.4 11.5 13.1 15.6 7.67 9.21 10.67
B-J automatic 5.5 7.4 8.4 9.9 10.9 12.5 14.2 7.79 9.10 10.26

ForecastPro 4.9 6.8 7.9 9.6 10.5 11.9 13.9 7.28 8.57 9.77
THETA 5.0 6.7 7.4 8.8 9.4 10.9 12.0 7.00 8.04 8.96

RBF 5.7 7.4 8.3 9.3 9.9 11.4 12.6 7.69 8.67 9.57
ForcX 4.8 6.7 7.7 9.2 10.0 11.6 13.6 7.12 8.35 9.54

ETS 5.0 6.6 7.9 9.7 10.9 12.1 14.2 7.32 8.71 9.94

AT A(p, 0) 5.2 7.1 7.8 9.7 10.1 11.8 13.5 7.45 8.62 9.71
AT A(p, 1) 5.3 6.8 7.6 9.1 9.9 11.0 12.4 7.19 8.28 9.24

AT A − comb 5.1 6.8 7.5 9.0 9.6 10.9 12.3 7.10 8.13 9.07

Table 6. Average symmetric MAPE across different forecast horizons: 1428
monthly series.

.

Forecasting horizons Averages

Method 1 2 3 4 5 6 8 12 15 18 1-4 1-6 1-8 1-12 1-15 1-18

Naive2 15.0 13.5 15.7 17.0 14.9 14.4 15.6 16.0 19.3 20.7 15.30 15.08 15.26 15.55 16.16 16.89
Single 13.0 12.1 14.0 15.1 13.5 13.1 13.8 14.5 18.3 19.4 13.53 13.44 13.60 13.83 14.51 15.32

Holt 12.2 11.6 13.4 14.6 13.6 13.3 13.7 14.8 18.8 20.2 12.95 13.11 13.33 13.77 14.51 15.36
B-J automatic 12.3 11.7 12.8 14.3 12.7 12.3 13.0 14.1 17.8 19.3 12.78 12.70 12.86 13.19 13.95 14.80

ForecastPro 11.5 10.7 11.7 12.9 11.8 12.0 12.6 13.2 16.4 18.3 11.72 11.78 12.02 12.43 13.07 13.85
THETA 11.2 10.7 11.8 12.4 12.2 12.2 12.7 13.2 16.2 18.2 11.54 11.75 12.09 12.48 13.09 13.83

RBF 13.7 12.3 13.7 14.3 12.3 12.5 13.5 14.1 17.3 17.8 13.49 13.14 13.36 13.64 14.19 14.76
ForcX 11.6 11.2 12.6 14.0 12.4 12.0 12.8 13.9 17.8 18.7 12.32 12.28 12.44 12.81 13.58 14.44

ETS 11.5 10.6 12.3 13.4 12.3 12.3 13.2 14.1 17.6 18.9 11.93 12.05 12.43 12.96 13.64 14.45

AT A(p, 0) 11.5 10.8 12.6 13.8 12.6 12.5 12.9 13.9 17.3 18.9 12.20 12.33 12.78 12.98 13.67 14.49
AT A(p, 1) 11.0 10.9 12.2 13.4 12.8 12.8 13.8 15.4 18.9 20.9 11.86 12.16 12.60 13.87 14.39 15.33

AT A − comb 11.1 10.7 12.1 13.1 12.0 11.9 12.4 13.1 16.3 17.4 11.74 11.81 12.04 12.48 13.07 13.75

Table 7. Average symmetric MAPE across different forecast horizons: 174 other series.

.

Forecasting horizons Averages

Method 1 2 3 4 5 6 8 1-4 1-6 1-8

Naive2 2.2 3.6 5.4 6.3 7.8 7.6 9.2 4.38 5.49 6.30
Single 2.1 3.6 5.4 6.3 7.8 7.6 9.2 4.36 5.48 6.29

Holt 1.9 2.9 3.9 4.7 5.8 5.6 7.2 3.32 4.13 4.81
B-J automatic 1.8 3.0 4.5 4.9 6.1 6.1 7.5 3.52 4.38 5.06

ForecastPro 1.9 3.0 4.0 4.4 5.4 5.4 6.7 3.31 4.00 4.60
THETA 1.8 2.7 3.8 4.5 5.6 5.2 6.1 3.20 3.93 4.41

RBF 2.7 3.8 5.2 5.8 6.9 6.3 7.3 4.38 5.12 5.60
ForcX 2.1 3.1 4.1 4.4 5.6 5.4 6.5 3.42 4.10 4.64

ETS 2.0 3.0 4.0 4.4 5.4 5.1 6.3 3.37 3.99 4.51

AT A(p, 0) 2.1 3.5 5.4 6.3 7.8 7.5 9.1 4.34 5.45 6.26
AT A(p, 1) 1.9 2.9 4.1 4.8 6.0 5.7 7.1 3.46 4.26 4.87

AT A − comb 1.9 3.0 4.5 5.1 6.3 5.8 6.8 3.62 4.42 4.94
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The results from all 3003 data sets can be summarized as in Table 1. Here when
the methods are compared based on the average sMAPE for forecasting horizons 1-18,
ATA − comb stands out from the rest, ranking first. It performs better than not just
the pure approaches like ETS and ARIMA, it outperforms all existing methods. It is
worth noting that ATA − comb is more accurate than ETS and ARIMA for all individual
forecasting horizons, not just on average.

The success of ATA is evident even when just the results from the simplest version of
the method (ATA(p, 0)) are studied. This simple version performs better than SES for
all forecasting horizons and on average and its average sMAPE for horizons 1 − 18 is the
same as ETS’ sMAPE (13.77).

ATA method does not perform as well when the results are averaged just for the seasonal
series. This can be attributed to the fact that the ATA models we considered here do
not model seasonality like the other competitors. For non-seasonal data however, ATA
models inarguably perform as well as Theta and much better than the other methods.

For annual data ATA−comb performs close to RBF and ForecastX. For quarterly data,
ATA − comb ranks second right after Theta when sMAPE is averaged for horizons 1 − 4,
1 − 6 and 1 − 8 and for monthly data it outperforms all other methods when errors are
averaged for horizons 1 − 18.

4. Discussion
In this study a combination of forecasts from the ATA method is proposed and the

proposed approach’s forecasting performance is investigated. Even though the models from
the ATA method have similar form to their counter ES models, the proposed combination’s
predictive performance is much better for the M3 data sets. The optimum parameter
values, forecasts and errors for the proposed method can be reached from the website
https://atamethod.wordpress.com.

The results presented in this paper do not reflect the end performance of ATA and on
the contrary these results are just the initial findings. In this paper we competed with just
one ATA model (linearly trended with additive errors) and combined forecasts from only
two parameterizations of it. Incorporating other types of trend, seasonality, error terms
and using different accuracy measures will surely increase the method’s performance. Like
other approaches, the method can also benefit from certain transformations [21], other
types of more involved combinations, outlier detection and other more complicated model
selection strategies. The fact that this simple combination can perform better than existing
methods is fascinating and this further strengthens the idea that simplicity is indeed a
prerequisite for forecasting accuracy.
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