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Abstract
In this article, we have derived the distribution of a linear combination of two independent
exponential random variables. The parameter estimates of the proposed distribution are
obtained by using the maximum likelihood estimation method and the method of moments
from fuzzy data. The findings in this paper show that estimation expertise is still valuable
to any organization based on the precise and certain information. The proposed research
consisted in developing an estimation technique using fuzzy logic and this is often measured
in terms of linguistic values, which is very helpful and beneficial for the certain and precise
results.
Mathematics Subject Classification (2010). 62A86
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1. Introduction
The distributions of the linear combination of random variables arise in many practi-

cal problems and have been widely studied in many important areas of research. It has
got the significant attention of researchers due to its better and reliable results in gen-
erating new probability distributions from classical ones. It has been studied by several
researchers, among them, Kibria and Nadarajah [5] for the distribution of linear com-
bination of Rayleigh and Exponential random variables, Nadarajah and Kotz [7] for the
distribution of the linear combination of Gamma and Exponential random variables, Shakil
and Kibria [10] for the distribution of linear combination of Rayleigh and Gamma random
variable and Joarder et al. [4] for the linear combination of chi-square associated random
variables are remarkable. The statistical inference of existing and new generalized distri-
bution has been considered as a major subject of statistical researchers and lot of work has
been done in this content for various real data sets that are assumed to be exact numbers,
vectors or classical functions. But in real life these are mostly not precise numbers or
vectors; it is often found less or more imprecise or vague which is also called fuzzy and to
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deal with such kind of data it is required to implement fuzzy logics in order to obtain more
significant results. The estimation of parameters using fuzzy logics have been studied by
numerous researchers in which, Pak et al. [8] for the inference of the Weibull distribution
when the collected information is in the form of fuzzy numbers, Denoeux [1] for a method
of estimation for the parameters of a parametric statistical model when the observations
are available as fuzzy numbers and Pak [9] for an investigation of the Bayesian and maxi-
mum likelihood inference for the parameter of Lindley distribution when the observations
are fuzzy, Dalkilic and Kula [2] for the parameter estimation of Pareto distribution and
type-II fuzzy logic are considered as significant.

In this paper, we have derived the distribution of a linear combination Z = αX +
βY ,when X and Y are independent exponential random variables and investigate the
maximum likelihood estimation and the method of moments estimation for the proposed
distribution when the available information is presented in the form of fuzzy numbers.
In Section 2, the derivations of cumulative distribution function and probability density
function of the proposed linear combination of independent exponential random variables
and their corresponding plots are presented. In Section 3, we discuss the computation of
maximum likelihood estimate of the parameter λ by introducing a generalized likelihood
function based on fuzzy data. Since, there is no closed form for the maximum likelihood
estimate; therefore, we use Newton Raphson algorithm to obtain the maximum likelihood
estimate of the parameter λ. The estimation of parameter using method of moments
is given in section 4. For an application, an example is considered in Section 5. Some
concluding remarks are provided in Section 6.

2. Distribution of the linear combination
In this paper we have constructed a linear combination of the form,

Z = αX + βY. (2.1)

where α and β represent the real constants, and Xand Y both represent the independent
exponential random variables. The linear combination of two independent exponential
random variables Z is considered as a new random variable.

A random variable X is considered as an independent exponential random variable and
its probability density function is represented as

fX(x) =
{

λe−λx, x > 0; λ > 0
0, x < 0.

(2.2)

where λ denotes the rate parameter. The cumulative distribution function of X is given
as

FX(x) = 1 − e−λx. (2.3)
Similary, Y random variable is also considered as an exponential random variable and its
probability density function is given by

fY (y) =
{

λe−λy, y > 0; λ > 0
0, y < 0.

(2.4)

Its cumulative distribution function is represented as;

FY (y) = 1 − e−λy. (2.5)

The explicit expressions for the probability density function and cumulative distribution
functions are represented in Theorem 1.
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Theorem 2.1. Let X and Y are distributed according to (2.2) and (2.4). The cumulative
distribution function of a new random variable Z = αX+βY which is a linear combination
of two independent exponential random variables, can be represented as

FZ(z) = 1 − α

(α − β)
e− λz

α + β

(α − β)
e

− λz
β . (2.6)

for z > 0, λ > 0, α > 0, β > 0 and α ̸= β. The corresponding probability density function
is expressed as

fZ(z) = λ

(α − β)
e− λz

α − λ

(α − β)
e

− λz
β . (2.7)

for z > 0, λ > 0, α > 0, β > 0 and α ̸= β .

Proof. If z > 0, α > 0 and β > 0 then one can write

FZ(z) = Pr

(
αX + βY ≤ z

)
, (2.8)

FZ(z) = Pr

(
X ≤ z − βY

α

)
, (2.9)

FZ(z) =

z
β∫

0

FX

(
z − βy

α

)
fY (y)dy. (2.10)

The probability density function is obtained by differentiation. �

In figure 1 below, we have presented the plots of cumulative distribution function and
probability density function of the proposed distribution of a linear combination of two
independent exponential random variables, by assuming different values of real constants
α and β, and the parameter λ. The effects of constants and parameter can easily be seen
from these graphs. It is evident from these plots that the distribution of the proposed
linear combination is positively skewed and it can also be observed that the tails of the
given probability density function becomes heavier as the value of parameter λ becomes
larger.

Figure 1. PDF plots of linear combination of two independent exponential ran-
dom variables at α = 1, β= 2 and λ = 0.5, 0.10, 0.15 (left) and CDF plots at α
= 1, β = 2 and λ = 0.5, 0.10, 0.15 (right).
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3. Maximum likelihood estimation
The method of maximum likelihood estimation is the most frequently used method for

the estimation of parameters and was established by Sir Ronald A. Fisher in 1922 (see, for
example,Fisher [3]). This method uses all kind of censored data and yields the estimator
with excellent statistical characteristics thats why is assumed to be more vigorous and
flexible method of estimation.

For maximum likelihood estimation of the parameter we have assumed that Z is a
random sample of size n from our proposed distribution with probability density function
given by (2.7).

Let Z = (Z1, Z2, Z3, ..., Zn)represents the corresponding random vector. If a realization
z = (z1, z2, z3, ..., zn) of random vector Z was identified exactly, we could find the complete
data likelihood function of our proposed distribution as follows,

L(λ; z) =
n∏

i=1

(
fz(zi)

)
. (3.1)

If we consider the situation where z is not observed exactly and only limited knowledge
about z exists as a fuzzy subset z̃ with a membership function µz̃(z) which is a Borel
measureable function. For such type of situations, the fuzzy information z̃ can be rec-
ognized by encoding the incomplete information of observer about an approximation z
of a random vector Z and a membership function µz̃(z) of z̃ is observed in the form of
possibility distribution which is taken as soft constraint on an unidentified measure z.

According to Zadeh [11] the probability of a fuzzy number or fuzzy set can be measured
by using the classical approach of probability. Let event W be a fuzzy number defined in
the space Rn such that,

W =
{
(x, µW (x)) |x ∈ Rn}

. (3.2)
The probability for this fuzzy event can be described as follows;

P (W ) =
∫
W

µW (x)dP = EP (µW (x)). (3.3)

Once z̃ is known and considering its given membership function as a Borel measureable
function, one can obtain the probability of z̃ by using the above definition of the probability
of a fuzzy set.By considering expression (2.7), the likelihood function of observed data is
expressed as,

Lo(λ; z̃) =
∫
z̃

f(z; λ)µz̃(z)dz. (3.4)

Since the observations vector z is a realization of random vector Z which is an inde-
pendently identically distributed random vector and considering the joint membership
function µz̃(z) to be decomposable such as,

µz̃(z) = µz̃1
(z1) × µz̃2

(z2) × ... × µz̃n
(zn). (3.5)

The above likelihood function from expression (3.4) can be written as,

Lo(λ; z̃) =
n∏

i=1

∫
z̃

f(z; λ)µz̃i
(z)dz, (3.6)

Lo(λ; z̃) =
n∏

i=1

∫
z̃

λ

α − β

(
e− λz

α − e
− λz

β
)
µz̃i

(z)dz. (3.7)

The observed- data log likelihood is represented as,

L∗(λ; z̃) = log Lo(λ; z̃), (3.8)
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= log
{

n∏
i=1

∫
z̃

λ

α − β

(
e− λz

α − e
− λz

β
)
µz̃i

(z)dz

}
, (3.9)

L∗(λ; z̃) = n log(λ) − n log(α − β) +
n∑

i=1
log

∫
z̃

(
e− λz

α − e
− λz

β
)
µz̃i

(z)dz. (3.10)

By maximizing the log-likelihood function L∗(λ; z̃) we can obtain the maximum likelihood
estimate of unknown parameter λ.To obtain the estimate of parameter λ we have taken
the partial derivative of equation (3.10) and equating to zero the resulting equation is
given as,

∂

∂λ
L∗(λ; z̃) = n

λ
−

n∑
i=1

∫
z̃

(
z
αe− λz

α − z
β e

− λz
β

)
µz̃i

(z)dz

∫
z̃

(
e− λz

α − e
− λz

β
)
µz̃i

(z)dz
= 0. (3.11)

Since we cannot obtain closed form of the solution to the likelihood equation (3.11), there-
fore we have considered the Newton Raphson iterative procedure for the maximum likeli-
hood estimate of the parameter λ.For continuing with Newton Raphson method we have
also obtained the second-order partial derivative of log-likelihood function with respect to
parameter λ which is given as,

∂2

∂λ2 L∗(λ; z̃) = − n

λ2 +
n∑

i=1

∫
z̃

(
z2

α2 e− λz
α − z2

β2 e
− λz

β
)
µz̃i

(z)dz

∫
z̃

(
e− λz

α − e
− λz

β
)
µz̃i

(z)dz

−
n∑

i=1

[∫
z̃

(
z
αe− λz

α − z
β e

− λz
β

)
µz̃i

(z)dz

∫
z̃

(
e− λz

α − e
− λz

β
)
µz̃i

(z)dz

]2

. (3.12)

3.1. Newton Raphson algorithm
Newton Raphson iterative algorithm is very significant technique for the estimation of

unknown parameters of a likelihood function when there is no closed form of the likelihood
equations exists. To obtain the estimate of parameter λ, the Newton Raphson formula is
represented as,

λ(k+1) = λ(k) −
(

∂L∗(λ; z̃)
∂λ

∣∣∣∣
λ=λ(k)

)(
∂2L∗(λ; z̃)

∂λ2

∣∣∣∣
λ=λ(k)

)−1
. (3.13)

where k denotes the number of iterations.
For all iterations of the Newton Raphson algorithm, calculations of the derivatives based

on fuzzy data are very complicated and tedious; therefore we have used MATLAB (R 2014)
software to avoid this complexity.

4. Method of moments estimation
The method of moments consists of determining some moments of the sample observa-

tions and comparing them with the associated moments of the specified distribution. The
proposed distribution of the linear combination of two independent exponential random
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variables has only one parameter that is λ, therefore we have considered only one equation
that is represented as,

µ′
1 = m′

1 (4.1)
where µ′

1 denotes the first population moment about zero and it is obtained from the
moment generating function of the proposed distribution that is represented as,

MZ(t) = λ

(α − β)

{ −α

(αt − λ)
+ β

(βt − λ)

}
. (4.2)

Using expression (4.2), the first population moment about zero is given as

µ′
1 = α + β

λ
, (4.3)

Similarly, m′
1 represents the first sample moment about zero and is expressed as,

m′
1 = 1

n

n∑
i=1

Zi (4.4)

Putting results from equations (4.3) and (4.4) in equation (4.1) we have obtained,

α + β

λ
= 1

n

n∑
i=1

Zi, (4.5)

If we consider the same situation which we have already discussed in section 3 that if
z is not observed exactly and only limited knowledge about z exists as a fuzzy subset z̃
with a membership function µz̃(z) which is a Borel measureable function then the fuzzy
information z̃ can be recognized by encoding the incomplete information of observer about
an approximation z of a random vector Z and a membership function µz̃(z) of z̃ is observed
in the form of possibility distribution which is taken as soft constraint on an unidentified
measure z.

Considering the above situation the moment estimator of the proposed distribution is
obtained by replacing Zi with its conditional expectation, then expression (4.5) is repre-
sented as,

α + β

λ
= 1

n

n∑
i=1

Eλ(Z|z̃i). (4.6)

where Eλ(Z|z̃i) represents the conditional expectation.
According to definition of the probability of a fuzzy event which is given in expression

(3.3) the conditional expectation is obtained as follows;

Eλ(Z|z̃i) =

∫
z̃

zf(z)µz̃i
(z)dz

P (z̃i)
. (4.7)

Using expression (2.7), the above expression is given as,

Eλ(Z|z̃i) =

∫
z̃

z
(
e− λz

α − e
− λz

β
)
µz̃i

(z)dz

∫
z̃

(
e− λz

α − e
− λz

β
)
µz̃i

(z)dz
. (4.8)

Putting result from equation (4.8) in equation (4.6) we have obtained,

α + β

λ
=

∫
z̃

z
(
e− λz

α − e
− λz

β
)
µz̃i

(z)dz

∫
z̃

(
e− λz

α − e
− λz

β
)
µz̃i

(z)dz
. (4.9)



Inference for the linear combination of two independent exponential random variables 1865

Since, we cannot obtain closed form of the solution to the equation (4.9) therefore we have
considered an iterative numerical procedure to estimate the parameter λ.

4.1. Iterative numerical method
The iterative numerical procedure for the estimation of the moment estimate of param-

eter λ is described as follows;
i. First we consider the initial estimate λ(0) of the parameter λ with k = 0, where k

denotes the number of iterations.
ii. In the (k + 1)th iteration, we first compute,

Eλ(k)(Z|z̃i) =

∫
z̃

z
(
e− λ(k)z

α − e
− λ(k)z

β
)
µz̃i

(z)dz

∫
z̃

(
e− λ(k)z

α − e
− λ(k)z

β
)
µz̃i

(z)dz

. (4.10)

iii. Using equation(4.9), we solve this equation for λ to get the solution as, λ(k+1) which
is represented as,

λ(k+1) = n(α + β)∑n
i=1 Eλ(k)(Z|z̃i)

. (4.11)

iv. Putting k = k + 1, repeat from second step to third step until convergence arises.

5. Application example
To expose the application of our proposed methods we have considered the lifetimes

data of 23 identical batteries that has been originally used by Khoolenjani and Shahsanaie
[6]. It has considered that life-testing experiment is conducted in which 23 identical bat-
teries are placed on test and the unknown lifetime of each battery may be considered as
a realization of each sample value that is obtained by random sampling from an entire
population of batteries, which is distributed as Exponential by an unknown parameter of
λ. A tested battery may be considered as failed, or nonconforming, when at least one
value of its parameters decreases than its some specied limits. However, in practice one
cannot precisely measure all the parameters and define the moment of failure. Therefore,
the observed lifetimes of 23 identical batteries (in 100h) are reported in the form of lower
bounds, upper bounds and as a point estimate which are as follows:

(2.90, 3.63, 3.99), (5.24, 6.55, 7.20), (6.56, 8.20, 9.02), (7.14, 8.93, 9.82),
(11.60, 14.51, 15.96), (12.14, 15.18, 16.69), (12.65, 15.82, 17.40), (13.24, 16.56, 18.21),
(13.67, 17.09, 18.79), (13.88, 17.36, 19.09), (15.64, 19.56, 21.51), (17.40, 21.76, 23.93),
(17.05, 21.32, 23.45), (17.80, 22.26, 24.48), (19.01, 23.77, 26.14), (19.34, 24.18, 26.59),
(23.13, 28.92, 31.81), (23.34, 29.18, 32.09), (26.07, 32.59, 35.84), (30.29, 37.87, 41.65),
(43.97, 54.97, 60.46), (48.09, 60.12, 66.13), (73.48, 91.86, 98.04).

For this data set, each triplet is modeled by a triangular fuzzy number. We have used
MATLAB (R 2014) software to obtain the maximum likelihood estimates by using Newton
Raphson algorithm and iterative numerical algorithm to obtain the method of moments
estimates for various assumed values of constants α and β. The results of estimates are
given in table 1.
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Table 1. Maximum likelihood estimates and method of moments estimates

Constants of Linear Combination Estimates

α β
Maximum
Likelihood
Estimates

Method of
Moments
Estimates

2 1 0.1216 0.1218
2 0.5 0.0988 0.1014
2 0.25 0.0870 0.0912

1.5 1 0.1016 0.1015
1.5 0.5 0.0801 0.0811
1.5 0.25 0.0680 0.0710
1 0.5 0.0608 0.0609
1 0.25 0.0494 0.0507

6. Conclusion
The distributions of linear combination of random variables have various important ap-

plications in different fields of life. It has got the significant attention due to its better and
reliable results in modeling real data sets that are assumed to be exact numbers, vectors
or classical functions. But in real life these are mostly not precise numbers or vectors; it is
often found less or more imprecise or fuzzy. In order to obtain more significant results from
such kind of data it is better to implement fuzzy logics. In this article, we have derived
the distribution of a linear combination of two independent exponential random variables
and obtained its expressions for cumulative distribution function and probability density
function. The parameter estimates of the proposed distribution are obtained by using the
maximum likelihood estimation method via Newton Raphson algorithm and the method
of moments estimates by using iterative numerical algorithm when the given information
is available in the form of fuzzy numbers. It has been found that the proposed distribution
of linear combination of two exponential random variables gives more better performance
for the fuzzy data for which exponential distribution is considered as more suitable dis-
tribution.It has been also found from the results that both methods of estimations for
proposed distribution approximately give the same estimates of parameter so one can use
any method of estimation to obtain more reliable results towards applications in different
fields of life such as biological sciences, reliability engineering, information science, hy-
drology etc. The finding of this paper will be of great significant for many researchers as
the proposed distribution can be extended to more than two random variables in order to
obtain more better performance from fuzzy data.It can be concluded that the combination
of classical and fuzzy approach can be used to produce significant results for the analysis
of incomplete or partial information.

Acknowledgment. We would like to thank the referee for his or her important sugges-
tions.

References
[1] T. Denoeux, Maximum likelihood estimation from fuzzy data using the EM algorithm,

Fuzzy Sets and Systems 183 (1), 72-91, 2011.
[2] T.E. Dalkilic and K.S. Kula, Parameter Estimation for Pareto Distribution and Type-

II Fuzzy Logic, Gazi University Journal of Science 30 (1), 251-258, 2017.
[3] R.A. Fisher, On the Mathematical Foundations of Theoretical Statistics, Philos. Trans.

Roy. Soc. A 222, 309-368, 1922.



Inference for the linear combination of two independent exponential random variables 1867

[4] A.H. Joarder, M.H. Omar and A.K. Gupta, The Distribution of a Linear Combination
of Two Correlated Chi-Square Variables, Revista Colombiana de Estadistica 36 (2),
209-219, 2013.

[5] B.M.G. Kibria and S. Nadarajah, Reliability Modeling: Linear Combination and Ratio
of Exponential and Rayleigh, IEEE Transactions On Reliability 56 (1), 102-105, 2007.

[6] N.B. Khoolenjani and F. Shahsanaie, Estimating the parameter of Exponential distri-
bution under Type-II censoring from fuzzy data, J. Stat. Theory Appl. 15 (2), 181-195,
2016.

[7] S. Nadarajah and S. Kotz, On the Linear Combination of Exponential and Gamma
Random Variables, Entropy 7 (2), 161-171, 2005.

[8] A. Pak, G.A. Parham and M. Saraj, Inference for the Weibull Distribution Based on
Fuzzy Data, Revista Colombiana de Estadistica 36 (2), 337-356, 2013.

[9] A. Pak, Statistical Inference for the parameter of Lindley distribution based on fuzzy
data, Braz. J. Probab. Stat. (2), 1-16, 2016.

[10] M. Shakil and B.M.G. Kibria, Exact Distributions of the Linear Combination of
Gamma and Rayleigh Random Variables, Austrian Journal of Statistics 38 (1), 33-
44, 2009.

[11] L.A. Zadeh, Probability Measures of Fuzzy Events, J. Math. Anal. Appl. 23, 421-427,
1968.

Appendix
Construction of membership function
The triangular membership functions for numerical results have been constructed by

using triangular membership of fuzzy number z̃ = (s1, s2, s3) that was represented as

µz̃(z) =


z−s1
s2−s1

, s1 6 z 6 s2
s3−z
s3−s2

, s2 6 z 6 s3

0 otherwise.

For first triangular fuzzy number z̃1 = (2.90, 3.63, 3.99) its membership function has been
constructed as;

µz̃1
(z) =


z−2.90

3.63−2.90−s1
, 2.90 6 z 6 3.63

3.99−z
3.99−3.63 , 3.63 6 z 6 3.99
0 otherwise.

Similarly, we have constructed all the membership functions of remaining triangular fuzzy
numbers.
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Framework of numerical calculations
Framework of Newton Raphson algorithm for the numerical calculations of the parame-

ter estimates from the distribution of a linear combination of two independent exponential
random variables is presented as
1. a: Alpha (α).
2. b: Beta (β).
3. lambda: Initial guess for parameter (λ).
4. n: Sample size.
5. z: Random variable from proposed distribution.
6. In order to avoid any complexity we separately integrated all the terms of equation

(3.12) w.r.t given fuzzy membership functions.
7. t1:

(
z
αe− λz

α − z
β e

− λz
β

)
from equation (3.12).

8. gi : Integration of "t1" with respect to first limit of given fuzzy membership function,
where i= 1,3,5,...45.

9. gj : Integration of "t1" with respect to second limit of given fuzzy membership function,
where j= 2,4,6,...46.

10. pk= (gi + gj) which is used to combine both limits of a single fuzzy membership
function, where k=1,2,3,...23.

11. t2:
(
e− λz

α − e
− λz

β
)

from equation (3.12).
12. hi : Integration of "t2" with respect to first limit of given fuzzy membership function,

where i= 1,3,5,...45.
13. hj : Integration of "t2" with respect to second limit of given fuzzy membership function,

where j= 2,4,6,...46.
14. mk= (hi + hj) which is used to combine both limits of a single fuzzy membership

function, where k=1,2,3,...23.
15. t3=

(
z2

α2 e− λz
α − z2

β2 e
− λz

β
)

from equation (3.12).
16. ri : Integration of "t1" with respect to first limit of given fuzzy membership function,

where i= 1,3,5,...45.
17. rj : integration of "t1" with respect to second limit of given fuzzy membership function,

where j= 2,4,6,...46.
18. wk= (ri + rj) which is used to combine both limits of a single fuzzy membership

function, where k=1,2,3,...23.
19. upperterm1: All the integrated values of "t1" with respect to given fuzzy membership

functions.
20. lowerterm: All the integrated values of "t2" with respect to given fuzzy membership

functions.
21. upperterm2: All the integrated values of "t3" with respect to given fuzzy membership

functions.
22. function: Represents equation (3.11).
23. dervfunction: Represents equation (3.12).
24. lambdanew: Represents equation (3.13).
25. We perform this program until convergence of estimate occurs.
26. a=input(’Enter value of alpha:’);
27. b=input(’Enter value of beta:’);
28. lambda=input(’Enter value of initial guess:’);
29. n=23;
30. syms z
31. % exp represents exponent
32. t1=((z/a)*exp(-lambda*z/a)-(z/b)*exp(-lambda*z/b));
33. % For first fuzzy number z̃1 = (2.90, 3.63, 3.99) we will integrate "t1", "t2" and "t3" as

follows
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34. g1=int((((z-2.90)/(3.63-2.90))*t1), ’z’,2.90,3.63);
35. g2=int((((3.99-z)/(3.99-3.63))*t1), ’z’,3.63,3.99);
36. p1=vpa(g1+g2); ( % vpa is used to convert results in decimal values);
37. t2=(exp(-lambda*z/a)-exp(-lambda*z/b));
38. h1=int((((z-2.90)/(3.63-2.90))*t2), ’z’,2.90,3.63);
39. h2=int((((3.99-z)/(3.99-3.63))*t2), ’z’,3.63,3.99);
40. m1=vpa(h1+h2);
41. t3=(((z∧2)/(a∧2))*exp(-lambda*z/a)-((z∧2)/(b∧2))*exp(-lambda*z/b));
42. r1=int((((z-2.90)/(3.63-2.90))*t3), ’z’,2.90,3.63);
43. r2=int((((3.99-z)/(3.99-3.63))*t3), ’z’,3.63,3.99);
44. w1=vpa(r1+r2);
45. Similarly, we calculate the same values for remaining fuzzy numbers and proceed as

follows:
46. upperterm1=[p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,p13,p14,

p15,p16,p17,p18,p19,p20,p21,p22,p23];
47. lowerterm=[m1,m2,m3,m4,m5,m6,m7,m8,m9,m10,m11,m12,m13,m14,m15,

m16,m17,m18,m19,m20,m21,m22,m23];
48. upperterm2=[w1,w2,w3,w4,w5,w6,w7,w8,w9,w10,w11,w12,w13,w14,w15,

w16,w17,w18,w19,w20,w21,w22,w23];
49. function= n/lambda-sum(upperterm1./lowerterm)
50. dervfunction=-n/(lambda∧2)+sum(upperterm2./lowerterm)- sum((upperterm1./lowerterm).∧2)
51. % (lambda estimation)
52. lambdanew = lambda - (function/dervfunction)
53. Answer=vpa(lambdanew,4) % (to convert answer in decimal points)


