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ON NEW BÉZIER BASES WITH SCHURER POLYNOMIALS
AND CORRESPONDING RESULTS IN APPROXIMATION

THEORY

FARUK ÖZGER

Abstract. A new type Bézier bases with λ shape parameters have been de-
fined [30, Ye et al., 2010]. We slightly modify these bases to establish new
Bézier bases with Schurer polynomials and λ shape parameters. We construct
a new type Schurer operators via defined new Bézier-Schurer bases. Also, we
study statistical convergence properties of these operators and obtain an esti-
mate for the rate of weighted A-statistical convergence. Moreover, we prove
two Voronovskaja-type theorems including a Voronovskaja-type approximation
theorem using weighted A-statistical convergence.

1. Extended Bézier bases

In computer aided geometric design and computer graphics parametric represen-
tations of surfaces and curves have extensively been used for modeling miscellaneous
surfaces. It is important which basis functions are used if we want to preserve the
shape of the curve or surface when we demonstrate a parametric surface or curve.
This is why Bernstein-Bézier curve and surface representation have an important
role in computer graphics. Bernstein basis functions are used to construct classical
Bézier curves since they have a simple structure to use. They have also received
attention for their utility in the meshing of curved geometries and the numerical
solution of partial differential equations. We refer to [15, 22, 29] for recent computer
graphics studies including Bézier curves or bases.
A new type Bézier bases with shape parameters λ were defined by Ye et al. in

2010 [30]. We slightly modify these bases to establish new Bézier bases with Schurer
polynomials, which were defined in [25], and shape parameters λ.
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Let d ≥ 0 be a given integer and shape parameters λ ∈ [−1, 1]. We define the
following Bézier-Schurer bases

s̃n,0(λ;x) = sn,0(x)− λ

n+ d+ 1
sn+1,1(x),

s̃n,i(λ;x) = sn,i(x) +
λ

(n+ d)2 − 1
[(n+ d− 2i+ 1)sn+1,i(x)

−(n+ d− 2i− 1)sn+1,i+1(x)] (i = 1, 2 . . . , n+ d− 1),

s̃n,n+d(λ;x) = sn,n+d(x)− λ

n+ d+ 1
sn+1,n+d(x), (1)

where fundamental Schurer polynomials sn,i(x) of degree n+ d defined as

sn,i(x) =

(
n+ d

i

)
xi (1− x)n+d−i (i = 0, 1, . . . , n+ d).

Lemma 1. New Bézier-Schurer bases have partition of unity property.

Proof. It is enough to show the equality
∑n+d
i=0 s̃n,i(λ, x) = 1 holds.

n+d∑
i=0

s̃n,i(λ, x) = sn,0(x)− λ

n+ d+ 1
sn+1,1(x) + sn,n+d(x)− λ

n+ d+ 1
sn+1,n+d(x)

+

n+d−1∑
i=1

[
sn,i(x) + λ

(
n+ d− 2i+ 1

(n+ d)2 − 1
sn+1,i(x)

−n+ d− 2i− 1

(n+ d)2 − 1
sn+1,i+1(x)

)]
= sn,0(x) + sn,1(x) + · · ·+ sn,n+d(x)

+ λ

(
n+ d− 1

(n+ d)2 − 1
sn+1,1(x)− n+ d− 3

(n+ d)2 − 1
sn+1,2(x)

)
+ λ

(
n+ d− 3

(n+ d)2 − 1
sn+1,2(x)− n+ d− 5

(n+ d)2 − 1
sn+1,3(x)

)
+ · · ·

+ λ

(
− n+ d− 5

(n+ d)2 − 1
sn+1,n+d−2(x) +

n+ d− 3

(n+ d)2 − 1
sn+1,n+d−1(x)

)
+ λ

(
− n+ d− 3

(n+ d)2 − 1
sn+1,n+d−1(x) +

n+ d− 1

(n+ d)2 − 1
sn+1,n+d(x)

)
− λ

n+ d+ 1
sn+1,1(x)− λ

n+ d+ 1
sn+1,n+d(x).

Since Schurer operators satisfy the equality
∑n+d
i=0 sn,i(x) = 1 we get the desired

result. �

Rest of the paper is organized as follows: In Section 2, λ-Schurer operators are
constructed and corresponding approximation results are obtained. In Section 3,
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some statistical approximation properties of defined operators are studied and an
estimate for the rate of weighted A-statistical convergence is established. In Section
4, two Voronovskaja-type theorems including a Voronovskaja-type approximation
theorem using weighted A-statistical convergence are proved. Final section of the
paper is devoted to give some concluding remarks including some future studies.

2. λ-Schurer operators and corresponding results in approximation
theory

A new type λ-Bernstein operators have been introduced by Cai et al. in [6]
based on Bézier bases defined by Ye et al. in [30]. We refer to [5, 6, 20, 23, 26] for
recent studies about λ-Bernstein type operators and [13, 14, 28] for some Schuer
type operators.
Considering a given non-negative integer d, we introduce λ-Schurer operators

Sλn,d(f ;x) : C[0, 1 + d] −→ C[0, 1]

Sλn,d(f ;x) =

n+d∑
i=0

s̃n,i(λ;x) f

(
i

n

)
(2)

for any n ∈ N, where new Bézier-Schurer bases s̃n,i(λ;x) are defined in (1).

Lemma 2. We have following results for λ-Schurer operators:

Sλn,d(t;x) =
n+ d

n
x+

1− 2x+ xn+d+1 − (1− x)n+d+1

n(n+ d− 1)
λ;

Sλn,d(t
2;x) =

(n+ d)2

n2
x2 +

n+ d

n2
x(1− x)

+
2(n+ d)x− 1− 4(n+ d)x2 + (2(n+ d) + 1)xn+d+1 + (1− x)n+d+1

n2(n+ d− 1)
λ;

Proof. Using definition of operators (2) and Bézier-Schurer bases s̃n,i(λ;x) (1), we
write

Sλn,d(t;x) =

n+d∑
i=0

i

n
s̃n,i(λ;x)

=
n+ d

n
sn,n+d(x)− n+ d

n

λ

n+ d+ 1
sn+1,n+d(x)

+

n+d−1∑
i=0

i

n

[
sn,i(x) + λ

(
n+ d− 2i+ 1

(n+ d)2 − 1
sn+1,i(x)− n+ d− 2i− 1

(n+ d)2 − 1
sn+1,i+1(x)

)]

=

n+d∑
i=0

i

n
sn,i(x) + λ (ϕ1(n, d, x)− ϕ2(n, d, x)) ,
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where

ϕ1(n, d, x) =

n+d∑
i=0

i

n

n+ d− 2i+ 1

(n+ d)2 − 1
sn+1,i(x);

ϕ2(n, d, x) =

n+d−1∑
i=1

i

n

n+ d− 2i− 1

(n+ d)2 − 1
sn+1,i+1(x).

Now we compute the expressions ϕ1(n, d, x) and ϕ2(n, d, x).

ϕ1(n, d, x) =
1

n+ d− 1

n+d∑
i=0

i

n
sn+1,i(x)− 2

(n+ d)2 − 1

n+d∑
i=0

i2

n
sn+1,i(x)

=
x(n+ d+ 1)

n(n+ d− 1)

n+d−1∑
i=0

sn,i(x)− 2x

n(n+ d− 1)

n+d−1∑
i=0

sn,i(x)

− 2x2(n+ d)

n(n+ d− 1)

n+d−2∑
i=0

sn−1,i(x)

= − (1− xn+d)(x(n+ d) + x− 2x)

n(n+ d− 1)
− 2x2(n+ d)(1− xn+d−1)

n(n+ d− 1)

=
x− xn+d+1

n
− 2(n+ d)(x2 − xn+d+1)

n(n+ d− 1)
.

ϕ2(n, d, x) =
n+ d− 1

n((n+ d)2 − 1)

n+d−1∑
i=1

i sn+1,i+1(x)

− 2

n((n+ d)2 − 1)

n+d−1∑
i=1

i2 sn+1,i+1(x)

=
2x

n(n+ d− 1)

n+d−1∑
i=1

sn,i(x)− 2x2(n+ d)

n(n+ d− 1)

n+d−2∑
i=0

sn−1,i(x)

+
x

n

n+d−1∑
i=1

sn,i(x)

− 2

n((n+ d)2 − 1)

n+d−1∑
i=1

sn+1,i+1(x)− 1

n(n+ d+ 1)

n+d−1∑
i=1

sn+1,i+1(x)

=
2x− 2x(1− x)n+d − xn+d+1

n(n+ d− 1)
− 2(n+ d)(x2 − xn+d+1)

n(n+ d− 1)

− 2− (1− x)n+d+1 − 2x(n+ d+ 1)(1− x)n+d − 2xn+d+1

n((n+ d)2 − 1)
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+
x− xn+d+1

n
− 1− (1− x)n+d+1 − x(n+ d+ 1)(1− x)n+d − xn+d+1

n(n+ d− 1)
.

We obtain the result for Sλn,d(t;x) combining the results obtained for ϕ1(n, d, x)

and ϕ2(n, d, x) since Schurer operators are linear, and Schurer operators and fun-
damental Schurer bases satisfy the following equality:

n+d∑
i=1

i

n
sn,i(x) =

(
1 +

d

n

)
x.

We again use the definition of operators (2), Bézier-Schurer bases s̃n,i(λ;x) (1) and
the following relations to prove the second part of the lemma:

Sλn,d(t
2;x) =

n+d∑
i=0

i2

n2
s̃n,i(λ;x) =

(n+ d)2

n2
sn,n+d(x)− (n+ d)2

n2

λ

n+ d+ 1
sn+1,n+d(x)

+

n+d−1∑
i=0

i2

n2

[
sn,i(x) + λ

(
n+ d− 2i+ 1

(n+ d)2 − 1
sn+1,i(x)− n+ d− 2i− 1

(n+ d)2 − 1
sn+1,i+1(x)

)]

=

n+d∑
i=0

i2

n2
sn,i(x) + λ (ϕ3(n, d, x)− ϕ4(n, d, x)) ,

where

ϕ3(n, d, x) =

n+d∑
i=0

i2

n2

n+ d− 2i+ 1

(n+ d)2 − 1
sn+1,i(x);

ϕ4(n, d, x) =

n+d−1∑
i=1

i2

n2

n+ d− 2i− 1

(n+ d)2 − 1
sn+1,i+1(x).

Now we compute the expressions ϕ3(n, d, x) and ϕ4(n, d, x).

ϕ3(n, d, x) =
1

n+ d− 1

n+d∑
i=0

i2

n2
sn+1,i(x)− 2

(n+ d)2 − 1

n+d∑
i=0

i3

n2
sn+1,i(x)

=
(n+ d)(n+ d+ 1)x2

n2(n+ d− 1)

n+d−2∑
i=0

sn−1,i(x) +
x

n2

n+d−1∑
i=0

sn,i(x)

− 2(n+ d)x3

n2

n+d−3∑
i=0

sn−2,i(x)− 6(n+ d)x2

n2(n+ d− 1)

n+d−2∑
i=0

sn−1,i(x)

=
(n+ d)(n+ d+ 1)(x2 − xn+d+1)

n2(n+ d− 1)
+
x− xn+d+1

n2

− 2(n+ d)(x3 − xn+d+1)

n2
− 6(n+ d)(x2 − xn+d+1)

n2(n+ d− 1)
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=
2(n+ d)(xn+d+1 − x3)

n2
+
x− xn+d+1

n2

+
(n+ d)2 − 5(n+ d)(x2 − xn+d+1)

n2(n+ d− 1)
.

ϕ4(n, d, x) =
1

n+ d+ 1

n+d−1∑
i=1

i2

n2
sn+1,i+1(x)− 2

(n+ d)2 − 1

n+d−1∑
i=1

i3

n2
sn+1,i+1(x)

=
x2(n+ d)

n2

n+d−2∑
i=0

sn−1,i(x)− x

n2

n+d−1∑
i=1

sn,i(x)

+
1

n2(n+ d+ 1)

n+d−1∑
i=1

sn+1,i+1(x) +
2(n+ d)x3

n2

n+d−3∑
i=0

sn−2,i(x)

+
2x

n2(n+ d− 1)

n+d−1∑
i=1

sn,i(x)− 2

n2((n+ d)2 − 1)

n+d−1∑
i=1

sn+1,i+1(x)

=
x2(n+ d)(1− xn+d−1)

n2
− x(1− xn+d)

n2

+
1− (1− x)n+d+1 − x(n+ d+ 1)(1− x)n+d − xn+d+1

n2(n+ d− 1)

− 2(n+ d)x3(1− xn+d−2)

n2
− 2x(1− xn+d)

n2(n+ d− 1)

+
2− 2(1− x)n+d+1 − 2x(n+ d+ 1)(1− x)n+d − 2xn+d+1

n2((n+ d)2 − 1)
.

We get Sλn,d(t
2;x) combining ϕ3(n, d, x) and ϕ4(n, d, x) since Schurer operators and

fundamental Schurer bases satisfy the following equality:

n+d∑
i=1

i2

n2
sn,i(x) =

n+ d

n2

{
(n+ d)x2 + x(1− x)

}
.

�

Corollary 3. We have the following relations for Sλn,d(t−x;x) and Sλn,d((t−x)2;x):

Sλn,d(t− x;x) =
d

n
x+

1− 2x+ xn+d+1 − (1− x)n+d+1

n(n+ d− 1)
λ;

Sλn,d((t− x)2;x) =
d2

n2
x2 +

n+ d

n2
x(1− x)− 2xn+d+2 − 2x(1− x)n+d+1

n(n+ d− 1)
λ

+
2dx− 1− 4dx2 + (2(n+ d) + 1)xn+d+1 + (1− x)n+d+1

n2(n+ d− 1)
λ;
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Corollary 4. We have the following relations for Sλn,d(t−x;x) and Sλn,d((t−x)2;x):

lim
n→∞

n Sλn,d(t− x;x) = dx;

lim
n→∞

n Sλn,d((t− x)2;x) = x(1− x).

Remark 5. We have the following results for λ-Schurer operators and Bézier-
Schurer bases:

• If we take d = 0, Bézier-Schurer bases (1) reduce to the classical Bézier
bases defined in [30].

• If we take λ = 0, λ-Schurer operators (2) reduce to the classical Schurer
operators defined in [25].

• If we take d, λ = 0, λ-Schurer operators (2) with Bézier-Schurer bases (1)
reduce to the classical Bernstein operators defined in [3].

The following theorem gives the uniform convergence property of λ-Schurer op-
erators (2) by the well-known Bohman-Korovkin-Popoviciu theorem:

Theorem 6. Let f ∈ C[0, 1 + d], then we have

lim
n→∞

Sλn,d(f ;x) = f(x)

uniformly on [0, 1], where C[0, 1 + d] denotes the space of all real-valued continuous
functions on [0, 1 + d] endowed with the norm ‖f‖C[0,1] = supx∈[0,1+d] |f(x)|.

We achieve a global approximation formula in terms of Ditzian-Totik uniform
modulus of smoothness of first and second order for λ-Schurer operators (2), and
give a local direct estimate of the rate of convergence by Lipschitz-type function
involving two parameters.

Definition 7. Global approximation formula in terms of Ditzian-Totik uniform
modulus of smoothness of first and second order defined by

ωξ(f, ζ) := sup
0<|h|≤ζ

sup
x,x+hξ(x)∈[0,1]

{|f(x+ hξ(x))− f(x)|};

ωτ2(f, ζ) := sup
0<|h|≤ζ

sup
x,x±hτ(x)∈[0,1]

{|f(x+ hτ(x))− 2f(x) + f(x− hτ(x))|},

respectively, where τ is an admissible step-weight function on [a, b], i.e. τ(x) =
[(x−a)(b−x)]1/2 if x ∈ [a, b], [7]. We write AC for absolutely continuous functions,
then K-functional is

K2,τ(x)(f, ζ) = inf
g∈W 2(τ)

{
||f − g||C[0,1] + ζ||τ2g′′||C[0,1] : g ∈ C2[0, 1 + d]

}
,

where ζ > 0, W 2(τ) = {g ∈ C[0, 1 + d] : g′2g′′ ∈ C[0, 1 + d]} and C2[0, 1 + d] =
{g ∈ C[0, 1 + d] : g′, g′′ ∈ C[0, 1 + d]}.
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Remark 8. It is known by [9] that there exists an absolute constant C > 0, such
that

C−1ωτ2(f,
√
ζ) ≤ K2,τ(x)(f, ζ) ≤ Cωτ2(f,

√
ζ). (3)

First we obtain global approximation formula in terms of Ditzian-Totik uniform
modulus of smoothness of first and second order.

Theorem 9. Let f ∈ C[0, 1 + d], x ∈ [0, 1] and λ ∈ [−1, 1]. Then for C > 0,
λ-Schurer operators (2) verify

|Sλn,d(f ;x)− f(x)| ≤ Cωτ2
(
f,

√
αn,λ(x) + β2

n,λ(x)

2τ(x)

)
+ ωξ

(
f,
βn,λ(x)

ξ(x)

)
,

where βn,λ(x) = Sλn,d(t−x;x) and αn,λ(x) = Sλn,d((t−x)2;x) are given in Corollary
3, and τ(x) (τ 6= 0) is an admissible step-weight function of Ditzian-Totik modulus
of smoothness such that τ2 is concave.

Proof. Let f ∈ C[0, 1 + d], x ∈ [0, 1] and λ ∈ [−1, 1]. Defining the operators

S̆λn,d(f ;x) = Sλn,d(f ;x) + f(x)− f
(
x+

d

n
x+

1− 2x+ xn+d+1 − (1− x)n+d+1

n(n+ d− 1)
λ
)
(4)

we see that S̆λn,d(1;x) = 1 and S̆λn,d(t;x) = x, that is S̆λn,d(t− x;x) = 0.
Let u = ρx + (1 − ρ)t, ρ ∈ [0, 1]. Since τ2 is concave on [0, 1], it follows that

τ2(u) ≥ ρτ2(x) + (1− ρ)τ2(t) and

|t− u|
τ2(u)

≤ ρ|x− t|
ρτ2(x) + (1− ρ)τ2(t)

≤ |t− x|
τ2(x)

. (5)

Hence the following inequalities hold:

|S̆λn,d(f ;x)− f(x)| ≤ |S̆λn,d(f − g;x)|+ |S̆λn,d(g;x)− g(x)|+ |f(x)− g(x)| (6)

≤ 4‖f − g‖C[0,1+d] + |S̆λn,d(g;x)− g(x)|.
Applying Taylor’s formula we obtain

|S̆λn,d(g;x)− g(x)| (7)

≤ Sλn,d
(∣∣∣∣ ∫ t

x

|t− u| |g′′(u)|du
∣∣∣∣;x)+

∣∣∣∣ ∫ x+βn,λ(x)

x

∣∣x+ βn,λ(x)− u
∣∣ |g′′(u)| du

∣∣∣∣
≤ ‖τ2g′′‖C[0,1+d]S

λ
n,d

(∣∣∣∣ ∫ t

x

|t− u|
τ2(u)

du

∣∣∣∣;x)
≤ +‖τ2g′′‖C[0,1+d]

∣∣∣∣ ∫ x+βn,λ(x)

x

|x+ βn,λ(x)− u|
τ2(u)

du

∣∣∣∣
≤ τ−2(x)‖τ2g′′‖C[0,1+d]S

λ
n,d((t− x)2;x) + τ−2(x)‖τ2g′′‖C[0,1+d]β

2
n,λ(x).
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By definition of K-functional with relation (3) and inequalities (6)-(7), we have

|S̆λn,d(f ;x)− f(x)| ≤ 4‖f − g‖C[0,1+d] + τ−2(x)‖τ2g′′‖C[0,1+d]

(
αn,λ(x) + β2

n,λ(x)
)

≤ Cωτ2
(
f,

√
αn,λ(x) + β2

n,λ(x)

2τ(x)

)
.

Also, by Ditzian-Totik uniform modulus of smoothness of first order we have

|f(x+ βn,λ(x))− f(x)| =
∣∣∣∣f(x+ ξ(x)

βn,λ(x)

ξ(x)

)
− f(x)

∣∣∣∣ ≤ ωξ(f, βn,λ(x)

ξ(x)

)
.

Therefore, following inequality, which completes the proof, holds:

|Sλn,d(f ;x)− f(x)| ≤ |S̆λn,d(f ;x)− f(x)|+
∣∣f(x+ βn,λ(x))− f(x)

∣∣
≤ Cωτ2

(
f,

√
αn,λ(x) + β2

n,λ(x)

2τ(x)

)
+ ωξ

(
f,
βn,λ(x)

ξ(x)

)
.

�

Theorem 10. The following inequality holds:

|Sλn,d(f ;x)− f(x)| ≤ |βn,λ(x)| |f ′(x)|+ 2
√
αn,λ(x)w

(
f ′,
√
αn,λ(x)

)
for f ∈ C1[0, 1 + d] and x ∈ [0, 1], where αn,λ(x) and βn,λ(x) are given in Theorem
9.

Proof. For any t ∈ [0, 1] and x ∈ [0, 1] we have

f(t)− f(x) = (t− x)f ′(x) +

∫ t

x

(f ′(u)− f ′(x))du.

Applying operators Sλn,d(f ;x) to both sides of (??), we have

Sλn,d(f(t)− f(x);x) = f ′(x)Sλn,d(t− x;x) + Sλn,d

(∫ t

x

(f ′(u)− f ′(x))du;x

)
.

The following inequality holds for any ζ > 0, u ∈ [0, 1] and f ∈ C[0, 1 + d]:

|f(u)− f(x)| ≤ w(f, ζ)

(
|u− x|
ζ

+ 1

)
,

With above inequality we get∣∣∣∣ ∫ t

x

(f ′(u)− f ′(x))du

∣∣∣∣ ≤ w(f ′, ζ)

(
(t− x)2

ζ
+ |t− x|

)
.

Hence we have

|Sλn,d(f ;x)− f(x)| ≤ |f ′(x)| |Sλn,d(t− x;x)|

+w(f ′, ζ)

{
1

ζ
Sλn,d((t− x)2;x) + Sλn,d(t− x;x)

}
.
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Applying Cauchy-Schwarz inequality on the right hand side of above inequality, we
have

|Sλn,d(f ;x)− f(x)| ≤ f ′(x)|βn,λ(x)|

+w(f ′, ζ)

{
1

ζ

√
Sλn,d((t− x)2;x) + 1

}√
Sλn,d(|t− x|;x).

�

3. Some statistical approximation theorems

In this section, we use weighted mean matrix method to establish statistical
approximation properties of λ-Schurer operators. We also give an estimate for the
rate of weighted A-statistical convergence of λ-Schurer operators.
Statistical convergence was first introduced in [8] and [27]. A new character-

ization in terms of weighted regular matrix and a Korovkin type approximation
theorem through statistically weighted A-summable sequences of real or complex
numbers have been given by Mohiuddine et al. [16, 17]. For further results in
weighted statistical approximation theory we refer to [11, 12] and for statistical
approximation papers to [2] .
All the following notions, notations and definitions which can be found in [2, 8,

11, 12, 17, 27] are needed for the results of this part.

Definition 11. Natural density of K is denoted by ζ(K) = limn→∞
1
n |Kn| provided

that limit exists, where Kn = {k ≤ n : k ∈ K}, K ⊆ N0 := N∪{0} and vertical bars
denote cardinality of the enclosed set. A sequence x = (xn) of numbers is called
statistically convergent to a number L, denoted by st-limn→∞ x = L, if, for each
ε > 0, ζ{n : n ∈ N and |xn − L| = ε} = 0.

Definition 12. A-transform of x denoted by Ax := {(Ax)n} is defined as (Ax)n =∑∞
k=0 ankxk for a given non-negative infinite summability matrix A = (ank), n, k ∈

N. It is provided defined series converges for every n ∈ N0. If limn→∞(Ax)n = L
whenever limn→∞ xn = L, we say that A is a regular method. Then sequence x =
(xn) is said to be A-statistically convergent to L, denoted by stA-limn→∞ xn = L,
provided that for each ε > 0, limn→∞

∑
k:|xk−L|=ε ank = 0.

Remark 13. We have the following results for A-statistical convergence concept:
• If we take A = (C1), the Cesaro matrix of order 1, A-statistical convergence
becomes ordinary statistical convergence which was introduced in [10].

• If we take A = I, the identity matrix, A-statistical convergence becomes
classical convergence.

• Every convergent sequence is statistically convergent to the same limit but
not conversely.

Definition 14. [16] Assume that q = (qn) is a sequence of non-negative numbers
so that q0 > 0 and Qn =

∑n
k=0 qk → ∞ as n → ∞. Then x = (xn) is called
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weighted A-statistically convergent to L, if, for every ε > 0,

lim
n→∞

1

Qn

n∑
k=0

qk
∑

m:|xm−L|=ε

akm = 0.

In this case, we write SÑA − limn→∞ xn = L.

Remark 15. [16] The weighted A-statistical convergence generalizes A-statistical
convergence, which we recover by putting qn = 1 for all n ∈ N.

We now give main results related to statistical approximation of operators in
(2).

Theorem 16. Let A = (ank) be a weighted non-negative regular summability matrix
for n, k ∈ N and q = (qn) be a sequence of non-negative numbers such that q0 > 0
and Qn =

∑n
k=0 qk →∞ as n→∞. For any f ∈ C[0, 1 + d], we have

SÑA − lim
n→∞

‖Sλn,d(f)− f‖C[0,1] = 0.

Proof. Consider sequence of functions ej(x) = xj , where j ∈ {0, 1, 2} and x ∈ [0, 1].
It is suffi cient to satisfy

SÑA − lim
n→∞

‖Sλn,d(ej ;x)− ej‖C[0,1] = 0, j = 0, 1, 2.

From Lemma 2, it is clear that

SÑA − lim
n→∞

‖Sλn,d(e0;x)− e0‖C[0,1] = 0. (8)

We have

‖Sλn,d(e1;x)− e1‖C[0,1] = sup
x∈[0,1]

∣∣∣∣ dnx+
1− 2x+ xn+d+1 − (1− x)n+d+1

n(n+ d− 1)
λ

∣∣∣∣
≤ d

n
+

4

n(n+ d− 1)

by Lemma 2. We choose a number ε > 0 for a given ε′ > 0 such that ε < ε′. If we
define following sets:

∆ :=
{
n ∈ N : ‖Sλn,d(e1;x)− e1‖C[0,1] = ε′

}
,

∆1 :=

{
n ∈ N :

d

n
+

4

n(n+ d− 1)
= ε− ε′

}
,

we see that the inclusion ∆ ⊂ ∆1 holds and

1

Qn

n∑
k=0

qk
∑
m∈∆

akm ≤
1

Qn

n∑
k=0

qk
∑
m∈∆1

akm for all n ∈ N. (9)

So we have

SÑA − lim
n→∞

‖Sλn,d(e1;x)− e1‖C[0,1] = 0 (10)
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as n→∞ in (9). By Lemma 2 we have

‖Sλn,d(e2;x)− e2‖C[0,1] = sup
x∈[0,1]

∣∣∣∣2nd+ d2

n2
x2 +

n+ d

n2
x(1− x)

+
2(n+ d)x− 1− 4(n+ d)x2+

n2(n+ d− 1)
λ

+
(2(n+ d) + 1)xn+d+1 + (1− x)n+d+1

n2(n+ d− 1)
λ

∣∣∣∣
≤ 2nd+ d2

n2
+

2n+ 2d

n2
+

8(n+ d) + 2

n2(n+ d− 1)
.

We also obtain

SÑA − lim
n→∞

‖Sλn,d(e2;x)− e2‖C[0,1] = 0 (11)

since

SÑA − lim
n→∞

[
2nd+ d2

n2
+

2n+ 2d

n2
+

8(n+ d) + 2

n2(n+ d− 1)

]
= 0.

Combining (8), (10) and (11), we get desired result. �

We now estimate rate of weightedA-statistical convergence of operators Sλn,d(f ;x).

Definition 17. Let A = (ank) be a weighted non-negative regular summability
matrix and let q = (qn) be a sequence of non-negative numbers such that q0 > 0
and Qn =

∑n
k=0 qk → ∞ as n → ∞. Also let (un) be a positive non-decreasing

sequence. We say that a sequence x = (xn) is weighted A-statistically convergent
to L with the rate o(un) if

lim
n→∞

1

unQn

n∑
k=0

qk
∑

m:|xm−L|=ε

akm = 0.

This relation is denoted by [statA, qn]− o (un) = xn − L.

Theorem 18. Let A = (ank) be a weighted non-negative regular summability ma-
trix. Assume that following condition yields:

w(f, hn) = [statA, qn]− o (un) on [0, 1], where hn =
√
‖Sλn,d((s− x)2;x)‖C[0,1+d].

Then for every bounded f ∈ C[0, 1 + d] we have

‖Sλn,d(f)− f‖C[0,1] = [statA, qn]− o (un).

Proof. Let f ∈ C[0, 1 + d], then we have

|Sλn,d(f ;x)− f(x)| ≤ |Sλn,d
(
|f(t)− f(x)|;x

)
+A |Sλn,d(1;x)− 1|
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≤ ω(f, ζ)Sλn,d

(
|t− x|
ζ

+ 1;x

)
= ω(f, ζ)Sλn,d(1;x) + ω(f, ζ)

1

ζ2S
λ
n,d

(
(t− x)2;x

)
for any x, s ∈ [0, 1], where A = supx∈[0,1] |f(x)|. Let ζ := hn for all n ∈ N. Taking
supremum over x ∈ [0,∞) on both sides, we obtain

‖Sλn,d(f)− f‖C[0,1] ≤ ω(f, hn) + ω(f, hn)
1

h2
n

‖Sλn,d((t− x)2;x)‖C[0,1+d] = 2ω(f, hn).

We define the following sets for a given ε > 0:

S =
{
n : ‖Sλn,d(f)− f‖C[0,1] ≥ ε

}
and E =

{
n : ω(f, hn) ≥ ε

2

}
.

It is easy to see the following inequality holds:

1

unQn

n∑
k=0

∑
m∈S

qkakm ≤
1

unQn

n∑
k=0

∑
m∈E

qkakm.

Hence we are led to the fact that

‖Sλn,d(f)− f‖C[0,1] = [statA, qn]− o (un)

by the hypothesis, as asserted by Theorem 18. �

4. Voronovskaja-type approximation theorems

Two Voronovskaja-type theorems are established in this part: A quantitative
Voronovskaja-type theorem and a Voronovskaja-type approximation theorem by
S̄λn,d(f ;x) family of linear operators using the notion of weighted A-statistical con-
vergence.

Theorem 19. Let (xn) be a sequence of real numbers such that SÑA − limn→∞ xn =
0, where A = (ank) is a weighted non-negative regular summability matrix. Also let
S̄λn,d(f ;x) be a sequence of positive linear operators acting from CB [0, 1 + d] into
C[0, 1 + d] defined by

S̄λn,d(f ;x) = (1 + xn)Sλn,d(f ;x).

Then for every f ∈ CB [0, 1 + d] we have

SÑA − lim
n→∞

n
{
S̄λn,d(f ;x)− f(x)

}
= xd f ′(x) +

x(1− x)

2
f ′′(x),

where f ′, f ′′ ∈ CB [0, 1 + d].

Proof. Let x ∈ [0, 1] and f ′′ ∈ CB [0, 1 + d]. Applying S̄λn,d(f ;x) to both sides of
Taylor’s expansion theorem, we have

S̄λn,d(f ;x)− f(x) = f
′
(x)S̄λn,d(t− x;x) +

f
′′
(x)

2
S̄λn,d((t− x)2;x)
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+S̄λn,d((t− x)2rx(t);x),

which yields to

n
{
S̄λn,d(f ;x)− f(x)

}
= nf

′
(x)(1 + xn)Sλn,d(t− x;x)

+
n

2
f
′′
(x)(1 + xn)Sλn,d((t− x)2;x) + n(1 + xn)Sλn,d((t− x)2rx(t);x).

We also have from Corollary 3

Sλn,d(t− x;x) ≤ d

n
x+

1 + 2x+ xn+d+1 + (1− x)n+d+1

n(n+ d− 1)
:= E(n, d, x),

and again from Corollary 3

Sλn,d((t− x)2;x) ≤ d2

n2
x2 +

n+ d

n2
x(1− x) +

2xn+d+2 + 2x(1− x)n+d+1

n(n+ d− 1)

+
2dx+ 1 + 4dx2 + (2(n+ d) + 1)xn+d+1 + (1− x)n+d+1

2n(n+ d− 1)
λ := F (n, d, x).

Hence we have∣∣∣∣n{S̄λn,d(f ;x)− f(x)
}
− f

′
(x)dx− f

′
(x)

1− 2x+ xn+d+1 − (1− x)n+d+1

n+ d− 1
λ

− f
′′
(x)

(
d2

2n
x2 +

n+ d

2n
x(1− x)− xn+d+2 − x(1− x)n+d+1

n+ d− 1
λ

+
2dx− 1− 4dx2 + (2(n+ d) + 1)xn+d+1 + (1− x)n+d+1

2n(n+ d− 1)
λ

)∣∣∣∣
= nf

′
(x)xnS

λ
n,d(t− x;x) +

n

2
f
′′
(x)xnS

λ
n,d((t− x)2;x)

+ n(1 + xn)Sλn,d((t− x)2rx(t);x)

≤ xn{f
′
(x)Ē(n, d, x) +

f
′′
(x)

2
F̄ (n, d, x)}+ n(1 + xn)Sλn,d((t− x)2rx(t);x)

≤ xn{ sup
x∈[0,1]

|f ′(x)|Ē(n, d, x) +
1

2
sup
x∈[0,1]

|f ′′(x)|F̄ (n, d, x)}

+ n(1 + xn)Sλn,d((t− x)2rx(t);x),

where Ē(n, d, x) = n E(n, d, x) and F̄ (n, d, x) = n F (n, d, x). Since we have

SÑA − lim
n→∞

n (Sλn,d((t− x)2rx(t);x)) = 0

and SÑA − limn→∞ xn = 0, we get desired result. �

A quantitative Voronovskaja-type theorem for Sλn,d(f ;x) is established using
Ditzian-Totik modulus of smoothness defined as

ωτ (f, ζ) := sup
0<|h|≤ζ

{∣∣∣∣f(x+
hτ(x)

2

)
− f

(
x− hτ(x)

2

)∣∣∣∣, x± hτ(x)

2
∈ [0, 1]

}
,
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where τ(x) = (x(1 − x))1/2 and f ∈ C[0, 1 + d], and corresponding Peetre’s K-
functional is defined by

Kτ (f, ζ) = inf
g∈Wτ [0,1+d]

{
||f − g||+ ζ||τg′1[0, 1 + d], ζ > 0

}
,

where Wτ [0, 1+d] = {g : g ∈ ACloc[0, 1+d], ‖τg′‖ <∞} and ACloc[0, 1+d] is the
class of absolutely continuous functions defined on [a, b] ⊂ [0, 1 + d]. There exists a
constant C > 0 such that

Kτ (f, ζ) ≤ C ωτ (f, ζ).

Theorem 20. Let f, f ′, f ′′ ∈ C[0, 1 + d], then we have∣∣∣∣Sλn,d(f ;x)− f(x)− βn,λ(x)f ′(x)− αn,λ(x) + 1

2
f ′′(x)

∣∣∣∣ ≤ C

n
τ2(x)ωτ

(
f ′′,

1√
n

)
for every x ∈ [0, 1] and suffi ciently large n, where C is a positive constant, αn,λ(x)
and βn,λ(x) are defined in Theorem 9.

Proof. Consider following equality

f(t)− f(x)− (t− x)f ′(x) =

∫ t

x

(t− u)f ′′(u)du

for f ∈ C[0, 1 + d]. It means we have

f(t)− f(x)− (t− x)f ′(x)− f ′′(x)

2

(
(t− x)2 + 1

)
≤
∫ t

x

(t− u)[f ′′(u)− f ′′(x)]du.

(12)

Applying Sλn,d(f ;x) to both sides of (12), we obtain∣∣∣∣Sλn,d(f ;x)− f(x)− Sλn,d((t− x);x)f ′(x)− f ′′(x)

2

(
Sλn,d((t− x)2;x) + Sλn,d(1;x)

)∣∣∣∣
≤ Sλn,d

(∣∣∣ ∫ t

x

|t− u| |f ′′(u)− f ′′(x)| du
∣∣∣;x). (13)

The quantity in right hand side of (13) can be estimated as∣∣∣∣ ∫ t

x

|t− u| |f ′′(u)− f ′′(x)| du
∣∣∣∣ ≤ 2‖f ′′2 + 2‖τg′−1(x)|t− x|3, (14)

where g ∈Wτ [0, 1 + d]. There exists C > 0 such that

Sλn,d((t− x)2;x) ≤ C

2n
τ2(x) and Sλn,d((t− x)4;x) ≤ C

2n2
τ4(x) (15)

for suffi ciently large n. Using Cauchy-Schwarz inequality, we have∣∣∣∣Sλn,d(f ;x)− f(x)− Sλn,d((t− x);x)f ′(x)− f ′′(x)

2

(
Sλn,d((t− x)2;x) + Sλn,d(1;x)

)∣∣∣∣
≤ 2‖f ′′ − g‖Sλn,d((t− x)2;x) + 2‖τg′−1(x)Sλn,d(|t− x|3;x)
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≤ C

n
x(1− x)‖f ′′ − g‖+ 2‖τg′−1(x){Sλn,d((t− x)2;x)}1/2{Sλn,d((t− x)4;x)}1/2

≤ C

n
τ2(x)

{
‖f ′′−1/2‖τg′‖

}
by (13)—(15). Taking infimum on the right-hand side over all g ∈ Wτ [0, 1 + d], we
deduce∣∣∣∣Sλn,d(f ;x)− f(x)− βn,λ(x)f ′(x)− αn,λ(x) + 1

2
f ′′(x)

∣∣∣∣ ≤ C

n
τ2(x)ωτ

(
f ′′,

1√
n

)
.

�

Finally we obtain the following theorem applying Taylor’s expansion theorem
and as an immediate consequence of Lemma (2), Corollary (3) and Corollary (4):

Theorem 21. Let f ∈ CB [0, 1 + d], then for each x ∈ [0, 1]

lim
n→∞

n
{
Sλn,d(f ;x)− f(x)

}
= xd f ′(x) +

x(1− x)

2
f ′′(x)

uniformly on [0, 1], where f ′, f ′′ ∈ CB [0, 1 + d]

As an immediate consequence of Theorem 20 we have the following result.

Corollary 22. Let f ∈ C[0, 1 + d], then

lim
n→∞

n

[
Sλn,d(f ;x)− f(x)− βn,λ(x)f ′(x)− αn,λ(x) + 1

2
f ′′(x)

]
= 0,

where f ′, f ′′ ∈ CB [0, 1 + d], and αn,λ(x) and βn,λ(x) are defined in Theorem 9.

5. Concluding Remarks

A Korovkin type approximation theorem via Ka-convergence on weighted spaces
is studied by Yıldız et al. in [31] and a new concept, statistical e-convergence, is
introduced by Sever and Talo in [18, 24, 32]. As a future work we may study the
approximation properties of operators defined in this article and other Bernstein
type operators using those convergence types. The results of the paper will also be
extended to λ-Schurer-Kantorovich and λ-Schurer-Stancu operators using λ-Bézier-
Schurer bases defined in (1).
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