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Existence Results for Systems of Quasi-Variational Relations
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ABSTRACT. The existence of solutions for a system of variational relations, in a general form, is studied using a fixed
point result for contractions in metric spaces. As a particular case, sufficient conditions for the existence of solutions of
a system of quasi-equilibrium problems are given.
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1. INTRODUCTION AND PRELIMINARIES

Foreachi € I = {1,...,n}, let X; be a nonempty subset of a complete metric space (E;, d;)

and X = [[,c; X; a subset of the product space E = [],.; E; . Let 5;,Q; : X — 2%i be two

set-valued maps with nonempty values. Let R;(«, y;) be a relation between = € X and y; € X;.
The general system of quasi-variational relations that we consider in this paper is:

(SQVR) FindZ = (Z1,...,Z,) € X such that for each i € T,
Z; € S;(z) and R;(Z,y;) holds for all y; € Q;(Z).

Variational relations problems were considered for the first time by D.T. Luc in [11], as a
general model that encompasses optimization problems, equilibrium problems or variational
inclusion problems. Several authors continued the study of variational relations problems, see
for instance the papers [10], [12], [9], [2], [1] and the references therein. Existence results for
the solutions of variational relations problems are obtained mostly in two ways: by applying
intersection results for set valued mappings (see [11]) or by using various fixed points theorems
(see [11], [7], [4]).

The system (SQV R) was introduced by L.J. Lin and Q.H. Ansari in [8], where the existence
of a solution was established using a maximal element theorem for a family of set-valued maps.
The same system was studied in [5] by a factorization method, that followed the ideas from [6].

In this paper, we will give sufficient conditions for the existence of solutions of the system
(SQV R), using a fixed-point theorem for set-valued mappings that are Reich-type contractions.
The general result obtained for the system of variational relations will be applied in the last
section to a system of equilibrium problems.

In the rest of this section, we present some notations and results needed in the paper.

The metric on the product space will be defined by d : E x E — R,

d(ﬂf, ZJ) = d1($17yl) +-+ dn(‘rfuyn)a
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forz = (x1,...,2,) € Eand y = (y1,...,yn) € E.
For any nonempty sets A, B C E' and « € E, denote by

D(z,B) = inf d(z,b) and
H(A,B) = max{sup inf d(a,b),sup inf d(a,b)}.
acADEB beB a€A

H(A, B) is the generalized Hausdorff functional of A and B. Similarly, we will denote by
H,(A;, B;) the Hausdorff distance induced by d;, for A; and B; subsets of E;.

Lemma 1.1. Forx = (z1,...,2,), A= A1 X -+ X Ay and B = B; X --- X B,,, we have

D(Z’7B) = Dl(thl)+"‘+Dn(xn7Bn);
H(A,B) < Hi(A1,B1)+---+ H,(An, By).

Lemma 1.2. (a) If A, B C E are such that for each a € A there exists b € B such that d(a,b) < cand
foreach b € B there exists a € A such that d(a,b) < c, then H(A,B) < c.
(b)If A,B C E and € > 0, then for each a € A there exists b € B such that d(a,b) < H(A, B) +¢.

There is a vast literature on the existence of fixed points of generalized contractions, both
single-valued and set-valued (see for instance [3], [14]). We will use the following:

A set-valued mapping F' : E — 2F is said to be a Reich - type contraction if there exist
a,b,c > 0, witha + b+ ¢ < 1 such that H(F(z), F(y)) < ad(x,y) + bD(z, F(z)) + ¢cD(y, F(y)),
foreach z,y € E.

Theorem 1.1 ([13]). Let (E,d) be a complete metric space and let F : E — 2F be a Reich-type
contraction. Suppose also that F'(z) is a closed set, for every x € E. Then, F has at least a fixed point.

2. AN EXISTENCE RESULT FOR A SYSTEM OF VARIATIONAL RELATIONS

We give in what follows sufficient conditions for the existence of solutions of the system
(SQV R) formulated in the previous section.
Forz = (21,...,2,) € X and i € I fixed, we denote

Di(z) ={z € S;(x) | Ri(x1,...,24...,Ty;t;) holds for all ¢; € Q;(x)}

and we define the functionT' : X — 2% by I'(z) = T'1(z) x - - - x ', (). It is easy to see that any
fixed point of I is a solution of (SQVR).

Theorem 2.2. Suppose that for any i € I, the set X; is nonempty, closed and:

(i) for any « € X, T';(x) is nonempty;

(ii) there exists q; €]0, 1] such that, for every z', 22 € X, if 2} € T;(a'), there exists 2? € T;(z?)
such that

d; ( % z) < Qsz(Sz(xl)aSi(Z'Q));

(iii) there exist a;,b;, ¢; €0, 1], with max;ecy a; + max;er b; + max;ey ¢; < 1 such that, for every

2t 2? e X,
H;(Si(x1), Si(2?)) < aid;(wf, o) + biDi(x}, Si(2")) + eiDi(a?, Si(2?));
(iv) for any « € X, the set S;(x) is closed;
(v) the relation R; is closed in the i — th variable, that is: for any sequence (2¥)ren C X; such that

28— 2 when k — 0o, if Ri(xi, ..., 28, .. xn;t;) holds, then R;(x;,. .., 2, ... xn;t;) holds too.
Then, (SQVR) admits at least a solution.
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Proof. We will prove that I' : X — 2% is a Reich-type contraction and we will use Theorem 1.1
to obtain the existence of a fixed point of I'. Since X is closed and (E, d) is complete, the space
(X,d) is complete too.

For each i € I and = € X, hypotheses (iv) and (v) imply that I';(x) is closed. Then I'(z) is
closed too.

Let 2! = (z},...,2)) € X and 2% = (2%,...,22) € X. Let 2z} € I';(z'). According to (ii),

there exists 22 € T';(2?) such that
2.1) di(2;,27) < aiHi(Si(2'), Si(z?)).

Similarly, for any 27 € I';(z?) there exists z} € T';(z') such that (2.1) holds. From Lemma 1.2,
we have

(22) Hi(Di(a"),Ti(2?)) < g Hi(Si(z), Si(2?)).
Further, using Lemma 1.1, (2.2), (iii), and the inclusion I';(x) C S;(z), for any z € X, follows

H(T(«"),T(2?) < ZHi(Fi(xl)aFi(fC2))quz‘Hi(Sz‘(ﬂﬁl)’Si(iUQ))

%

Il
_

(giaidi(z}, 27) + qbiDi(x}, Si(2")) + qie; Di(a?, Si(2?)))

I

I
—

< qad(x',2?) + qbz Dj(z},Ti(zh)) + qcz D;(z7,T;(z%))
i=1 i=1
= qa d(xl, a:z) + qu(xl,F(:rl)) + qcD(:rz,I‘(x2)),
where ¢ = max;ey ¢i, ¢ = max;ey a;, b = max;er b;, ¢ = max;er ¢; and ga+gb+gc < 1. Applying

Reich’s theorem follows the existence of a fixed point for I' and consequently of a solution of
(SQVR). O

By making a change in hypothesis (ii), we can obtain a second existence result:

Theorem 2.3. Suppose that for any i € I, the set X, is nonempty, closed and:
(i) for any « € X, I';(x) is nonempty;
(ii) there exists q; €]0, 1[ such that, for every z', 2% € X, for every z} € T';(z') and 27 € T;(2?),
di(zi,77) < q:H;(Si('), Si(2?));

(iii) there exist a;, b;, ¢; €]0,1[, with max;ey a; + max;er b; + max;ey ¢; < 1 such that, for every
xl,acQ € X,
H(Si(z"), Si(2?)) < aidy (], 27) + biDi(w], Si(x")) + ¢ Di(a3, Si(2?));
Then, (SQVR) admits a solution.

Proof. It can be noticed that for any « € X and i € I, the set I';(x) contains only one element.
Indeed, if ¢;,&; € I';(x), according to (ii), we get

di(Gi, &) < qiHi(Si(), Si(z)) =0,
so (; = &;. Since I';(z) is a singleton, it is a closed set. The rest of the proof is the same as for
Theorem 2.2. O

Starting with another definition for the “partial” problem, we can obtain a new existence
result, with different conditions.
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For x = (z1,...,2,) € X and i € [ fixed, we denote
Ti(x)={z€X;| 2z €8Si(x1,...,2i,...,xy)and R;y(x1,..., 2. .., Tn;0;)
holds for all Gi € Qi(xl, ey Ziy e Tn)}
and we define the function 7 : X — 2¥ by T'(x) = T1(z) x - - - x T;,(z). It is easy to see that any
fixed point of T' is a solution of (SQVR).

Theorem 2.4. Suppose that for any i € I, the set X; is nonempty, closed and:

(i) for any x € X, T;(x) is nonempty;

(ii) there exists q; €0, 1] such that, for every z*,2? € X, if z} € T;(x'), there exists z? € T;(z?)
such that

d; ( Zi s z) < Qsz(Sz(xl)aSi(xQ))Q
(iii) there exist a;, b;, ¢; €]0,1[, with max,es a; + max;er b; + max;ey ¢; < 1 such that, for every
zt 2?2 € X,
Hy(Si(x"), Si(2?)) < aidy(aj, aF) + biDi(w, Sixh)) + ¢ Dy(aF, Si(2?));

i

(iv) for any sequence (2F)ren C X; such that 2F — z; when k — oo, if 28 € Si(w1,...,2F, ... 2,)
(
£)

forany k € N, then z; € S Xlyevns ZiyeensTn);
(v) for any sequence (z¥)reny C X such that zF — z; when k — oo, sz (T4, 28 2 0;)

holds for any 0; € Ql(xl, c2E L xy) , then the relation R;(x;,..., %, ...%y;t;) holds for any
t; € Qi(xh...,zi,...,xn).
Then, (SQVR) admits at least a solution.

Proof. Hypotheses (iv) and (v) imply that for every € X, T'(x) is closed. The rest of the proof
is identical to the one of Theorem 2.2. O

3. AN EXISTENCE RESULT FOR A SYSTEM OF QUASI-EQUILIBRIUM PROBLEMS
As a particular case of the system of quasi-variational relations, we consider
(SQEP) Findz = (Z1,...,%,) € X such that foreach i € I,
Z; € S;(z) and f;(z,t;) > 0 for all ¢; € S;(z).
The relation R;(z, ;) holds iff f;(x,t;) > 0. In this section, we denote
vi(x) ={z € Si(x) | filw1, ... 25y, Tn;t;) >0, forallt; € S;(x)}
As a consequence of Theorem 2.3, we obtain:

Theorem 3.5. Suppose that for any i € I, the set X, is nonempty, closed and:
(a) for any x € X, v;(x) is nonempty;
(b) there exist a;,b;, c; €]0,1[, with max;es a; + max;er b; + max;ey ¢; < 1 such that, for every
xl,xz e X,
H;(Si(x"), Si(2?)) < aidi(w}, 27) + biDy(w], Si(x")) + i Di(a3, Si(27));
(c) there exists m; > 0 such that for every x = (x1,...,z,) € X and t; € X,
fi(ml, ey Ly ey Ty ti) + fi(l'l; ceybis e ,xn;xi) < —midi(xi,ti);

(d) fi is lipschitz in the last variable, that is there exists L; > 0 such that for every x € X and
ti,0; € Xy,
|fi(w; ts) — fi(a;0:)] < Lidi(ts,0:),
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(e) fi is lipschitz in the i — th variable, that is there exists A\; > 0 such that for every x € X
and Ci7 fia t; € Xir
|fi(m17"'7<-’£7' ‘Tn, ) fl(xlvag’uxnvtz” g)\zdz(gzvgz)a
(f) Li + )\z < m,;.
Then, (SQEP) admits a solution.

Proof. To apply Theorem 2.3, we just need to verify hypothesis (ii). Lete > 0. Let 2!,2? € X
and z} € y(z'), 22 € v(2?).
Since 2} € S;(x!), from Lemma 1.2, there exists t? € S;(z?) such that

3.3) di(z},t7) < Hy(S(a'), Si(2?)) +e.
Similarly, since 22 € S;(z?), there exists t} € S;(z!) such that
(3.4) di(27,t1) < Hi(Si(a), Si(2?)) +e.
From the definitions of v;(z') and 7;(2?), we get
(3.5) filzt, ... 2}, xkit)) > 0and fi(22, ..., 22, ..., 2%;t2) > 0.
From condition (c), we have
1 1
di(z},22) < fgfz(xl,...,z},...,xi;z?) - Efi(x%,...,Z?,...,zi;zil),
di(z},2?) < ——fz(xl,...,zil,...,xfl, 22) — —fz( 2l xRl

Next, adding these two 1nequa11t1es, using (3.5) and hypothe51s (d) follows that

d(zzl,zf) < 2m fl( ..,z},...,x}l,zl) ( ce },...,x}l;t})
7
iy fZ( , 22,...,:v}“ z) 2m f1( ,z?,,xi,z})
1 1
1
+ %fl(xf,,zf,, i,t?) (x%,,zll,,a:i,zf)
1
L. L
< %;dixzf,t}) + (s f,t%>
o fZ( ,222, :z:}“ z) Ty fz( ,zll,,a:i,zf)
1 1

On the other hand, z} € v(z!) implies that f;(z1,...,z} x}h;z1) > 0. Similarly, we have

fi(@3, o 22, 22 zf) > 0. So it follows, using also condition (e), the previous inequality,
(3.3) and (3.4) that

L; L;
d(zll,zf) < 2md(z t)+2 d(z t2)

i v m; irvi
_ %mifz(m%, V2D, Tk 11)—271nif1(x§7 2l @2 22)
+ Q;ifz(x%, N Ly 271%]”1-(&61,..‘,zf,..‘,mi;zi?)
= %H’(Si(xl)’sf(xZ)) if %d'(zzl,zf)
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From here, we get

Ai L, Lie
1— 2g (s 22 < Zig o (21 S (22 i
( mi)dl(zﬂzl) = i(Si(z7), Si(27)) + -
When ¢ — 0, the inequality becomes
L.
(A A< — _H 1 2
di(2i, %) < e — Ay i(Si(z), Si(z7)),
SO ¢; = mL,)\ €]0, 1 as needed. O

We mention that sufficient conditions for the non-emptiness of the sets I';(x) or T;(x) can be
given, for instance, by using intersection theorems of Ky Fan type (see [5], [4]).
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