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Existence Results for Systems of Quasi-Variational Relations
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ABSTRACT. The existence of solutions for a system of variational relations, in a general form, is studied using a fixed
point result for contractions in metric spaces. As a particular case, sufficient conditions for the existence of solutions of
a system of quasi-equilibrium problems are given.
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1. INTRODUCTION AND PRELIMINARIES

For each i ∈ I = {1, . . . , n}, let Xi be a nonempty subset of a complete metric space (Ei, di)
and X =

∏
i∈I Xi a subset of the product space E =

∏
i∈I Ei . Let Si, Qi : X → 2Xi be two

set-valued maps with nonempty values. Let Ri(x, yi) be a relation between x ∈ X and yi ∈ Xi.
The general system of quasi-variational relations that we consider in this paper is:

(SQV R) Find x̄ = (x̄1, . . . , x̄n) ∈ X such that for each i ∈ I,
x̄i ∈ Si(x̄) and Ri(x̄, yi) holds for all yi ∈ Qi(x̄).

Variational relations problems were considered for the first time by D.T. Luc in [11], as a
general model that encompasses optimization problems, equilibrium problems or variational
inclusion problems. Several authors continued the study of variational relations problems, see
for instance the papers [10], [12], [9], [2], [1] and the references therein. Existence results for
the solutions of variational relations problems are obtained mostly in two ways: by applying
intersection results for set valued mappings (see [11]) or by using various fixed points theorems
(see [11], [7], [4]).

The system (SQV R) was introduced by L.J. Lin and Q.H. Ansari in [8], where the existence
of a solution was established using a maximal element theorem for a family of set-valued maps.
The same system was studied in [5] by a factorization method, that followed the ideas from [6].

In this paper, we will give sufficient conditions for the existence of solutions of the system
(SQV R), using a fixed-point theorem for set-valued mappings that are Reich-type contractions.
The general result obtained for the system of variational relations will be applied in the last
section to a system of equilibrium problems.

In the rest of this section, we present some notations and results needed in the paper.
The metric on the product space will be defined by d : E × E → R+,

d(x, y) = d1(x1, y1) + · · ·+ dn(xn, yn),
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for x = (x1, . . . , xn) ∈ E and y = (y1, . . . , yn) ∈ E.
For any nonempty sets A,B ⊂ E and x ∈ E, denote by

D(x,B) = inf
b∈B

d(x, b) and

H(A,B) = max{sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)}.

H(A,B) is the generalized Hausdorff functional of A and B. Similarly, we will denote by
Hi(Ai, Bi) the Hausdorff distance induced by di, for Ai and Bi subsets of Ei.

Lemma 1.1. For x = (x1, . . . , xn), A = A1 × · · · ×An and B = B1 × · · · ×Bn, we have

D(x,B) = D1(x1, B1) + · · ·+Dn(xn, Bn),

H(A,B) ≤ H1(A1, B1) + · · ·+Hn(An, Bn).

Lemma 1.2. (a) If A,B ⊂ E are such that for each a ∈ A there exists b ∈ B such that d(a, b) ≤ c and
for each b ∈ B there exists a ∈ A such that d(a, b) ≤ c, then H(A,B) ≤ c.

(b) If A,B ⊂ E and ε > 0, then for each a ∈ A there exists b ∈ B such that d(a, b) ≤ H(A,B) + ε.

There is a vast literature on the existence of fixed points of generalized contractions, both
single-valued and set-valued (see for instance [3], [14]). We will use the following:

A set-valued mapping F : E → 2E is said to be a Reich - type contraction if there exist
a, b, c ≥ 0, with a + b + c < 1 such that H(F (x), F (y)) ≤ ad(x, y) + bD(x, F (x)) + cD(y, F (y)),
for each x, y ∈ E.

Theorem 1.1 ([13]). Let (E, d) be a complete metric space and let F : E → 2E be a Reich-type
contraction. Suppose also that F (x) is a closed set, for every x ∈ E. Then, F has at least a fixed point.

2. AN EXISTENCE RESULT FOR A SYSTEM OF VARIATIONAL RELATIONS

We give in what follows sufficient conditions for the existence of solutions of the system
(SQV R) formulated in the previous section.

For x = (x1, . . . , xn) ∈ X and i ∈ I fixed, we denote

Γi(x) = {zi ∈ Si(x) | Ri(x1, . . . , zi, . . . , xn; ti) holds for all ti ∈ Qi(x)}

and we define the function Γ : X → 2X by Γ(x) = Γ1(x)× · · · × Γn(x). It is easy to see that any
fixed point of Γ is a solution of (SQVR).

Theorem 2.2. Suppose that for any i ∈ I , the set Xi is nonempty, closed and:
(i) for any x ∈ X , Γi(x) is nonempty;
(ii) there exists qi ∈]0, 1[ such that, for every x1, x2 ∈ X , if z1i ∈ Γi(x

1), there exists z2i ∈ Γi(x
2)

such that
di(z

1
i , z

2
i ) ≤ qiHi(Si(x

1), Si(x
2));

(iii) there exist ai, bi, ci ∈]0, 1[, with maxi∈I ai + maxi∈I bi + maxi∈I ci < 1 such that, for every
x1, x2 ∈ X ,

Hi(Si(x
1), Si(x

2)) ≤ aidi(x1i , x2i ) + biDi(x
1
i , Si(x

1)) + ciDi(x
2
i , Si(x

2));

(iv) for any x ∈ X , the set Si(x) is closed;
(v) the relation Ri is closed in the i − th variable, that is: for any sequence (zki )k∈N ⊂ Xi such that

zki → zi when k →∞, if Ri(xi, . . . , zki , . . . xn; ti) holds, then Ri(xi, . . . , zi, . . . xn; ti) holds too.
Then, (SQVR) admits at least a solution.
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Proof. We will prove that Γ : X → 2X is a Reich-type contraction and we will use Theorem 1.1
to obtain the existence of a fixed point of Γ. Since X is closed and (E, d) is complete, the space
(X, d) is complete too.

For each i ∈ I and x ∈ X , hypotheses (iv) and (v) imply that Γi(x) is closed. Then Γ(x) is
closed too.

Let x1 = (x11, . . . , x
1
n) ∈ X and x2 = (x21, . . . , x

2
n) ∈ X . Let z1i ∈ Γi(x

1). According to (ii),
there exists z2i ∈ Γi(x

2) such that

(2.1) di(z
1
i , z

2
i ) ≤ qiHi(Si(x

1), Si(x
2)).

Similarly, for any z2i ∈ Γi(x
2) there exists z1i ∈ Γi(x

1) such that (2.1) holds. From Lemma 1.2,
we have

(2.2) Hi(Γi(x
1),Γi(x

2)) ≤ qiHi(Si(x
1), Si(x

2)).

Further, using Lemma 1.1, (2.2), (iii), and the inclusion Γi(x) ⊆ Si(x), for any x ∈ X , follows

H(Γ(x1),Γ(x2)) ≤
n∑
i=1

Hi(Γi(x
1),Γi(x

2)) ≤
n∑
i=1

qiHi(Si(x
1), Si(x

2))

≤
n∑
i=1

(qiaidi(x
1
i , x

2
i ) + qibiDi(x

1
i , Si(x

1)) + qiciDi(x
2
i , Si(x

2)))

≤ qad(x1, x2) + qb

n∑
i=1

Di(x
1
i ,Γi(x

1)) + qc

n∑
i=1

Di(x
2
i ,Γi(x

2))

= qa d(x1, x2) + qbD(x1,Γ(x1)) + qcD(x2,Γ(x2)),

where q = maxi∈I qi, a = maxi∈I ai, b = maxi∈I bi, c = maxi∈I ci and qa+qb+qc < 1. Applying
Reich’s theorem follows the existence of a fixed point for Γ and consequently of a solution of
(SQVR). �

By making a change in hypothesis (ii), we can obtain a second existence result:

Theorem 2.3. Suppose that for any i ∈ I , the set Xi is nonempty, closed and:
(i) for any x ∈ X , Γi(x) is nonempty;
(ii) there exists qi ∈]0, 1[ such that, for every x1, x2 ∈ X , for every z1i ∈ Γi(x

1) and z2i ∈ Γi(x
2),

di(z
1
i , z

2
i ) ≤ qiHi(Si(x

1), Si(x
2));

(iii) there exist ai, bi, ci ∈]0, 1[, with maxi∈I ai + maxi∈I bi + maxi∈I ci < 1 such that, for every
x1, x2 ∈ X ,

Hi(Si(x
1), Si(x

2)) ≤ aidi(x1i , x2i ) + biDi(x
1
i , Si(x

1)) + ciDi(x
2
i , Si(x

2));

Then, (SQVR) admits a solution.

Proof. It can be noticed that for any x ∈ X and i ∈ I , the set Γi(x) contains only one element.
Indeed, if ζi, ξi ∈ Γi(x), according to (ii), we get

di(ζi, ξi) ≤ qiHi(Si(x), Si(x)) = 0,

so ζi = ξi. Since Γi(x) is a singleton, it is a closed set. The rest of the proof is the same as for
Theorem 2.2. �

Starting with another definition for the “partial” problem, we can obtain a new existence
result, with different conditions.
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For x = (x1, . . . , xn) ∈ X and i ∈ I fixed, we denote

Ti(x) = {zi ∈ Xi | zi ∈ Si(x1, . . . , zi, . . . , xn) and Ri(x1, . . . , zi, . . . , xn; θi)

holds for all θi ∈ Qi(x1, . . . , zi, . . . , xn)}

and we define the function T : X → 2X by T (x) = T1(x)× · · · × Tn(x). It is easy to see that any
fixed point of T is a solution of (SQVR).

Theorem 2.4. Suppose that for any i ∈ I , the set Xi is nonempty, closed and:
(i) for any x ∈ X , Ti(x) is nonempty;
(ii) there exists qi ∈]0, 1[ such that, for every x1, x2 ∈ X , if z1i ∈ Ti(x1), there exists z2i ∈ Ti(x2)

such that
di(z

1
i , z

2
i ) ≤ qiHi(Si(x

1), Si(x
2));

(iii) there exist ai, bi, ci ∈]0, 1[, with maxi∈I ai + maxi∈I bi + maxi∈I ci < 1 such that, for every
x1, x2 ∈ X ,

Hi(Si(x
1), Si(x

2)) ≤ aidi(x1i , x2i ) + biDi(x
1
i , Si(x

1)) + ciDi(x
2
i , Si(x

2));

(iv) for any sequence (zki )k∈N ⊂ Xi such that zki → zi when k →∞, if zki ∈ Si(x1, . . . , zki , . . . , xn)
for any k ∈ N, then zi ∈ Si(x1, . . . , zi, . . . , xn);

(v) for any sequence (zki )k∈N ⊂ Xi such that zki → zi when k → ∞, if Ri(xi, . . . , zki , . . . xn; θi)
holds for any θi ∈ Qi(x1, . . . , z

k
i , . . . , xn) , then the relation Ri(xi, . . . , zi, . . . xn; ti) holds for any

ti ∈ Qi(x1, . . . , zi, . . . , xn).
Then, (SQVR) admits at least a solution.

Proof. Hypotheses (iv) and (v) imply that for every x ∈ X , T (x) is closed. The rest of the proof
is identical to the one of Theorem 2.2. �

3. AN EXISTENCE RESULT FOR A SYSTEM OF QUASI-EQUILIBRIUM PROBLEMS

As a particular case of the system of quasi-variational relations, we consider

(SQEP ) Find x̄ = (x̄1, . . . , x̄n) ∈ X such that for each i ∈ I,
x̄i ∈ Si(x̄) and fi(x̄, ti) ≥ 0 for all ti ∈ Si(x̄).

The relation Ri(x, ti) holds iff fi(x, ti) ≥ 0. In this section, we denote

γi(x) = {zi ∈ Si(x) | fi(x1, . . . , zi, . . . , xn; ti) ≥ 0, for all ti ∈ Si(x)}

As a consequence of Theorem 2.3, we obtain:

Theorem 3.5. Suppose that for any i ∈ I , the set Xi is nonempty, closed and:
(a) for any x ∈ X , γi(x) is nonempty;
(b) there exist ai, bi, ci ∈]0, 1[, with maxi∈I ai + maxi∈I bi + maxi∈I ci < 1 such that, for every

x1, x2 ∈ X ,

Hi(Si(x
1), Si(x

2)) ≤ aidi(x1i , x2i ) + biDi(x
1
i , Si(x

1)) + ciDi(x
2
i , Si(x

2));

(c) there exists mi > 0 such that for every x = (x1, . . . , xn) ∈ X and ti ∈ Xi,

fi(x1, . . . , xi, . . . , xn; ti) + fi(x1, . . . , ti, . . . , xn;xi) ≤ −midi(xi, ti);

(d) fi is lipschitz in the last variable, that is there exists Li > 0 such that for every x ∈ X and
ti, θi ∈ Xi,

|fi(x; ti)− fi(x; θi)| ≤ Lidi(ti, θi),
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(e) fi is lipschitz in the i − th variable, that is there exists λi > 0 such that for every x ∈ X
and ζi, ξi, ti ∈ Xi,

|fi(x1, . . . , ζi, . . . xn; ti)− fi(x1, . . . , ξi, . . . xn; ti)| ≤ λidi(ζi, ξi);

(f) Li + λi < mi.
Then, (SQEP) admits a solution.

Proof. To apply Theorem 2.3, we just need to verify hypothesis (ii). Let ε > 0. Let x1, x2 ∈ X
and z1i ∈ γ(x1), z2i ∈ γ(x2).

Since z1i ∈ Si(x1), from Lemma 1.2, there exists t2i ∈ Si(x2) such that

(3.3) di(z
1
i , t

2
i ) ≤ Hi(Si(x

1), Si(x
2)) + ε.

Similarly, since z2i ∈ Si(x2), there exists t1i ∈ Si(x1) such that

(3.4) di(z
2
i , t

1
i ) ≤ Hi(Si(x

1), Si(x
2)) + ε.

From the definitions of γi(x1) and γi(x2), we get

(3.5) fi(x
1
1, . . . , z

1
i , . . . , x

1
n; t1i ) ≥ 0 and fi(x21, . . . , z

2
i , . . . , x

2
n; t2i ) ≥ 0.

From condition (c), we have

di(z
1
i , z

2
i ) ≤ − 1

mi
fi(x

1
1, . . . , z

1
i , . . . , x

1
n; z2i )− 1

mi
fi(x

1
1, . . . , z

2
i , . . . , x

1
n; z1i ),

di(z
1
i , z

2
i ) ≤ − 1

mi
fi(x

2
1, . . . , z

1
i , . . . , x

2
n; z2i )− 1

mi
fi(x

2
1, . . . , z

2
i , . . . , x

2
n; z1i ).

Next, adding these two inequalities, using (3.5) and hypothesis (d) follows that

di(z
1
i , z

2
i ) ≤ − 1

2mi
fi(x

1
1, . . . , z

1
i , . . . , x

1
n; z2i ) +

1

2mi
fi(x

1
1, . . . , z

1
i , . . . , x

1
n; t1i )

− 1

2mi
fi(x

1
1, . . . , z

2
i , . . . , x

1
n; z1i )− 1

2mi
fi(x

2
1, . . . , z

2
i , . . . , x

2
n; z1i )

+
1

2mi
fi(x

2
1, . . . , z

2
i , . . . , x

2
n; t2i )−

1

2mi
fi(x

2
1, . . . , z

1
i , . . . , x

2
n; z2i )

≤ Li
2mi

di(z
2
i , t

1
i ) +

Li
2mi

di(z
1
i , t

2
i )

− 1

2mi
fi(x

1
1, . . . , z

2
i , . . . , x

1
n; z1i )− 1

2mi
fi(x

2
1, . . . , z

1
i , . . . , x

2
n; z2i ).

On the other hand, z1i ∈ γ(x1) implies that fi(x11, . . . , z1i , . . . , x
1
n; z1i ) ≥ 0. Similarly, we have

fi(x
2
1, . . . , z

2
i , . . . , x

2
n; z2i ) ≥ 0. So it follows, using also condition (e), the previous inequality,

(3.3) and (3.4) that

di(z
1
i , z

2
i ) ≤ Li

2mi
di(z

2
i , t

1
i ) +

Li
2mi

di(z
1
i , t

2
i )

− 1

2mi
fi(x

1
1, . . . , z

2
i , . . . , x

1
n; z1i )− 1

2mi
fi(x

2
1, . . . , z

1
i , . . . , x

2
n; z2i )

+
1

2mi
fi(x

1
1, . . . , z

1
i , . . . , x

1
n; z1i ) +

1

2mi
fi(x

2
1, . . . , z

2
i , . . . , x

2
n; z2i )

≤ Li
mi

Hi(Si(x
1), Si(x

2)) +
Liε

mi
+
λi
mi

di(z
1
i , z

2
i ).
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From here, we get

(1− λi
mi

)di(z
1
i , z

2
i ) ≤ Li

mi
Hi(Si(x

1), Si(x
2)) +

Liε

mi
.

When ε→ 0, the inequality becomes

di(z
1
i , z

2
i ) ≤ Li

mi − λi
Hi(Si(x

1), Si(x
2)),

so qi = Li

mi−λi
∈]0, 1[ as needed. �

We mention that sufficient conditions for the non-emptiness of the sets Γi(x) or Ti(x) can be
given, for instance, by using intersection theorems of Ky Fan type (see [5], [4]).
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