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Abstract

In this paper, we use the contraction mapping principle to obtain the existence, interval of existence and
uniqueness of solutions for nonlinear hybrid implicit Caputo-Hadamard fractional differential equations. We
also use the generalization of Gronwall’s inequality to show the estimate of the solutions.
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1. Introduction

Fractional differential equations with and without delay arise from a variety of applications including in
various fields of science and engineering such as applied sciences, practical problems concerning mechanics,
the engineering technique fields, economy, control systems, physics, chemistry, biology, medicine, atomic
energy, information theory, harmonic oscillator, nonlinear oscillations, conservative systems, stability and
instability of geodesic on Riemannian manifolds, dynamics in Hamiltonian systems, etc. In particular,
problems concerning qualitative analysis of linear and nonlinear fractional differential equations with and
without delay have received the attention of many authors, see [1]–[12], [14]–[22] and the references therein.

Recently, Ahmad and Ntouyas [3] discussed the existence of solutions for the hybrid Hadamard differential
equation  HDα

(
x(t)

g (t, x (t))

)
= f (t, x (t)) , t ∈ [1, T ] ,

HIαx (t)
∣∣
t=1

= η,

Email addresses: abd_ardjouni@yahoo.fr (Abdelouaheb Ardjouni), adjoudi@yahoo.com (Ahcene Djoudi)

Received September 27, 2019, Accepted: November 22,2019, Online: November 22,2019.



A. Ardjouni, A. Djoudi, Results in Nonlinear Anal. 2 (2019), 136–142 137

where HDα is the Hadamard fractional derivative of order 0 < α ≤ 1. By employing the Dhage fixed point
theorem, the authors obtained existence results.

The implicit fractional differential equation{
CDαx (t) = f

(
t, x (t) ,C Dαx (t)

)
,

x (0) = x0,

has been investigated in [10], where CDα is the standard Caputo’s fractional derivative of order 0 < α < 1.
By using the contraction mapping principle, the existence, interval of existence and uniqueness of solutions
has been established.

In [8], Dhaigude and Bhairat investigated the existence and stability of solutions of the following nonlinear
implicit fractional differential equation{

Dα
1x(t) = f (t, x(t),Dα

1x(t)) , t ∈ [1, b] , b > 1,

x(k) (1) = xk ∈ Rn, k = 0, 1, ...,m− 1,

where Dα
1 is the Caputo-Hadamard derivative of order m−1 < α ≤ m. By employing the modified version of

contraction principle and the successive approximation method, the authors obtained existence and stability
results.

In this paper, we are interested in the analysis of qualitative theory of the problems of the existence,
interval of existence and uniqueness of solutions to nonlinear hybrid implicit Caputo-Hadamard fractional
differential equations. Inspired and motivated by the works mentioned above and the references in this paper,
we concentrate on the existence, interval of existence and uniqueness of solutions for the nonlinear hybrid
implicit Caputo-Hadamard fractional differential equation Dα

1

(
x (t)

g (t, x (t))

)
= f

(
t, x (t) ,Dα

1

(
x (t)

g (t, x (t))

))
,

x (1) = ηg (1, x (1)) ,
(1.1)

where f : [1, T ] × R2 → R and g : [1, T ] × R → R\ {0} are nonlinear continuous functions and Dα
1 denotes

the Caputo-Hadamard derivative of order 0 < α < 1. To show the existence, interval of existence and
uniqueness of solutions of (1.1), we transform (1.1) into an integral equation and then use the contraction
mapping principle. Further, by the generalization of Gronwall’s inequality we obtain the estimate of solutions
of (1.1).

2. Preliminaries

In this section we present some basic definitions, notations and results of fractional calculus [1, 9, 11, 14,
15, 19] which are used throughout this paper.

Definition 1 ([15]). The Hadamard fractional integral of order α > 0 for a continuous function x : [1,+∞)→
R is defined as

Iα1x (t) =
1

Γ (α)

∫ t

1

(
log

t

s

)α−1
x (s)

ds

s
, α > 0. (2.1)

Definition 2 ([1, 11, 14]). The Caputo-Hadamard fractional derivative of order α for a continuous function
x : [1,+∞)→ R is defined as

Dα
1x (t) =

1

Γ (n− α)

∫ t

1

(
log

t

s

)n−α−1
δn (x) (s)

ds

s
, n− 1 < α < n, (2.2)

where δn =

(
t
d

dt

)n
, n = [α] + 1.
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Lemma 1 ([1, 11, 14]). Let <(α) > 0. Suppose x ∈ Cn−1 [1,+∞) and x(n) exists almost everywhere on any
bounded interval of [1,+∞). Then

Iα1 [Dα
1x (t)] = x (t)−

n−1∑
k=0

x(k) (1)

Γ (k + 1)
(log t)k .

In particular, when 0 < <(α) < 1, Iα1 [Dα
1x (t)] = x(t)− x(1).

Lemma 2 ([15]). For all µ > 0 and ν > −1, then

1

Γ (µ)

∫ t

1

(
log

t

s

)µ−1
(log s)ν

ds

s
=

Γ (ν + 1)

Γ (µ+ ν + 1)
(log t)µ+ν .

The following generalization of Gronwall’s lemma for singular kernels plays an important role in obtaining
our main results.

Lemma 3 ([13]). Let x : [1, T ]→ [0,∞) be a real function and w is a nonnegative locally integrable function
on [1, T ]. Assume that there is a constant a > 0 such that for 0 < α < 1

x(t) ≤ w(t) + a

∫ t

1

(
log

t

s

)α−1
x (s)

ds

s
.

Then, there exist a constant K = K(α) such that

x(t) ≤ w(t) +Ka

∫ t

1

(
log

t

s

)α−1
w (s)

ds

s
,

for every t ∈ [1, T ].

3. Main results

In this section, we give the equivalence of the initial value problem (1.1) and prove the existence, interval
of existence, uniqueness and estimate of solutions of (1.1).

The proof of the following lemma is close to the proof of Lemma 6.2 given in [9].

Lemma 4. If the functions f : [1, T ]× R2 → R and g : [1, T ]× R→ R\ {0} are continuous, then the initial
value problem (1.1) is equivalent to nonlinear fractional Volterra integro-differential equation

x (t) = ηg (t, x (t))

+
g (t, x (t))

Γ (α)

∫ t

1

(
log

t

s

)α−1
f

(
s, x (s) ,Dα

1

(
x (s)

g (s, x (s))

))
ds

s
,

for t ∈ [1, T ].

Theorem 1. Let T > 1. Assume that the continuous functions f : [1, T ]×R2 → R and g : [1, T ]×R→ R\ {0}
satisfy the following condition

(H1) There exists Mf ∈ R+ such that

|f (t, u, v)| ≤Mf ,

for all u, v ∈ R and t ∈ [1, T ].
(H2) There exists Mg ∈ R+ such that

|g (t, u)| ≤Mg,

for all u ∈ R and t ∈ [1, T ].



A. Ardjouni, A. Djoudi, Results in Nonlinear Anal. 2 (2019), 136–142 139

(H3) There exist K1,K3 ∈ R+, K2 ∈ (0, 1) with K3 |η| ∈ (0, 1) such that

|f (t, u, v)− f (t, ũ, ṽ)| ≤ K1 |u− ũ|+K2 |v − ṽ| ,

and
|g (t, u)− g (t, ũ)| ≤ K3 |u− ũ| ,

for all u, v, ũ, ṽ ∈ R and t ∈ [1, T ].
Let

1 < b < min

{
T, exp

(
(1−K3 |η|) (1−K2) Γ (α+ 1)

K3 (1−K2)Mf +K1Mg

) 1
α

}
,

then (1.1) has a unique solution x ∈ C ([1, b],R).

Proof. Let

Dα
1

(
x (t)

g (t, x (t))

)
= zx (t) , x (1) = ηg (1, x (1)) ,

then by Lemma 4,

x (t) = ηg (t, x (t)) +
g (t, x (t))

Γ (α)

∫ t

1

(
log

t

s

)α−1
zx (s)

ds

s
, t ∈ [1, T ] ,

where
zx (t) = f (t, ηg (t, x (t)) + g (t, x (t)) Iα1 zx (t) , zx (t)) .

That is x (t) = ηg (t, x (t)) + g (t, x (t)) Iα1 zx (t). Define the mapping P : C ([1, b],R)→ C ([1, b],R) as follows

(Px) (t) = ηg (t, x (t)) +
g (t, x (t))

Γ (α)

∫ t

1

(
log

t

s

)α−1
zx (s)

ds

s
.

It is clear that the fixed points of P are solutions of (1.1). Let x, y ∈ C ([1, b],R), then we have

|(Px) (t)− (Py) (t)|

=

∣∣∣∣∣ηg (t, x (t)) +
g (t, x (t))

Γ (α)

∫ t

1

(
log

t

s

)α−1
zx (s)

ds

s

−ηg (t, y (t))− g (t, y (t))

Γ (α)

∫ t

1

(
log

t

s

)α−1
zy (s)

ds

s

∣∣∣∣∣
≤ |η| |g (t, x (t))− g (t, y (t))|

+ |g (t, x (t))− g (t, y (t))| 1

Γ (α)

∫ t

1

(
log

t

s

)α−1
|zx (s)− zy (s)| ds

s

+ |g (t, y (t))| 1

Γ (α)

∫ t

1

(
log

t

s

)α−1
|zx (s)− zy (s)| ds

s

≤ K3 |η| |x (t)− y (t)|+K3 |x (t)− y (t)|
Mf

Γ (α)

∫ t

1

(
log

t

s

)α−1 ds
s

+
Mg

Γ (α)

∫ t

1

(
log

t

s

)α−1
|zx (s)− zy (s)| ds

s
, (3.1)

and

|zx (t)− zy (t)| ≤ |f (t, x (t) , zx (t))− f (t, x (t) , zy (t))|
≤ K1 |x (t)− y (t)|+K2 |zx (t)− zy (t)|

≤ K1

1−K2
|x (t)− y (t)| . (3.2)
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By replacing (3.2) in the inequality (3.1), we get

|(Px) (t)− (Py) (t)|

≤ K3 |η| |x (t)− y (t)|+K3 |x (t)− y (t)|
Mf

Γ (α)

∫ t

1

(
log

t

s

)α−1 ds
s

+
Mg

Γ (α)

K1

1−K2

∫ t

1

(
log

t

s

)α−1
|x (s)− y (s)| ds

s

≤ K3

(
|η|+

Mf (log t)α

Γ (α+ 1)

)
‖x− y‖

+
Mg

Γ (α)

K1

1−K2

(∫ t

1

(
log

t

s

)α−1 ds
s

)
‖x− y‖

≤
(
K3 |η|+

(
K3Mf +

K1Mg

1−K2

)
(log t)α

Γ (α+ 1)

)
‖x− y‖ .

Since t ∈ [1, b], then
‖Px− Py‖ ≤ β ‖x− y‖ , 0 < β < 1,

where
β = K3 |η|+

K3 (1−K2)Mf +K1Mg

1−K2

(log b)α

Γ (α+ 1)
.

That is to say the mapping P is a contraction in C ([1, b],R). Hence P has a unique fixed point x ∈
C ([1, b],R). Therefore, (1.1) has a unique solution.

Theorem 2. Assume that f : [1, T ]× R2 → R and g : [1, T ]× R→ R\ {0} satisfy (H2) and (H3). If x is a
solution of (1.1), then

|x (t)| ≤ (1−K2) (1−K3 |η|) Γ (α+ 1) +K1KMg (log T )α

(1−K2) (1−K3 |η|)2 Γ (α+ 1)

×
(
|η|Q1 +

MgQ2 (log T )α

(1−K2) Γ (α+ 1)

)
,

where Q1 = sup
t∈[1,T ]

|g (t, 0)|, Q2 = sup
t∈[1,T ]

|f (t, 0, 0)| and K ∈ R+ is a constant.

Proof. Let

Dα
1

(
x (t)

g (t, x (t))

)
= zx (t) , x (1) = ηg (1, x (1)) .

By Lemma 4, x (t) = ηg (t, x (t)) + g (t, x (t)) Iα1 zx (t). Then by (H2) and (H3), for any t ∈ [1, T ] we have

|x (t)| ≤ |η| |g (t, x (t))|+ |g (t, x (t))| Iα1 |zx (t)|
≤ |η| (|g (t, x (t))− g (t, 0)|+ |g (t, 0)|) +MgI

α
1 |zx (t)|

≤ |η| (Q1 +K3 |x (t)|) +MgI
α
1 |zx (t)| ,

where Q1 = sup
t∈[1,T ]

|g (t, 0)|. On the other hand, for any t ∈ [1, T ] we get

|zx (t)| = |f (t, x (t) , zx (t))|
≤ |f (t, x (t) , zx (t))− f (t, 0, 0)|+ |f (t, 0, 0)|
≤ K1 |x (t)|+K2 |zx (t)|+ |f (t, 0, 0)|

≤ K1

1−K2
‖x‖+

Q2

1−K2
,
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where Q2 = sup
t∈[1,T ]

|f (t, 0, 0)|. Therefore

|x (t)| ≤ |η| (Q1 +K3 |x (t)|) +MgI
α
1

(
Q2

1−K2
+

K1

1−K2
|x (t)|

)
.

Thus

(1−K3 |η|) |x (t)| ≤ |η|Q1 +
MgQ2 (log T )α

(1−K2) Γ (α+ 1)

+
K1Mg

(1−K2) (1−K3 |η|)
Iα1 {(1−K3 |η|) |x (t)|} .

By Lemma 3, there is a constant K = K (α) such that

(1−K3 |η|) |x (t)|

≤ |η|Q1 +
MgQ2 (log T )α

(1−K2) Γ (α+ 1)

+
K1KMg (log T )α

(1−K2) (1−K3 |η|) Γ (α+ 1)

(
|η|Q1 +

MgQ2 (log T )α

(1−K2) Γ (α+ 1)

)
≤ (1−K2) (1−K3 |η|) Γ (α+ 1) +K1KMg (log T )α

(1−K2) (1−K3 |η|) Γ (α+ 1)

×
(
|η|Q1 +

MgQ2 (log T )α

(1−K2) Γ (α+ 1)

)
.

Hence

|x (t)| ≤ (1−K2) (1−K3 |η|) Γ (α+ 1) +K1KMg (log T )α

(1−K2) (1−K3 |η|)2 Γ (α+ 1)

×
(
|η|Q1 +

MgQ2 (log T )α

(1−K2) Γ (α+ 1)

)
.

This completes the proof.
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