Results in Nonlinear Analysis 2 (2019) No. 3, 143–146 Available online at www.nonlinear-analysis.com



# A note on Kannan type mappings with a F-contractive iterate

Selma Gülyaz-Özyurt<sup>a</sup>

<sup>a</sup>Department of Mathematics, Cumhuriyet University, Sivas, Turkey

# Abstract

In this paper, we revisited fixed point theorem for Kannan type mapping with a contractive iterate at a point in the setting of *F*-construction. The given results extend and improve the related results in the literature.

*Keywords:* Fixed point; *b*-metric space; contractive iteration at a point. 2010 MSC: 47H10, 54H25

# 1. Introduction and Preliminaries

One of the outstanding extension of the Banach's fixed point theorem was given by Bryant [2]. Indeed, Bryant [2] just relaxed the continuity condition. More precisely, he proved that a mapping can not forms contraction although one of its iteration satisfies being a contraction.

**Theorem 1.** [2] If f is a mapping of a complete metric space into itself and if, for some positive integer k,  $f^k$  is a contraction, then f has a unique fixed point.

The following example indicates the aspect of Bryant [2].

**Example 1.** [2] Let  $T : [0,2] \rightarrow [0,2]$  be defined by

$$T(x) = \begin{cases} 0 & \text{if } x \in [0, 1], \\ 1 & \text{if } x \in (1, 2]. \end{cases}$$

Then 2nd iteration of T is equal to 0 for all  $x \in [0, 2]$  although T is not continuous.

This interesting result of Bryant [2] was improved by Sehgal [5] by proposing the idea of the "contractive iterate at each point".

The significant result of Sehgal [5] is the following:

Email addresses: selmagulyaz@gmail.com (Selma Gülyaz-Özyurt), sgulyaz@cumhuriyet.edu.tr (Selma Gülyaz-Özyurt) Received November 12, 2019, Accepted: November 22,2019, Online: November 24,2019.

**Theorem 2.** Let (X, d) be a complete metric space,  $q \in [0, 1)$  and  $T : X \to X$  be a continuous mapping. If for each  $x \in X$  there exists a positive integer k = k(x) such that

$$d(T^{k(x)}x, T^{k(x)}y) \le qd(x, y)$$
(1.1)

for all  $y \in X$ , then T has a unique fixed point  $u \in X$ . Moreover, for any  $x \in X$ ,  $u = \lim_{n \to \infty} T^n x$ .

Throughout the paper,  $\mathbb{N}$  and  $\mathbb{N}_0$  denote the set of positive integers and the set of nonnegative integers. Similarly, let  $\mathbb{R}$ ,  $\mathbb{R}^+$  and  $\mathbb{R}_0^+$  represent the set of reals, positive reals and the set of nonnegative reals, respectively. Throughout the paper, all consider set X is non-empty.

We start with the definition of auxiliary function that was used by Wardowski [6] to define the new type contraction.

**Definition 1.** [6] Let  $F : \mathbb{R}^+ \to \mathbb{R}$  and we are considering the following conditions:

- (F1) F is strictly increasing, that is, for all  $\xi, \eta \in \mathbb{R}_+$  if  $\xi < \eta$  then  $F(\xi) < F(\eta)$ .
- (F2) For every sequence  $\{t_n\}_{n=1}^{\infty}$  of positive real numbers

 $\lim_{n \to \infty} t_n = 0 \text{ if and only if } \lim_{n \to \infty} F(t_n) = -\infty.$ 

(F3) There is  $k \in (0,1)$  such that  $\lim_{t \to 0^+} (t^k F(t)) = 0.$ 

**Example 2.** [6] Let  $F_i : \mathbb{R}^+ \to \mathbb{R}$ , for i = 1, 2, 3, 4, be mappings that are defined by

- $(E1) \ F_1(t) = \ln t,$
- (E2)  $F_2(t) = t + \ln t$ ,
- (E3)  $F_3(t) = -1/\sqrt{t}$ ,
- (E4)  $F_4(t) = \ln(t^2 + t)$ ,

Then  $F_1, F_2, F_3, F_4 \in \mathcal{F}$ .

**Definition 2.** [6] Let (X, d) be a metric space. A map  $T : X \to X$  is said to be an F-contraction on (X, d) if there exists  $F \in \mathcal{F}$  and  $\tau > 0$  such that for all  $x, y \in X$ 

$$d(Tx, Ty) > 0 \Rightarrow \tau + F(d(Tx, Ty)) \le F(d(x, y))$$

$$(1.2)$$

From (F1) and (F2) easily conclude that every F-contraction is a contractive mapping, that is, for all  $x, y \in X$  with  $Tx \neq Ty$ , we have

$$d(Tx, Ty) < d(x, y)$$

**Theorem 3.** [6] Let T be a self-mapping on a complete metric space (X, d). If T forms an F-contraction, then it possesses a unique fixed point u. Moreover, for any  $x \in X$  the sequence  $\{T^nx\}$  is convergent to u.

**Remark 1.** From (F1) and (1.2) it follows that

$$\begin{array}{ll} F(d(Tx,Ty)) & \leq & F(d(x,y)) - \tau < F(d(x,y)) \Rightarrow \\ & \Rightarrow & d(Tx,Ty) < d(x,y) \end{array}$$

for all  $x, y \in X$  such that  $Tx \neq Ty$ . Also, T is a continuous operator.

In this paper, we combine the notions of F-contraction, Kannan type mapping in the setting of a complete metric space. This paper can be considered as a continuation of the recent result [4].

### 2. Main results

**Theorem 4.** Let (X, d) be a complete metric space and  $T : X \to X$  a mapping which satisfies the condition: If there exists  $F \in \mathcal{F}$  and  $\tau > 0$  such that for each  $x \in X$  there is a positive integer n(x) such that for all  $y \in X$ 

$$l(T^{n(x)}(x), T^{n(x)}(y)) > 0 \Rightarrow \tau + F(d(T^{n(x)}(x), T^{n(x)}(y))) \le F(K(x, y)),$$
(2.1)

where  $K(x, y) := \max\{d(T^{n(x)}(x), x), d(y, T^{n(x)}(y))\}$ . Then, T has a unique fixed point  $z \in X$  and  $T^n(x_0) \to z$  for each  $x_0 \in X$ , as  $n \to \infty$ .

*Proof.* We shall construct a sequence  $\{x_k\}$  in the following way. For the chooses arbitrary point  $x_0 \in X$  with  $n_0 = n(x_0)$ , we set  $x_1 = T^{n_0}x_0$  and inductively we get

$$x_{i+1} = T^{n_i} x_i$$
 with  $n_i = n(x_i)$ .

We assert that  $x_i \neq x_{i+1}$  for all  $i \in \mathbb{N}_0$ . Suppose, on the contrary, there exists  $i_0 \in \mathbb{N}_0$  such that  $x_{i_0} = x_{i_0+1} = T^{n_{i_0}} x_{i_0}$ . Then,  $x_{i_0}$  turns to be a fixed point of  $T^{n_{i_0}}$ . On the other hand,

$$Tx_{i_0} = T(T^{n_{i_0}}x_{i_0}) = T^{n_{i_0}}(Tx_{i_0}).$$

Thus,  $Tx_{i_0}$  form a fixed point of  $T^{n_{i_0}}$ . If  $Tx_{i_0} \neq x_{i_0}$ , then we conclude that T has a fixed point and that terminate the proof. Suppose, on the contrary, that  $Tx_{i_0} \neq x_{i_0}$  and hence  $d(T^{n_{i_0}}(Tx_{i_0}), T^{n_{i_0}}(x_{i_0})) > 0$ . Then, by (2.13) we have

$$\tau + F(d(x_{i_0}, Tx_{i_0})) = \tau + F(d(T^{n_{i_0}}x_{i_0}, T^{n_{i_0}}Tx_{i_0})) \le F(K(x_{i_0}, Tx_{i_0})),$$
(2.2)

with  $K(x,y) := \max\{d(T^{n_{i_0}}(x_{i_0}), x_{i_0}), d(Tx_{i_0}, T^{n_{i_0}}(Tx_{i_0}))\}=0$ , a contradiction. Consequently, we deduce that

$$x_i \neq x_{i+1} \text{ for all } i \in \mathbb{N}_0. \tag{2.3}$$

Taking the expression (2.3) into account (2.13) implies that

$$d(x_{i+1}, x_i) > 0 \Rightarrow \tau + F(d(x_{i+1}, x_i)) \le F(K(x_i, x_{i-1})),$$
(2.4)

where  $K(x_i, x_{i-1}) = \max\{d(x_i, x_{i-1}), d(x_{i+1}, x_i)\}$ . It is clear that if  $K(x_i, x_{i-1}) = d(x_{i+1}, x_i)$  yields a contradiction. Thus,  $K(x_i, x_{i-1}) = d(x_i, x_{i-1})$  and (2.4) implies that

$$F(\delta_i) \le F(\delta_{i-1}) - \tau \le F(\delta_{i-1}) - 2\tau \le \dots \le F(\delta_0) - i\tau,$$

$$(2.5)$$

where  $\delta_j = d(T^{n_i}x_j, x_j)$  for all  $j \in \mathbb{N}_0$ .

As  $i \to \infty$  the inequality above yields that  $\lim_{i\to\infty} F(d(x_{i+1}, x_i)) = -\infty$ . On account of axiom (F2), we conclude that

$$\lim_{n \to \infty} d(x_{i+1}, x_i) = 0.$$
(2.6)

Taking the axiom (F3) into the account, we find a  $k \in (0, 1)$  such that

$$\lim_{i \to \infty} (d(x_{i+1}, x_i))^k F(d(x_{i+1}, x_i)) = 0.$$
(2.7)

On the other hand, by regarding (2.5), we find that

$$(d(x_{i+1}, x_i))^k F(d(x_{i+1}, x_i)) - (d(x_{i+1}, x_i))^k F(\delta_0) \leq (d(x_{i+1}, x_i))^k (F(\delta_0) - i\tau) - (d(x_{i+1}, x_i))^k F(\delta_0) = -(d(x_{i+1}, x_i))^k i\tau \leq 0.$$

$$(2.8)$$

Taking, (2.6) and (2.7), into account and by letting  $n \to \infty$  in (2.8), we find

$$\lim_{i \to \infty} i (d(x_{i+1}, x_i))^k = 0.$$
(2.9)

Here, (2.9) implies that there exists  $n_1 \in \mathbb{N}$  such that  $i\delta_i^k \leq 1$  for all  $i \geq n_1$ . As a result, for all  $i \geq n_1$ , we have

$$(d(x_{i+1}, x_i))^k \le \frac{1}{i^{1/k}}.$$
(2.10)

On account of (2.10), we shall show that the recursive sequence  $\{x_i\}$  is Cauchy. Consider  $m, n \in \mathbb{N}$  such that  $m > n \ge n_1$ . Due to the estimation (2.10) together with the triangle inequality, we get that

$$d(x_m, x_n) \le \delta_{m-1} + \delta_{m-2} + \dots + \delta_n < \sum_{j=n}^{\infty} \delta_j \le \sum_{j=n}^{\infty} \frac{1}{j^{1/k}}.$$
(2.11)

It is evident that the series  $\sum_{j=n}^{\infty} \frac{1}{j^{1/k}}$  converges. Thus,  $\{x_i\}$  is a Cauchy sequence. Owing to the completeness of (X, d), there exists  $u \in X$  such that  $\lim_{i\to\infty} x_i = x^*$ .

in what follows, we show that  $x^*$  is a fixed point of  $T^{n(x^*)}$ . Indeed, due to the continuity of T, we have

$$d(Tx^*, x^*) = \lim_{i \to \infty} d(Tx_i, x_i) = \lim_{n \to \infty} d(x_{i+1}, x_i) = 0,$$

For the proving the uniqueness of the fixed point let us consider  $x^*$  and  $y^*$  be two distinct fixed point and  $n = (x^*)$ . So, we have  $d(x^*, y^*) > 0$  and hence we get that

$$d(Tx^*, Ty^*) > 0 \Rightarrow \tau + F(d(Tx^*, Ty^*)) \le F(K(x^*, y^*)),$$
(2.12)

where  $K(x, y) = \max\{d(Tx^*, x^*), d(Ty^*, y^*)\} = 0$ , a contradiction.

**Theorem 5.** Let (X, d) be a complete metric space and  $T : X \to X$  a mapping which satisfies the condition: If there exists  $F \in \mathcal{F}$  and  $\tau > 0$  such that for each  $x \in X$  there is a positive integer n(x) such that for all  $y \in X$ 

$$d(T^{n(x)}(x), T^{n(x)}(y)) > 0 \Rightarrow \tau + F(d(T^{n(x)}(x), T^{n(x)}(y))) \le F(N(x, y)),$$
(2.13)

where  $N(x,y) := \alpha d(T^{n(x)}(x), x) + \beta d(y, T^{n(x)}(y))$  and  $\alpha, \beta$  are non-negative number with  $0 \le \alpha + \beta < 1$ . Then, T has a unique fixed point  $z \in X$  and  $T^n(x_0) \to z$  for each  $x_0 \in X$ , as  $n \to \infty$ .

Sketch of the proof. Note that  $N(x, y) \leq K(x, y)$  for all x, y and F is strictly increasing. Thus, by Theorem, we conclude the desired result.

## References

- S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fundamenta Mathematicae, 3 (1922), 133–181.
- [2] V. W. Bryant, A remark on a fixed point theorem for iterated mappings, The American Mathematical Monthly, . 75 (1968) 399–400, .
- [3] L. F. Guseman, Fixed point theorems for mappings with a contractive iterate at a point, Proceedings of the American Mathematical Society, 26, (1970), 615-618.
- [4] A. Özturk, A fixed point theorem for mappings with an F-contractive iterate, Advances in the Theory of Nonlinear Analysis and its Applications 3 (2019) No. 3, 2310235.
- [5] V. M. Sehgal, A fixed point theorem for mappings with a contractive iterate, Proceedings of the American Mathematical Society, 23 (1969), 631-634.
- [6] D. Wardowski, Fixed Points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. 2012:94 (2012).

$$\square$$