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Abstract: In this paper, for linear similarity groups, global invariants of plane Bézier curves ( plane polynomial curves) in Ey are
introduced. Using complex numbers and the global G-invariants of a plane Bézier curve( a plane polynomial curve), for given two
plane Bézier curves ( plane polynomial curves) x(t) and y(t), evident forms of all transformations g € G, carrying z(t) to y(t), are
obtained.

Keywords: Polynomial curve, Bézier curve, Invariant, Linear similarity group.

1 Introduction

Let E be the 2-dimensional Euclidean space, G = LSim(E2) be the group of all linear similarities of E5 and G = LSim™ (FEs) be the
group of all orientation-preserving linear similarities of Eo.

In [1], using local differential invariants and Frenet frames of two curves, uniqueness and existence theorems for a curve determined up to a
direct similarity of Fs.

For the group Sim™ (n) , this theorem shows that a necessary and sufficient conditions for two curves in Ej, to be equivalent is that they
have same shape curvatures and the other specially conditions.

The complete systems of global G-invariants of a path and a curve in E'y are obtained. For the groups G, existence and uniqueness theorems
for a curve and a path are given in the terms of global G-invariants of a path and a curve in [2].

LSim(2)-equivalence of two Bézier curves without using differential invariants of Bézier curves in the terms of control invariants of Bézier
curves is proved in [3, 4].

In this work, starting from the ideas in [2—4, 8-11], we address how to compute explicitly an linear similarity transformation which carrying
a Bézier curve into another Bézier curve in the terms of control invariants of a Bézier curve for the groups LSim(Es) and LSim™ (Fg)
without using differential invariants of Bézier curves.

2 Preliminaries

The following definitions and propositions are known in [2].
Let R be the field of real numbers and C be the field of complex numbers. The multiplication in C has the form (a; + ia2) (b1 + ib2) =

(a1b1 — agb2) + i(a1b2 + azby). We will consider element a = a1 + ¢ag also in the form a = ( Z; ).Fora = a1 + iag, denote by P, the

matrix [ “1 T ) and consider P, also as the transformation P, : C — C, where Pyb = a1 —az by = a1by — azby
az ai as  aq bo a1bs + asby

forall b = by + iby = ( Z; > € C. Then we have the equality
ab = Pyb. €))
forall a,b € C. Let P(C) denote the set of all matrices Py, where a € C. We consider on P(C) the following standard matrix operations: the
component-wise addition, a scalar multiplication and the multiplication of matrices. Then P(C) is a field, where the unit element is the unit
matrix. The following Propositions are known.
Proposition 1. The mapping P : C — P(C), where P : a — Pq for all a € C, is an isomorphism of fields.
For vectors a = a1 + ia2,b = by +iby € C, we put < a,b >= a1b; + agbe. Then < a,b > is a bilinear form on F> and < a,a >=

al + a% is a quadratic form on Fs. Put Q(a) < a,a >. We consider the field C also as the two-dimensional Euclidean space Eo w1th the
scalar product < a,b >. Then ||a|| = |a| = 1/Q(a),Va € C.
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Proposition 2. (i) Equalities Q(a) = det(Pa), Q(a ) Q(a)Q(b),
(ii) Let a = a1 + iaz € C*. Then det(P,) = Q(a) >

abl =

) = det(Pa) = hold for all a,b € C.
An endomorphism ¢ of a vector space C is called an involution of the field C if ¢(¢/(a)) = a and ¥ (ab) = 1 (a)1(b) for all a,b € C. For
an element a = a1 + ias € C, we seta = a1 — iao.

Proposition 3. The mapgmg a — a is an involution of the field C. In addition, for an arbitrary element a = a1 + iag € C, equalities a + a =
2a1,< a, a>—aa—a1+a2 € R hold.

Proposition 4. Let z € C. Then the element x ' exists if and only if Q(z) # 0. In the case Q(z) # 0, equalities 7l = (x) and Q(z~ ) =
oty hold.

1

LetW:(O

_01 > We will use W also for the writing of the element Z in the form z = W z.

Proposition 5. Q(Wz) = Q(z) forallx € Cand < Wx, Wy >=< z,y > forall z,y € C.

Put C* = {z € C| Q(z) # 0}. C* is a group with respect to the multiplication operation in the field C. Let a = a1 + ia2 € C* that is

|a] # 0. Put
a  —as
P = < aa2| \(gl\ ) )
Ta[  Taf

Proposition 6. Let a = a1 + ias € C*. Then the equality P, = |a| P; holds, where Py~ € SO(2).

Put S(C*)={2€C|Q(z) =1}, P(C*) ={P, | € C*} and P(S(C*)) = {P | z € S(C*)}. S(C*) is a subgroup of the group C*
and S(C*) = { Ylpe R}. Denote the set of all matrices {gW | g € P(C*)} by P(C*)W, where gW is the multiplication of matrices g
and W.

Theorem 1. (see [7, p.172]) The following equalities are hold:
(i) LSim™(Eq) = {Py : Eo — Fala € C*} = P(C*).

(it) LSim™ (Eg) = {P.W : By — Esla € C*} = P(C*)W.
(iii) LSim(E3) = LSim™ (E2) U LSim™ (Ey).

Proposition 7. (i) Let u,v € C. Assume that Q(u) # 0. Then the element vu~ ! exists, the following equalities hold:

1 <u,v> . (]
===
o Q) Q)
and
<u,v>  [u]
P,,-1= ‘ﬁfg]) <35j;) . 2)
Q(u) Q(u)

(ii) Assume that Q(u) # 0. Then det(Py,—1) = (S%:22)2 4 (C[Qu(

e 2L)2 £ 0 if and only if Q(v) # 0

3 Control invariants of planar Bézier curve

A planar Bézier curve is a parametric curve(or a I-path, where I = [0, 1]) whose points z(t) are defined by z(t) = Y7, p; Bi,m (t), where
the p; € Eo are control points and B; ,, (t) are Bernstein basis polynomials.(for more details, see [6].)

A planar polynomial curve is a parametric curve whose points z(t) are defined by z(t) = >/, a;t’, where the a; € Ey are monomial
control points.(for more details, see [6, p.181].)
All polynomial curves can be represented in Bézier form. The following lemma is given in [6, p.181].
Lemma 1. The following equalities
) i— 1 | Al
ai =3 (=" %W% (3)
hold foralli =1,2,... , mandi > j.

Let G = LSim(E>), LSim™ (E3).
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Definition 1. (see [5]) A function f(z0,21,...,2m) of points 20,21, . .., zm in Eo will be called G-invariant if f(Fzo, Fz1,...,Fzm) =
f(z0,21,...,2m) forall F € G.

A G-invariant function f(bg,b1,...,bm) of control points by, b1, ..., bm of a Bézier curve x(t) = Z;ﬂ:o b;j B m (t) will be called a control
G-invariant of x(t), where Bj m, (t) are Bernstein basis polynomials. A G-invariant function f(ag, a1, ..., am) of monomial control points
ag, a1, ..., am of a polynomial curve x(t) = ZT:O a;t? will be called a monomial G-invariant of x(t).

Definition 2. (see [5]) Bézier curves x(t) and y(t) in Eo will be called G -similar and written x < y if there exists F' € G such that
y(t) = Fz(¢) forall t € [0,1].

Since Bézier curves can be introduced by control points, we will define the problem of G-similarity of points in Fs.

Definition 3. (see [5]) m-uples {z1,z22,...,2m} and {wi,wa,...,wm} of points in Ey will be called G-similar and written by
{z1,22,...,2m} < {w1,wa, ..., wm} if there exists F € G such that w; = Fzj forallj =1,2,...,m.

Let u, v be points in E5. We denote the the matrix of column-vectors u, v by ||u v|| and its determinant by [u v].

<g(u),g(v)> _ <u,v>
<g(u),g(u)> ~ <u,u>

invariant. Similarly, the function <Z ,ZL is LSim™ (Ey)-invariant.

<u,v)>

Example 1. Since <u,u>

for all g € LSim(E2), we obtain that the function of points u,v € Eg is LSim(E>)-

LSim(E.
Example 2. Let x(t) and y(t) be Bézier curves of degrees of m and k, respectively. Assume that x i E2)

of a Bézier curve x(t) is LSim(Esy)-invariant.

y. Then m = k that is the degree

4  Similarity of planar Bézier curves

Theorem 2. Let x(t) = Z;n:o ajtj = Z;"’:O pjBj.m(t) and y(t) = Z;"ZO cjtj = Z;n:o qjBjm (t) be Bézier curves in Ey of degree m,
where m > 1. Then following conditions are equivalent:

LSim(Ez)

(1) =(t) y(t)

. LSim(E»)
(”) {p07p17-~~,pm} SN( : ){QO7Q17~-~aqm}
. LSim(E:
(i) {ag,a1,...,am} R {co,c1y...,cm}

Theorem 3. Let x(t) = Z;”:o a;t! = Z;”:O pjBjm(t) and y(t) = Z;‘H:O cjt! = Z;‘H:O q; Bj,m (t) be Bézier curves in Es of degree m,

where m > 1. Then following conditions are equivalent:

. LSim™ (E;

@ o) "y

.. LSim™ (E

(Zl) {pOaplv"'apm} N( 2) {quqla"'vqm}
LSim™ (Ey)

(ZU) {a07a17'--7am} ~ {CO,Cl,...,Cm}

Remark 1. In Theorems 2 and 3, we have considered the problem of G-similarity of polynomial curves in the case m > 1. For the case m = 0,
the problem of G-similarity of polynomial curves x(t) = ag and y(t) = cq reduces to the problem of G-similarity of points ag and cq in Es.

For the groups G = LSim/(Es), LSim™* (E2), it is obvious that ag < co for all ag and cg in FEo. In what follows, m > 1. The case m = 0 is
easily considered.

Theorem 4. Let A = {ag,...,am} and C = {cog,...,cm} be two systems in Ea such that aj, # 0, ¢, # 0, where k € {0,1,...,m}. Then,
A and C are LSim™ (Ex)-similar if and only if

<ag,ap > < C,Cp >

<ap,ar > < cp,cp >’

lai ax]  __ lei ekl

< ag,ap > < Ck,Ck >
foralli=0,1,...k—1,k+ 1,k + 2,...,m. Moreover, there exists the unique element F' € LSier(Eg) such that c; = Faj for all j =
0,1,...,m, where the matrix F' can be written as

@

<a?70k> _ [aécck]
_ Q(ak) Q(ak)
= akclli <ak,C:> : ®)

Q(ak) Q(ak)

Theorem 5. Let A ={ag,...,am} and C ={cg,...,cm} be two systems in Eo such that ay, #0, ¢, # 0 for k € {0,1,...,m} and
rankA = rankC = 1. Then, A and C are LSim(E>)-similar if and only if

<ag,ap > < C,Ckp >
<ag,ap > < Cg,Ck >

(6)

foralli=0,1,...k —1,k+1,k+2,...,m. Moreover, there exists the unique element H € LSim(E3) such that c; = Haj for all j =
0,1,...,m, where the matrix H has the form (5).
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Remark 2. Let A = {ao,...,am}. Inthe case rank A = 2, denote by index A smallest of s, 0 < s < m, such that as # Aay, for all X € Ey
and ay, # 0. The number index A is LSim(Esg)-invariant.

Theorem 6. Let A = {ag,...,am} and C = {cp,...,cm} be two systems in Ey such that ay, # 0, ¢;; # 0, rankA = rankC = 2 and
index A = indexC =l for k,l € {0,1,...,m}, |l # k. Then, A and C are LSim(E2)-similar if and only if

<aj,ap > < C,Cp >
<ag,ap > < C,Cp >

( [ay ax] )2:< [c1 c] >2 7
< ag,ar > < cCp,cEp >

la; ax] i cgl

lag a] ~ ler ck]

for all i =0,1,...,...,m, i #k and i # l. Moreover, there exists the unique element M € LSim(E2) such that c; = Ma; for all
j =1,...,m. Then there exist following cases:
(1) Inthe case JZ; f;’;g = <[CC,1 ,ZIZ]>’ the matrix M € LSim™ (E2) and it has the form (5).
(i4) In the case <[g;; ,Z’Z> =— <[§’i 7CC’Z]>, the matrix MW € LSim(E>) and it can be represented by
<Wap,cp> _[Wakck]
— Q(ak Q
M= gen e | ®
Q(ax) Q(ax)

Theorem 7. (i) Let z(t) = Z}n:o ajtj and y(t) = Z;n:(] cjtj be two polynomial curves in Eo of degree m,where m > 1 such that

LSim™ (E
z(t) wm (B2) y(t). Then, the equalities (4) in Theorem 4 hold.
(i) Conversely, if x(t) = Z}n:o a;t) and y(t) = Z;‘nzo c;t? are two polynomial curves in Eo of degree m, where m > 1 such that the
LSim™ (E
equalities (4) in Theorem 4 hold, then x(t) o’ (B2) y(t). Moreover; there exists the unique F € LSim™ (E2) such that y(t) = Fx(t) for
allt € [0,1] and F has the form (5).

Theorem 8. (i) Let x(t) = Z;.n:() ajtj and y(t) = Z}n:o Cjtj be two polynomial curves in Ey of degree m,where m > 1 such that

LSim(E
z(t) im{(E) y(t). Then, the equalities (7) in Theorem 6 hold.
(43) Conversely, if z(t) = Z;”:O a;t! and y(t) = Z;n:o ¢c;t? are two polynomial curves in Ey of degree m, where m > 1 such that the

LSim(E
equalities (7) in Theorem 6 hold, then z(t) fm(Ea) y(t). Moreover, there exists the unique F € LSim(Es2) such that y(t) = Fx(t) for all
t € [0,1]. Then,

(a) Inthe case <[gli )ZZL = <[CC£ )CC’Z]>, F has the form (5).
(b) In the case <[gllc ’Z’;L =— <[cC;l€ ’CC’Z]>, F has the form (8).

Theorem 9. (i) Let z(t) = Z}W:O p;Bjm(t) and y(t) = "7 qj Bj.m(t) be two Bézier curves in Eo of degree m, where m > 1 such that

LSim™*(E
z(t) tm (B2) y(t). Then by Lemma 1, the equalities (4) in Theorem 4 hold.
(i) Conversely, if Let x(t) = E;‘n:o pjBj.m(t) and y(t) = Z;'n:o qjBjm(t) be two Bézier curves in Iy of degree m, where m > 1 such
LSim™ (E
that the equalities (4) in Theorem 4 and Lemma 1 hold, then x(t) bm (B2) y(t). Moreover; there exists the unique F' € LSim™ (Es) such
that y(t) = Fx(t) forall t € [0, 1] and F in the terms of the equalities given in Lemma 1 has the form (5) .

Theorem 10. (i) Let z(t) = E}n:o P Bjm(t) and y(t) = ZT:O qjBjm(t) be two Bézier curves in Ea of degree m, where m > 1 such

LSim(E
that x(t) m(Ez) y(t). Then by Lemma 1, the equalities (7) in Theorem 6 hold.
(44) Conversely, if z(t) = Z;n:o pjBj.m(t) and y(t) = Z;’;O qjBjjm (t) be two Bézier curves in Ex of degree m, where m > 1 such that
LSim(E
the equalities (7) in Theorem 6 and Lemmal hold, then x(t) bm(Ez) Yy
y(t) = Fa(t) forallt € [0,1]. Then,
[pr Pr] (@1 ax]

(t). Moreover, there exists the unique F € LSim(FE3) such that

(a) Inthe case =~ s = — =X, F'in the terms of the equalities given in Lemma 1 has the form (5).
(b) In the case <[£llc ];) b = <g}i 2’; ]> , Fin the terms of the equalities given in Lemma 1 has the form (8).
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