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Abstract: In this paper, for linear similarity groups, global invariants of plane Bézier curves ( plane polynomial curves) in E2 are
introduced. Using complex numbers and the global G-invariants of a plane Bézier curve( a plane polynomial curve), for given two
plane Bézier curves ( plane polynomial curves) x(t) and y(t), evident forms of all transformations g ∈ G, carrying x(t) to y(t), are
obtained.
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1 Introduction

Let E2 be the 2-dimensional Euclidean space, G = LSim(E2) be the group of all linear similarities of E2 and G = LSim+(E2) be the
group of all orientation-preserving linear similarities of E2.

In [1], using local differential invariants and Frenet frames of two curves, uniqueness and existence theorems for a curve determined up to a
direct similarity of E2.

For the group Sim+(n) , this theorem shows that a necessary and sufficient conditions for two curves in En to be equivalent is that they
have same shape curvatures and the other specially conditions.

The complete systems of global G-invariants of a path and a curve in E2 are obtained. For the groups G, existence and uniqueness theorems
for a curve and a path are given in the terms of global G-invariants of a path and a curve in [2].
LSim(2)-equivalence of two Bézier curves without using differential invariants of Bézier curves in the terms of control invariants of Bézier

curves is proved in [3, 4].
In this work, starting from the ideas in [2–4, 8–11], we address how to compute explicitly an linear similarity transformation which carrying

a Bézier curve into another Bézier curve in the terms of control invariants of a Bézier curve for the groups LSim(E2) and LSim+(E2)
without using differential invariants of Bézier curves.

2 Preliminaries

The following definitions and propositions are known in [2].
Let R be the field of real numbers and C be the field of complex numbers. The multiplication in C has the form (a1 + ia2)(b1 + ib2) =

(a1b1 − a2b2) + i(a1b2 + a2b1). We will consider element a = a1 + ia2 also in the form a =

(
a1
a2

)
. For a = a1 + ia2, denote by Pa the

matrix
(
a1 −a2
a2 a1

)
and consider Pa also as the transformation Pa : C→ C, where Pab =

(
a1 −a2
a2 a1

)(
b1
b2

)
=

(
a1b1 − a2b2
a1b2 + a2b1

)
for all b = b1 + ib2 =

(
b1
b2

)
∈ C. Then we have the equality

ab = Pab. (1)

for all a, b ∈ C. Let P (C) denote the set of all matrices Pa, where a ∈ C. We consider on P (C) the following standard matrix operations: the
component-wise addition, a scalar multiplication and the multiplication of matrices. Then P (C) is a field, where the unit element is the unit
matrix. The following Propositions are known.

Proposition 1. The mapping P : C→ P (C), where P : a→ Pa for all a ∈ C, is an isomorphism of fields.

For vectors a = a1 + ia2, b = b1 + ib2 ∈ C, we put < a, b >= a1b1 + a2b2. Then < a, b > is a bilinear form on E2 and < a, a >=
a21 + a22 is a quadratic form on E2. Put Q(a) =< a, a >. We consider the field C also as the two-dimensional Euclidean space E2 with the
scalar product < a, b >. Then ‖a‖ = |a| =

√
Q(a),∀a ∈ C.
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Proposition 2. (i) Equalities Q(a) = det(Pa), Q(ab) = Q(a)Q(b), |ab| = |a| |b|, Q(a) = det(Pa) = hold for all a, b ∈ C.
(ii) Let a = a1 + ia2 ∈ C∗. Then det(Pa) = Q(a) > 0.

An endomorphism ψ of a vector space C is called an involution of the field C if ψ(ψ(a)) = a and ψ(ab) = ψ(a)ψ(b) for all a, b ∈ C. For
an element a = a1 + ia2 ∈ C, we set a = a1 − ia2.

Proposition 3. The mapping a→ a is an involution of the field C. In addition, for an arbitrary element a = a1 + ia2 ∈ C, equalities a+ a =
2a1, < a, a >= aa = a21 + a22 ∈ R hold.

Proposition 4. Let x ∈ C. Then the element x−1 exists if and only ifQ(x) 6= 0. In the caseQ(x) 6= 0, equalities x−1 = x
Q(x)

andQ(x−1) =
1

Q(x)
hold.

Let W =

(
1 0
0 −1

)
. We will use W also for the writing of the element z in the form z =Wz.

Proposition 5. Q(Wx) = Q(x) for all x ∈ C and < Wx,Wy >=< x, y > for all x, y ∈ C.

Put C∗ = {z ∈ C | Q(z) 6= 0}. C∗ is a group with respect to the multiplication operation in the field C. Let a = a1 + ia2 ∈ C∗ that is
|a| 6= 0. Put

P+
a =

(
a1

|a|
−a2

|a|
a2

|a|
a1

|a|

)
.

Proposition 6. Let a = a1 + ia2 ∈ C∗. Then the equality Pa = |a|P+
a holds, where P+

a ∈ SO(2).

Put S(C∗) = {z ∈ C | Q(z) = 1}, P (C∗) = {Pz | z ∈ C∗} and P (S(C∗)) = {Pz | z ∈ S(C∗)}. S(C∗) is a subgroup of the group C∗

and S(C∗) =
{
eiϕ | ϕ ∈ R

}
. Denote the set of all matrices {gW | g ∈ P (C∗)} by P (C∗)W , where gW is the multiplication of matrices g

and W .

Theorem 1. (see [7, p.172]) The following equalities are hold:

(i) LSim+(E2) = {Pa : E2 → E2|a ∈ C∗} = P (C∗).
(ii) LSim−(E2) = {PaW : E2 → E2|a ∈ C∗} = P (C∗)W .
(iii) LSim(E2) = LSim+(E2) ∪ LSim−(E2).

Proposition 7. (i) Let u, v ∈ C. Assume that Q(u) 6= 0. Then the element vu−1 exists, the following equalities hold:

vu−1 =
< u, v >

Q(u)
+ i

[uv]

Q(u)

and

Pvu−1 =

 <u,v>
Q(u)

− [uv]
Q(u)

[uv]
Q(u)

<u,v>
Q(u)

 . (2)

(ii) Assume that Q(u) 6= 0. Then det(Pvu−1) = (<u,v>
Q(u)

)2 + (
[uv]
Q(u)

)2 6= 0 if and only if Q(v) 6= 0.

3 Control invariants of planar Bézier curve

A planar Bézier curve is a parametric curve(or a I-path, where I = [0, 1]) whose points x(t) are defined by x(t) =
∑m

i=0 piBi,m(t), where
the pi ∈ E2 are control points and Bi,m (t) are Bernstein basis polynomials.(for more details, see [6].)

A planar polynomial curve is a parametric curve whose points x(t) are defined by x(t) =
∑m

i=0 ait
i, where the ai ∈ E2 are monomial

control points.(for more details, see [6, p.181].)
All polynomial curves can be represented in Bézier form. The following lemma is given in [6, p.181].

Lemma 1. The following equalities

ai =
∑i

j=0(−1)
i−j m!

i!(m−i)!
i!

j!(i−j)! bj (3)

hold for all i = 1, 2, . . . ,m and i ≥ j.

Let G = LSim(E2), LSim
+(E2).
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Definition 1. (see [5]) A function f(z0, z1, . . . , zm) of points z0, z1, . . . , zm in E2 will be called G-invariant if f(Fz0, F z1, . . . , F zm) =
f(z0, z1, . . . , zm) for all F ∈ G.
A G-invariant function f(b0, b1, . . . , bm) of control points b0, b1, . . . , bm of a Bézier curve x(t) =

∑m
j=0 bjBj,m(t) will be called a control

G-invariant of x(t), where Bj,m (t) are Bernstein basis polynomials. A G-invariant function f(a0, a1, . . . , am) of monomial control points
a0, a1, . . . , am of a polynomial curve x(t) =

∑m
j=0 ajt

j will be called a monomial G-invariant of x(t).

Definition 2. (see [5]) Bézier curves x(t) and y(t) in E2 will be called G -similar and written x G∼ y if there exists F ∈ G such that
y(t) = Fx(t) for all t ∈ [0, 1].

Since Bézier curves can be introduced by control points, we will define the problem of G-similarity of points in E2.

Definition 3. (see [5]) m-uples {z1, z2, . . . , zm} and {w1, w2, . . . , wm} of points in E2 will be called G-similar and written by
{z1, z2, . . . , zm}

G∼ {w1, w2, . . . , wm} if there exists F ∈ G such that wj = Fzj for all j = 1, 2, . . . ,m.

Let u, v be points in E2. We denote the the matrix of column-vectors u, v by ‖u v‖ and its determinant by [u v].

Example 1. Since <g(u),g(v)>
<g(u),g(u)>

= <u,v>
<u,u> for all g ∈ LSim(E2), we obtain that the function <u,v)>

<u,u> of points u, v ∈ E2 is LSim(E2)-

invariant. Similarly, the function [u v]
<u,u> is LSim+(E2)-invariant.

Example 2. Let x(t) and y(t) be Bézier curves of degrees ofm and k, respectively. Assume that x
LSim(E2)∼ y. Thenm = k that is the degree

of a Bézier curve x(t) is LSim(E2)-invariant.

4 Similarity of planar Bézier curves

Theorem 2. Let x(t) =
∑m

j=0 ajt
j =

∑m
j=0 pjBj,m(t) and y(t) =

∑m
j=0 cjt

j =
∑m

j=0 qjBj,m(t) be Bézier curves in E2 of degree m,
where m ≥ 1. Then following conditions are equivalent:

(i) x(t)
LSim(E2)∼ y(t)

(ii) {p0, p1, . . . , pm}
LSim(E2)∼ {q0, q1, . . . , qm}

(iv) {a0, a1, . . . , am}
LSim(E2)∼ {c0, c1, . . . , cm}

Theorem 3. Let x(t) =
∑m

j=0 ajt
j =

∑m
j=0 pjBj,m(t) and y(t) =

∑m
j=0 cjt

j =
∑m

j=0 qjBj,m(t) be Bézier curves in E2 of degree m,
where m ≥ 1. Then following conditions are equivalent:

(i) x(t)
LSim+(E2)∼ y(t)

(ii) {p0, p1, . . . , pm}
LSim+(E2)∼ {q0, q1, . . . , qm}

(iv) {a0, a1, . . . , am}
LSim+(E2)∼ {c0, c1, . . . , cm}

Remark 1. In Theorems 2 and 3, we have considered the problem ofG-similarity of polynomial curves in the casem ≥ 1. For the casem = 0,
the problem of G-similarity of polynomial curves x(t) = a0 and y(t) = c0 reduces to the problem of G-similarity of points a0 and c0 in E2.
For the groups G = LSim(E2), LSim

+(E2), it is obvious that a0
G∼ c0 for all a0 and c0 in E2. In what follows, m ≥ 1. The case m = 0 is

easily considered.

Theorem 4. Let A = {a0, . . . , am} and C = {c0, . . . , cm} be two systems in E2 such that ak 6= 0, ck 6= 0, where k ∈ {0, 1, . . . ,m}. Then,
A and C are LSim+(E2)-similar if and only if 

< ai, ak >

< ak, ak >
=
< ci, ck >

< ck, ck >
,

[ai ak]

< ak, ak >
=

[ci ck]

< ck, ck >

(4)

for all i = 0, 1, . . . k − 1, k + 1, k + 2, . . . ,m. Moreover, there exists the unique element F ∈ LSim+(E2) such that cj = Faj for all j =
0, 1, . . . ,m, where the matrix F can be written as

F =

 <ak,ck>
Q(ak)

− [akck]
Q(ak)

[akck]
Q(ak)

<ak,ck>
Q(ak)

 . (5)

Theorem 5. Let A = {a0, . . . , am} and C = {c0, . . . , cm} be two systems in E2 such that ak 6= 0, ck 6= 0 for k ∈ {0, 1, . . . ,m} and
rankA = rankC = 1. Then, A and C are LSim(E2)-similar if and only if

< ai, ak >

< ak, ak >
=
< ci, ck >

< ck, ck >
(6)

for all i = 0, 1, . . . k − 1, k + 1, k + 2, . . . ,m. Moreover, there exists the unique element H ∈ LSim(E2) such that cj = Haj for all j =
0, 1, . . . ,m, where the matrix H has the form (5).
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Remark 2. LetA = {a0, . . . , am}. In the case rankA = 2, denote by indexA smallest of s, 0 ≤ s ≤ m, such that as 6= λak for all λ ∈ E2
and ak 6= 0. The number indexA is LSim(E2)-invariant.

Theorem 6. Let A = {a0, . . . , am} and C = {c0, . . . , cm} be two systems in E2 such that ak 6= 0, ck 6= 0 , rankA = rankC = 2 and
indexA = indexC = l for k, l ∈ {0, 1, . . . ,m}, l 6= k. Then, A and C are LSim(E2)-similar if and only if

< ai, ak >

< ak, ak >
=
< ci, ck >

< ck, ck >(
[al ak]

< ak, ak >

)2

=

(
[cl ck]

< ck, ck >

)2

[ai ak]

[al ak]
=
[ci ck]

[cl ck]

(7)

for all i = 0, 1, . . . , . . . ,m, i 6= k and i 6= l. Moreover, there exists the unique element M ∈ LSim(E2) such that cj =Maj for all
j = 1, . . . ,m. Then there exist following cases:

(i) In the case [al ak]
<ak,ak>

=
[cl ck]

<ck,ck>
, the matrix M ∈ LSim+(E2) and it has the form (5).

(ii) In the case [al ak]
<ak,ak>

= − [cl ck]
<ck,ck>

, the matrix MW ∈ LSim(E2) and it can be represented by

M =

 <Wak,ck>
Q(ak)

− [Wakck]
Q(ak)

[Wakck]
Q(ak)

<Wak,ck>
Q(ak)

 . (8)

Theorem 7. (i) Let x(t) =
∑m

j=0 ajt
j and y(t) =

∑m
j=0 cjt

j be two polynomial curves in E2 of degree m,where m ≥ 1 such that

x(t)
LSim+(E2)∼ y(t). Then, the equalities (4) in Theorem 4 hold.

(ii) Conversely, if x(t) =
∑m

j=0 ajt
j and y(t) =

∑m
j=0 cjt

j are two polynomial curves in E2 of degree m, where m ≥ 1 such that the

equalities (4) in Theorem 4 hold, then x(t)
LSim+(E2)∼ y(t). Moreover, there exists the unique F ∈ LSim+(E2) such that y(t) = Fx(t) for

all t ∈ [0, 1] and F has the form (5).

Theorem 8. (i) Let x(t) =
∑m

j=0 ajt
j and y(t) =

∑m
j=0 cjt

j be two polynomial curves in E2 of degree m,where m ≥ 1 such that

x(t)
LSim(E2)∼ y(t). Then, the equalities (7) in Theorem 6 hold.

(ii) Conversely, if x(t) =
∑m

j=0 ajt
j and y(t) =

∑m
j=0 cjt

j are two polynomial curves in E2 of degree m, where m ≥ 1 such that the

equalities (7) in Theorem 6 hold, then x(t)
LSim(E2)∼ y(t). Moreover, there exists the unique F ∈ LSim(E2) such that y(t) = Fx(t) for all

t ∈ [0, 1] . Then,
(a) In the case [al ak]

<ak,ak>
=

[cl ck]
<ck,ck>

, F has the form (5).

(b) In the case [al ak]
<ak,ak>

= − [cl ck]
<ck,ck>

, F has the form (8).

Theorem 9. (i) Let x(t) =
∑m

j=0 pjBj,m(t) and y(t) =
∑m

j=0 qjBj,m(t) be two Bézier curves inE2 of degreem, wherem ≥ 1 such that

x(t)
LSim+(E2)∼ y(t). Then by Lemma 1, the equalities (4) in Theorem 4 hold.

(ii) Conversely, if Let x(t) =
∑m

j=0 pjBj,m(t) and y(t) =
∑m

j=0 qjBj,m(t) be two Bézier curves in E2 of degree m, where m ≥ 1 such

that the equalities (4) in Theorem 4 and Lemma 1 hold, then x(t)
LSim+(E2)∼ y(t). Moreover, there exists the unique F ∈ LSim+(E2) such

that y(t) = Fx(t) for all t ∈ [0, 1] and F in the terms of the equalities given in Lemma 1 has the form (5) .

Theorem 10. (i) Let x(t) =
∑m

j=0 pjBj,m(t) and y(t) =
∑m

j=0 qjBj,m(t) be two Bézier curves in E2 of degree m, where m ≥ 1 such

that x(t)
LSim(E2)∼ y(t). Then by Lemma 1, the equalities (7) in Theorem 6 hold.

(ii) Conversely, if x(t) =
∑m

j=0 pjBj,m(t) and y(t) =
∑m

j=0 qjBj,m(t) be two Bézier curves in E2 of degree m, where m ≥ 1 such that

the equalities (7) in Theorem 6 and Lemma1 hold, then x(t)
LSim(E2)∼ y(t). Moreover, there exists the unique F ∈ LSim(E2) such that

y(t) = Fx(t) for all t ∈ [0, 1] . Then,
(a) In the case [pl pk]

<pk,pk>
=

[ql qk]
<qk,qk>

, F in the terms of the equalities given in Lemma 1 has the form (5).

(b) In the case [pl pk]
<pk,pk>

= − [ql qk]
<qk,qk>

, F in the terms of the equalities given in Lemma 1 has the form (8).
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