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Abstract

In this paper, we study solutions of the 2-variable mixed additive and
cubic functional equation

f(2x+ y, 2z + t) + f(2x− y, 2z − t) = 2f(x+ y, z + t)

+ 2f(x− y, z − t) + 2f(2x, 2z)− 4f(x, z),

which has the cubic form f(x, y) = ax3 + bx2y + cxy2 + dy3 as a so-
lution. Also the Hyers–Ulam–Rassias stability of this equation in the
non-Archimedean Banach spaces is investigated.
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1. Introduction and preliminaries

The study of stability problems for functional equations is related to a question of
Ulam [26] concerning the stability of group homomorphisms, affirmatively answered for
Banach spaces by Hyers [8]. Subsequently, the result of Hyers was generalized by Aoki
[1], Bourgin [5] and Rassias [24].
During the last decades several stability problems for various functional equations have
been investigated by numerous mathematicians. We refer the reader to the survey articles
[7, 9, 23] and monographs [6, 10, 13, 22] and references therein.
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Let X and Y be real vector spaces. For a mapping f : X × X → Y , consider the
following 2-variable mixed additive and cubic functional equation:

(1.1)
f(2x+ y, 2z + t) + f(2x− y, 2z − t) = 2f(x+ y, z + t) + 2f(x− y, z − t)

+ 2f(2x, 2z)− 4f(x, z)

One can see that the cubic form f(x, y) = ax3 + bx2y+ cxy2 + dy3 is a solution of (1.1),
when X = Y = R.

The one variable cubic equation

(1.2) f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 2f(2x)− 4f(x)

is considered in [17] and the general solutions of this equation and its Hyers–Ulam–Rassias
stability in quasi-Banach spaces is studied.

Several-variable functional equations and their stability have been studied in many
papers (see, for example, [3, 4], [12, 11], [14], [18, 19], [20, 21], [25]).

In this paper first we study solutions of (1.1) and its relations with (1.2) and then the
Hyers–Ulam–Rassias stability of (1.1) in non-Archimedean Banach spaces is investigated.

By a non-Archimedean field we mean a field K equipped with a function (valuation)
| · | from K into [0,∞) such that |r| = 0 if and only if r = 0, |rs| = |r| |s|, and |r + s| ≤
max{|r|, |s|} for all r, s ∈ K. Clearly |1| = | − 1| = 1 and |n| ≤ 1 for all n ∈ N. By the
trivial valuation we mean the mapping | · | taking everything but 0 into 1 and |0| = 0. Let
X be a vector space over a field K with a non-Archimedean non-trivial valuation | · |. A
function ‖ · ‖ : X → [0,∞) is called a non-Archimedean norm if it satisfies the following
conditions:

(i) ‖x‖ = 0 if and only if x = 0;
(ii) for any r ∈ K, x ∈ X, ‖rx‖ = |r|‖x‖;
(iii) the strong triangle inequality (ultrametric); namely,

‖x+ y‖ ≤ max{‖x‖, ‖y‖} (x, y ∈ X).

Then (X, ‖ · ‖) is called a non-Archimedean normed space. Due to the fact that

‖xn − xm‖ ≤ max{‖xj+1 − xj‖ : m ≤ j ≤ n− 1} (n > m),

a sequence {xn} is Cauchy if and only if {xn+1 − xn} converges to zero in a non-
Archimedean normed space. By a complete non-Archimedean normed space we mean
one in which every Cauchy sequence is convergent.

The stability problem in non-Archimedean normed spaces has been studied by many
authors. In [2], the stability of approximate additive mappings f : Qp → R is investigated.
In [15, 16], the authors investigated the stability of Cauchy, quadratic and cubic functional
equations, in the context of non-Archimedean normed spaces.

We need the following lemmas from [17] for our stability results.

1.1. Lemma. If a mapping f : X → Y with f(0) = 0 satisfies (1.2), then the mapping
g : X → Y defined by g(x) = f(2x)− 8f(x) is additive.

1.2. Lemma. If a mapping f : X → Y with f(0) = 0 satisfies (1.2), then the mapping
h : X → Y defined by h(x) = f(2x)− 2f(x) is cubic.

2. Relations between (1.2) and (1.1)

In this section we show that equations (1.2) and (1.1) are closely related and so by
knowing the solutions of (1.2), we may find solutions of (1.1). Next some useful examples
are considered.
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2.1. Theorem. Suppose f : X ×X → Y is a mapping satisfying (1.1), then g : X → Y
defined by g(x) := f(x, x) satisfies (1.2).

Proof. From (1.1) and definition of g,

g(2x+ y) + g(2x− y) = f(2x+ y, 2x+ y) + f(2x− y, 2x− y)

= 2f(x+ y, x+ y) + 2f(x− y, x− y) + 2f(2x, 2x)− 4f(x, x)

= 2g(x+ y) + 2g(x− y) + 2g(2x)− 4g(x).

�

2.2. Theorem. Let a, b, c, d ∈ R and g : X → Y be a mapping satisfying (1.2). If
f : X ×X → Y is defined by

(2.1) f(x, y) = (a− c

3
)g(x) + (

c+ b

6
)g(x+ y) + (

c− b
6

)g(x− y) + (d− b

3
)g(y),

then f satisfies (1.1). Furthermore if f(0, 0) = 0, a + d = 1 and c = −b, then g(x) =
f(x, x).

Proof. We have

f(2x+ y, 2z + t) + f(2x− y, 2z − t) = (a− c

3
)g(2x+ y) + (

c+ b

6
)g(2x+ y + 2z + t)

+ (
c− b

6
)g(2x+ y − (2z + t)) + (d− b

3
)g(2z + t)

+ (a− c

3
)g(2x− y) + (

c+ b

6
)g(2x− y + 2z − t)

+ (
c− b

6
)g(2x− y − (2z − t)) + (d− b

3
)g(2z − t)

= (a− c

3
)
[
g(2x+ y) + g(2x− y)

]
+ (

c+ b

6
)
[
g(2x+ 2zy + t) + g(2x+ 2z − (y + t))

]
+ (

c− b
6

)
[
g(2x− 2z + y − t) + g(2x− 2z − (y − t))

]
+ (d− b

3
)
[
g(2z + t) + g(2z − t)

]
.(2.2)

On the other hand

2f(x+ y, z + t) + 2f(x− y, z − t) + 2f(2x, 2z)− 4f(x, z)

= (a− c

3
)
[
2g(x+ y) + 2g(x− y) + 2g(2x)− 4g(x)

]
+ (

c+ b

6
)
[
2g(x+ y + z + t) + 2g(x+ z − (y + t)) + 2g(2x+ 2z)− 4g(x+ z)

]
+ (

c− b
6

)
[
2g(x− z + y − t) + 2g(x− z − (y − t)) + 2g(2x− 2z)− 4g(x− z)

]
+ (d− b

3
)
[
2g(z + t) + 2g(z − t) + 2g(2z)− 4g(z)

]
= (a− c

3
)
[
g(2x+ y) + g(2x− y)

]
+ (

c+ b

6
)
[
g(2x+ 2zy + t) + g(2x+ 2z − (y + t))

]
+ (

c− b
6

)
[
g(2x− 2z + y − t) + g(2x− 2z − (y − t))

]
+ (d− b

3
)
[
g(2z + t) + g(2z − t)

]
.(2.3)
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Thus (2.2) and (2.3) imply that f satisfies (1.1). �

For the following example, we recall that a mapping D from an algebra X into itself
is called derivation if, for any x, y ∈ X, D(xy) = D(x)y + xD(y).

2.3. Example. Let X be a real algebra and let D1 be a derivation on X. Suppose
D2 : X → X satisfies

D2(xy) = D2(x)y +D1(x)D1(y) + xD2(y).

Now define f : X ×X → X by f(x, y) = D2(xy), then f satisfies (1.1). Also g : X → X
defined by g(x) = D2(x2) satisfies (1.2).

2.4. Example. Let Mn be the algebra of n × n-real matrices. Define the mapping
g : Mn → Mn by g(A) = A3, A ∈ Mn, then one can easily see that g satisfies (1.2). For
a, b, c, d ∈ R, set

f(A,B) = aA3 +
2b

3
A2oB +

2c

3
AoB2 +

b

3
ABA+

b

3
BAB + dBAB,

where AoB is the Jordan product 1
2
(AB + BA) of A and B, for any A,B ∈ Mn. Then

f satisfies (2.1). So by Theorem 2.2, f satisfies (1.1).

3. Stability of Eq. (1.2)

Throughout this section, assume that X is a vector space and that Y is a non-
Archimedean Banach space. In this section, we study some stability results from [17]
in non-Archimedean Banach spaces. Indeed, we consider the stability of functional equa-
tion (1.1), and the fact the X ×X with the point-wise operations is also a vector space
implies a similar stability result for (1.2). For convenience, we use the following abbrevi-
ation for a given mapping f : X → Y ,

Df(x, y) := f(2x+ y) + f(2x− y)− 2f(x+ y)− 2f(x− y)− 2f(2x) + 4f(x)

for all x, y ∈ X.

3.1. Theorem. Let ϕa : X ×X → [0,∞) be a mapping such that

lim
n→∞

1

|2|nϕa(2nx, 2ny) = 0(3.1)

Ma(x, y) := lim
n→∞

max{ 1

|2|iϕa(2ix, 2iy) : 0 ≤ i < n} <∞(3.2)

lim
t→∞

lim
n→∞

max{ 1

|2|iϕa(2ix, 2iy) : t ≤ i < t+ n} = 0(3.3)

for all y ∈ X and all x ∈ {0, y, y
2
}. Suppose that a mapping f : X → Y with f(0) = 0

satisfies the inequality

(3.4) ‖Df(x, y)‖Y ≤ ϕa(x, y)

for all x, y ∈ X. Then the limit

A(x) = lim
n→∞

1

2n
[f(2n+1x)− 8f(2nx)]

exists, for all x ∈ X, and the mapping A : X → Y is the unique additive mapping
satisfying

(3.5) ‖f(2x)− 8f(x)−A(x)‖Y ≤
1

|2| ϕ̃a(x),

for all x ∈ X, where

ϕ̃a(x) := max{|2|Ma(x, x), |2|Ma(0, x),Ma(x, 2x)}
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Proof. Letting x = 0 in (3.4), we get

(3.6) ‖f(y) + f(−y)‖Y ≤ ϕa(0, y)

for all y ∈ X. Replacing y by x and 2x in (3.4), respectively, we get the following
inequalities

‖f(3x)− 4f(2x) + 5f(x)‖Y ≤ ϕa(x, x)(3.7)

‖f(4x)− 2f(3x)− 2f(2x)− 2f(−x) + 4f(x)‖Y ≤ ϕa(x, 2x)(3.8)

for all x ∈ X. It follows from (3.6)-(3.8) that for any x ∈ X,

(3.9) ‖f(4x)− 10f(2x) + 16f(x)‖Y ≤ max{|2|ϕa(x, x), |2|ϕa(0, x), ϕa(x, 2x)}.

Let g : X → Y be a mapping defined by g(x) := f(2x)− 8f(x) and let

ψa(x) := max{|2|ϕa(x, x), |2|ϕa(0, x), ϕa(x, 2x)},

for all x ∈ X. Therefore (3.9) means

(3.10) ‖g(2x)− 2g(x)‖Y ≤ ψa(x),

for all x ∈ X. By relations (3.1)-(3.3) we infer that for all x ∈ X,

(3.11) max{ψa(2ix)

|2|i : 0 ≤ i < n} <∞, lim
n→∞

1

|2|nψa(2nx) = 0.

Replacing x by 2nx in (3.10) and dividing both sides (3.10) by |2|n+1 we get

(3.12) ‖ 1

2n+1
g(2n+1x)− 1

2n
g(2nx)‖Y ≤

1

|2|n+1
ψa(2nx)

for all x ∈ X and all non-negative integer n, and so for any x ∈ X and every non-negative
integers n and m with n ≥ m,

(3.13) ‖ 1

2n
g(2nx)− 1

2m
g(2mx)‖Y ≤

1

|2| max{ψa(2ix)

|2|i : m ≤ i < n}.

Therefore we conclude from (3.11) and (3.12) that the sequence { 1
2n
g(2nx)} is a Cauchy

sequence in Y , for all x ∈ X. The sequence { 1
2n
g(2nx)} converges in Y for any x ∈ X,

since Y is complete. So one can define the mapping A : X → Y by

(3.14) A(x) := lim
n→∞

1

2n
g(2nx)

for all x ∈ X. Letting m = 0 and passing to the limit when n → ∞ in (3.13), we get
(3.5). Now we show that A is an additive mapping. It follows from (3.11), (3.12) and
(3.14) that

‖A(2x)− 2A(x)‖Y = lim
n→∞

‖ 1

2n
g(2n+1x)− 1

2n−1
g(2nx)‖Y

= |2| lim
n→∞

‖ 1

2n+1
g(2n+1x)− 1

2n
g(2nx)‖Y

≤ lim
n→∞

1

|2|nψa(2nx),

for all x ∈ X. So

(3.15) A(2x) = 2A(x)
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for all x ∈ X. On the other hand it follows from (3.1), (3.4) and (3.14) that

‖DA(x, y)‖Y = lim
n→∞

1

|2|n ‖Dg(2nx, 2ny)‖Y

= lim
n→∞

1

|2|n {‖Df(2n+1x, 2n+1y)− 8Df(2nx, 2ny)‖Y }

≤ lim
n→∞

1

|2|n max{‖Df(2n+1x, 2n+1y)‖Y , |8|‖Df(2nx, 2ny)‖Y }

≤ lim
n→∞

1

|2|n max{ϕa(2n+1x, 2n+1y), |8|ϕa(2nx, 2ny)} = 0,

for all x, y ∈ X. Hence the mapping A satisfies (1.2). So by Lemma 1.1, the mapping
x 7→ A(2x) − 8A(x) is additive. Therefore (3.15) implies that A is additive. To prove
the uniqueness of A, let T : X → Y be another additive mapping satisfying (3.5). So it
follows from (3.5), (3.14) and (3.3) that

lim
t→∞

1

|2|t ϕ̃a(2tx) = lim
t→∞

max{|2|Ma(2tx, 2tx)

|2|t , |2|Ma(0, 2tx)

|2|t ,
Ma(2tx, 2t2x)

|2|t }

= lim
t→∞

max{ lim
n→∞

max{|2|ϕa(2i+tx, 2i+tx)

|2|t+i)
: 0 ≤ i < n},

lim
n→∞

max{|2|ϕa(0, 2i+tx)

|2|t+i 0 ≤ i < n},

lim
n→∞

max{ϕa(2i+tx, 2i+t+1x)

|2|t+i)
: 0 ≤ i < n}}

= lim
t→∞

lim
n→∞

{|2|ϕa(2ix, 2ix)

|2|i , |2|ϕa(0, 2ix)

|2|i ,
ϕa(2ix, 2i+1x)

|2|i : t ≤ i < t+ n}

= 0.

Hence it follows

‖A(x)− T (x)‖Y = lim
t→∞

1

|2|t ‖g(2tx)− T (2tx)‖Y

≤ 1

|2| lim
t→∞

1

|2|t ϕ̃a(2tx) = 0,

for all x ∈ X. So A = T �

3.2. Theorem. Let ϕa : X ×X → [0,∞) be a mapping such that

lim
n→∞

|2|nϕa(
x

2n
,
y

2n
) = 0,

Ma(x, y) = lim
n→∞

max{|2|iϕa(
x

2i
,
y

2i
) : 1 ≤ i < n} <∞,(3.16)

lim
t→∞

lim
n→∞

max{|2|iϕa(
x

2i
,
y

2i
) : t+ 1 ≤ i < t+ n} = 0,(3.17)

for all y ∈ X and all x ∈ {0, y, y
2
}. Suppose that a mapping f : X → Y with f(0) = 0

satisfies the inequality

‖Df(x, y)‖Y ≤ ϕa(x, y),

for all x, y ∈ X. Then the limit

A(x) = lim
n→∞

2n[f(
x

2n−1
)− 8f(

x

2n
)]

exists for all x ∈ X and the mapping A : X → Y is the unique additive mapping satisfying

(3.18) ‖f(2x)− 8f(x)−A(x)‖Y ≤
1

|2| ϕ̃a(x),
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for all x ∈ X, where

ϕ̃a(x) := max{|2|Ma(x, x), |2|Ma(0, x),Ma(x, 2x)}.

Proof. Let g : X → Y be a mapping defined by g(x) := f(2x)− 8f(x) and let

ψa(x) := max{|2|ϕa(x, x), |2|ϕa(0, x), ϕa(x, 2x)},

for all x ∈ X. Similar to the proof of Theorem 3.1, we have

(3.19) ‖g(2x)− 2g(x)‖Y ≤ ψa(x),

for all x ∈ X. From our assumptions, we infer that

(3.20) lim
n→∞

|2|nψa(
x

2n
) = 0, lim

n→∞
max{|2|iψa(

x

2i
) : 1 ≤ i < n} <∞,

for all x ∈ X. Replacing x by x
2n+1 in (3.19) and multiplying both sides of (3.19) by |2|n,

we get

(3.21) ‖2n+1g(
x

2n+1
)− 2ng(

x

2n
)‖y ≤ |2|nψa(

x

2n+1
),

for all x ∈ X and all non-negative integer n. So we have

(3.22) ‖2ng(
x

2n
− 2mg(

x

2m
‖Y ≤

1

|2| max{|2|(i+1)ψa(
x

2i+1
) : m ≤ i < n},

for all x ∈ X and all non-negative integers n and m with n ≥ m. Therefore we conclude
from (3.20) and (3.21) that the sequence {2ng( x

2n
} is a Cauchy sequence in Y , for all

x ∈ X and so converges in Y , for all x ∈ X, since Y is complete. Thus one can define
the mapping A : X → Y by

A(x) := lim
n→∞

2ng(
x

2n
),

for all x ∈ X. Letting m = 0 and passing to the limit when n → ∞ in (3.22) we get
(3.18). The rest of the proof is similar to the proof of Theorem 3.1. �

3.3. Corollary. Let θ, r, s be non-negative real numbers such that r, s > 1 or 0 ≤ r, s < 1
and |2| < 1. Suppose that a function f : X → Y with f(0) = 0 satisfies the inequality

‖Df(x, y)‖Y ≤ ϕa(x, y) :=


θ, r = s = 0
θ‖x‖rX , r > 0, s = 0
θ‖y‖sX , r = 0, s > 0
θ(‖x‖rX + ‖y‖sX), r, s > 0

for all x, y ∈ X. Then there exists a unique additive mapping A : X → Y satisfying

‖f(2x)− 8f(x)−A(x)‖Y ≤

θ

|2|


1, r = s = 0
‖x‖rX , r > 0, s = 0
|2|‖x‖sX , r = 0, s > 0
max{|2|(‖x‖rX + ‖x‖sX), (‖x‖rX + ‖2x‖sX)}, r, s > 0

for all x ∈ X where r, s > 1 and satisfying

‖f(2x)− 8f(x)−A(x)‖Y ≤
θ

|2|


|2|, r = s = 0
|2|‖x‖rX
|2|r , r > 0, s = 0
|4|‖x‖sX
|2|s , r = 0, s > 0

|2|( ‖x‖
r
X

|2|r + ‖x‖sX), r, s > 0

for all x ∈ X where r, s < 1.
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Proof. The result follows by Theorem 3.1 when 0 < r, s < 1, and by Theorem 3.2 when
r, s > 1. �

The following corollary also can be deduced from Theorems 3.1 and 3.2.

3.4. Corollary. Let θ ≥ 0 and r, s > 0 be non-negative real numbers such that λ :=
r + s 6= 1. Suppose that the function f : X → Y with f(0) = 0 satisfies the inequality

(3.23) ‖Df(x, y)‖Y ≤ ϕa(x, y) := θ‖x‖rX‖y‖sY
for all x, y ∈ X. Then there exists a unique additive mapping A : X → Y satisfying the
inequality

‖f(2x)− 8f(x)−A(x)‖Y ≤
Wθ

|2| ‖x‖
r
X‖y‖sY

for all x, y ∈ X when λ > 1 with W = max{|2|, |2|s}, and satisfying

‖f(2x)− 8f(x)−A(x)‖Y ≤
|2|θ
|2|λ ‖x‖

r
X‖y‖sY

for all x, y ∈ X when λ < 1.

3.5. Theorem. Let ϕc : X ×X → [0,∞) be a mapping such that

lim
n→∞

1

|8|nϕc(2
nx, 2ny) = 0(3.24)

Mc(x, y) = lim
n→∞

max{ 1

|8|iϕc(2
ix, 2iy) : 0 ≤ i < n} <∞(3.25)

lim
t→∞

lim
n→∞

max{ 1

|8|iϕc(2
ix, 2iy) : t ≤ i < t+ n} = 0(3.26)

for all y ∈ X and all x ∈ {0, y, y
2
}. Suppose that a mapping f : X → Y with f(0) = 0

satisfies the inequality

(3.27) ‖Df(x, y)‖Y ≤ ϕc(x, y)

for all x, y ∈ X. Then the limit

C(x) := lim
n→∞

1

8n
[f(2n+1x)− 2f(2nx)]

exists, for all x ∈ X, and the mapping C : X → Y is the unique cubic mapping satisfying

(3.28) ‖f(2x)− 2f(x)− C(x)‖Y ≤
1

|8| ϕ̃c(x)

for all x ∈ X, where

ϕ̃c(x) := max{|2|Mc(x, x), |2|Mc(0, x),Mc(x, 2x)}.

Proof. Similar to the proof of Theorem 3.1 we have

(3.29) ‖f(4x)− 10f(2x) + 16f(x)‖Y ≤ ψc(x),

for all x ∈ X, where ψc(x) := max{|2|ϕa(x, x), |2|ϕa(0, x), ϕa(x, 2x)}. Let h : X → Y be
a mapping defined by h(x) := f(2x)− 2f(x) for all x ∈ X. Therefore (3.29) means that

(3.30) ‖h(2x)− 8h(x)‖Y ≤ ψc(x)

for all x ∈ X. By the relations (3.24) and (3.25), we infer that

(3.31) lim
n→∞

max{ψc(2
ix)

|8|i : 0 ≤ i < n} <∞, lim
n→∞

1

|8|nψc(2
nx) = 0
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for all x ∈ X. Replacing x by 2nx in (3.30) and dividing both sides of (3.30) by |8|n+1

we get

(3.32) ‖ 1

8n+1
h(2n+1x)− 1

8n
h(2nx)‖Y ≤

1

|8|n+1
ψc(2

nx),

for all x ∈ X and all non-negative integer n. So we have

(3.33) ‖ 1

8n
h(2nx)− 1

8m
h(2mx)‖Y ≤

1

|8| max{ψc(2
ix)

|8|i m ≤ i < n},

for all x ∈ X and all non-negative integers n and m with n ≥ m. Therefore we conclude
from (3.31) and (3.32) that the sequence { 1

8n
h(2nx)} is a Cauchy sequence in Y for all

x ∈ X. The sequence { 1
8n
h(2nx)} converges in Y , for all x ∈ X, since Y is complete. So

one can define the mapping C : X → Y by

(3.34) C(x) := lim
n→∞

1

8n
h(2nx),

for all x ∈ X. Letting m = 0 and passing to the limit when n → ∞ in (3.33), we get
(3.28). Now we show that C is a cubic mapping. It follows from (3.31), (3.32) and (3.34)
that

‖C(2x)− 8C(x)‖Y = lim
n→∞

‖ 1

8n
h(2n+1x)− 1

8n−1
h(2nx)‖Y

≤ lim
n→∞

1

|8|nψc(2
nx) = 0,

for all x ∈ X. So

(3.35) C(2x) = 8C(x),

for all x ∈ X. On the other hand it follows from (3.24), (3.27) and (3.34) that

‖DC(x, y)‖Y = lim
n→∞

1

|8|n ‖Dh(2nx, 2ny)‖Y

= lim
n→∞

1

|8|n {‖Df(2n+1x, 2n+1y)− 2Df(2nx, 2ny)‖Y }

≤ lim
n→∞

1

|8|n max{‖Df(2n+1x, 2n+1y)‖Y , |2|‖Df(2nx, 2ny)‖Y }

≤ lim
n→∞

1

|8|n max{ϕc(2n+1x, 2n+1y), |2|ϕc(2nx, 2ny)} = 0

for all x, y ∈ X. Hence the mapping C satisfies (1.2). So by Lemma (1.2), the mapping
x 7→ C(2x)− 2C(x) is cubic. Therefore (3.35) implies that C is cubic.

To prove the uniqueness of C, let T : X → Y be another cubic mapping satisfying

(3.28). So it follows from (3.26) that limt→∞
ϕ̃c(2

tx)
|8|t = 0, for all x, y ∈ X and x ∈

{0, y, y
2
}. So by relations (3.28) and (3.24)

‖C(x)− T (x)‖Y = lim
n→∞

1

|8|n ‖h(2nx)− T (2nx)‖Y ≤
1

|8| lim
n→∞

1

|8|n ϕ̃c(2
nx) = 0,

for all x ∈ X. So C = T . �

3.6. Theorem. Let ϕc : X ×X → [0,∞) be a mapping such that

lim
n→∞

|8|nϕc(
x

2n
,
y

2n
) = 0(3.36)

Mc(x, y) = lim
n→∞

max{|8|iϕc(
x

2i
,
y

2i
) : 1 ≤ i < n} <∞(3.37)

lim
t→∞

lim
n→∞

max{|8|iϕc(
x

2i
,
y

2i
) : t+ 1 ≤ i < t+ n} = 0(3.38)
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for all y ∈ X and all x ∈ {0, y, y
2
}. Suppose that a mapping f : X → Y with f(0) = 0

satisfies the inequality

‖Df(x, y)‖Y ≤ ϕc(x, y)

for all x, y ∈ X. Then the limit

C(x) = lim
n→∞

8n[f(
x

2n−1
)− 2f(

x

2n
)]

exists, for all x ∈ X, and the mapping C : X → Y is the unique cubic mapping satisfying

(3.39) ‖f(2x)− 2f(x)− C(x)‖Y ≤
1

|8| ϕ̃c(x),

for all x ∈ X, where

ϕ̃c(x) := max{|2|Mc(x, x), |2|Mc(0, x),Mc(x, 2x)}.

Proof. Let h : X → Y be a mapping defined by h(x) := f(2x)− 2f(x) and let

ψc(x) := max{|2|ϕa(x, x), |2|ϕc(0, x), ϕc(x, 2x)}

for any x ∈ X. Similar to the proof of Theorem 3.5, for every x ∈ X, we have

(3.40) ‖h(2x)− 8h(x)‖Y ≤ ψc(x).

From (3.36) and (3.37) we infer that

(3.41) lim
n→∞

|8|nψc(
x

2n
) = 0, and lim

n→∞
max{|8|iψc(

x

2i
) : 1 ≤ i < n} <∞,

for all x ∈ X. Replacing x by x
2n+1 in (3.40) and multiplying both sides of (3.40) by |8|n,

we get

(3.42) ‖8n+1h(
x

2n+1
)− 8nh(

x

2n
)‖y ≤ |8|nψc(

x

2n+1
)

for any x ∈ X and all non-negative integer n. Thus we have

(3.43) ‖8nh(
x

2n
)− 8mh(

x

2m
)‖Y ≤

1

|8| max{|8|i+1ψc(
x

2i+1
) : m ≤ i < n},

for all x ∈ X and all non-negative integers n and m with n ≥ m. Therefore we conclude
from (3.41) and (3.42) that the sequence {8nh( x

2n
} is a Cauchy sequence in Y for all

x ∈ X. Hence the sequence {8nh( x
2n
} converges in Y , for all x ∈ X, since Y is complete.

So one can define the mapping C : X → Y by

C(x) := lim
n→∞

8nh(
x

2n
)

for all x ∈ X. Letting m = 0 and passing to the limit when n → ∞ in (3.43) we get
(3.39). The rest of the proof is similar to the proof of Theorem 3.5. �

The following two corollaries follow from Theorems 3.5 and 3.6.

3.7. Corollary. Let θ, r, s be non-negative real numbers such that r, s > 3 or 0 ≤ r, s < 3
and |2| < 1. Suppose that a function f : X → Y with f(0) = 0 satisfies the inequality of
Corollary 3.3, for all x, y ∈ X. Then there exists a unique cubic mapping C : X → Y
satisfying

‖f(2x)−2f(x)− C(x)‖Y

≤ θ

|8|


1, r = s = 0
‖x‖rX , r > 0, s = 0
|2|‖x‖sX , r = 0, s > 0
max{|2|(‖x‖rX + ‖x‖sX), (‖x‖rX + ‖2x‖sX), r, s > 0,
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for all x ∈ X when r, s > 3 and satisfying

‖f(2x)− 2f(x)− C(x)‖Y

≤ θ


1, r = s = 0
‖x‖rX
|2|r , r > 0, s = 0
‖x‖sX
|2|s max{|2|, |2|s}, r = 0, s > 0

max{|2|( ‖x‖
r
X

|2|r +
‖x‖sX
|2|s ), (

‖x‖rX
|2|r + ‖x‖sX), r, s > 0,

for all x ∈ X when r, s < 3.

3.8. Corollary. Let θ ≥ 0 and r, s > 0 be non-negative real numbers such that λ :=
r + s 6= 3 and |2| < 1. Suppose that the function f : X → Y with f(0) = 0 satisfies the
inequality (3.23), for all x, y ∈ X. Put W = max{|2|, |2|s}. Then there exists a unique
cubic mapping C : X → Y satisfying the inequality

‖f(2x)− 2f(x)− C(x)‖Y ≤
1

|8|Wθ‖x‖rX‖x‖sY ,

for all x ∈ X, when λ > 3 and satisfying

‖f(2x)− 2f(x)− C(x)‖Y ≤
1

|2|λWθ‖x‖rX‖x‖sY

for all x ∈ X, when λ < 3.

3.9. Theorem. Let ϕ : X ×X → [0,∞) be a mapping such that

lim
n→∞

1

|8|nϕ(2nx, 2ny) = 0

Mc(x, y) = lim
n→∞

max{ 1

|8|iϕ(2ix, 2iy) : 0 ≤ i < n} <∞

lim
t→∞

lim
n→∞

max{ 1

|8|iϕ(2ix, 2iy) : t ≤ i < t+ n} = 0

for all y ∈ X and all x ∈ {0, y, y
2
}. Suppose that a mapping f : X → Y with f(0) = 0

satisfies the inequality

‖Df(x, y)‖Y ≤ ϕ(x, y), x, y ∈ X.

Then there exist a unique additive mapping A : X → Y and a unique cubic mapping
C : X → Y such that for every x ∈ X,

(3.44) ‖f(x)−A(x)− C(x)‖Y ≤
1

|48| max{|4|ϕ̃a(x), ϕ̃c(x)}

where

Ma(x, y) := lim
n→∞

max{ 1

|2|iϕ(2ix, 2iy)0 ≤ i < n}

ϕ̃a(x) := max{|2|Ma(x, x), |2|Ma(0, x),Ma(x, 2x)}
ϕ̃c(x) := max{|2|Mc(x, x), |2|Mc(0, x).Mc(x, 2x)}

Proof. By Theorems 3.1 and 3.5, there exist an additive mapping A0 : X → Y and a
cubic mapping C0 : X → Y such that

‖f(2x)− 8f(x)−A0(x)‖Y ≤
1

|2| ϕ̃a(x), ‖f(2x)− 2f(x)− C0(x)‖Y ≤
1

|8| ϕ̃c(x)

for all x ∈ X. This implies that for any x ∈ X,

‖f(x) +
1

6
A0(x)− 1

6
C0(x)‖Y ≤

1

|48| max{|4|ϕ̃a(x), ϕ̃c(x)}.
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So we obtain (3.44), by letting A(x) = 1
6
A0(x) and C(x) = 1

6
C0(x), for all x ∈ X.

To prove the uniqueness of A and C, let A1, C1 : X → Y be other additive and cubic
mappings satisfying (3.44).

Put A′ = A−A1 and C′ = C − C1. So

‖A′(x) + C′(x)‖Y ≤ max{‖f(x)−A(x)− C(x)‖Y , ‖f(x)−A1(x)− C1(x)‖Y }

≤ 1

|48| max{|4|ϕ̃a(x), ϕ̃c(x)}(3.45)

for all x ∈ X. The fact that for every x ∈ X,

lim
n→∞

1

|8|n ϕ̃c(2
nx) = lim

n→∞

1

|2|n ϕ̃a(2nx) = 0,

and (3.45) imply that

lim
n→∞

1

|2|n ‖A
′(2nx) + C′(2nx)‖Y = 0,

for all x ∈ X. Therefore A′ = 0. So it follows from (3.45) that

‖C′(x)‖Y = lim
n→∞

‖C
′(2nx)

8n
‖Y ≤ lim

n→∞

1

|4| max{|4| ϕ̃a(x)

|8|n ,
ϕ̃c(x)

|8|n },

for all x ∈ X. Therefore C′ = 0. �

The next theorem is an alternative result of Theorem 3.9.

3.10. Theorem. Let ϕ : X ×X → [0,∞) be a mapping such that

lim
n→∞

|2|nϕ(
x

2n
,
y

2n
) = 0

Ma(x, y) := lim
n→∞

max{|2|iϕ(
x

2i
,
y

2i
) : 1 ≤ i < n} <∞

lim
t→∞

lim
n→∞

max{|2|iϕ(
x

2i
,
y

2i
) : t+ 1 ≤ i < t+ n} = 0,

for all y ∈ X and all x ∈ {0, y, y
2
}. Suppose that a mapping f : X → Y with f(0) = 0

satisfies the inequality

‖Df(x, y)‖Y ≤ ϕ(x, y),

for all x, y ∈ X. Then there exist a unique additive mapping A : X → Y and a unique
cubic mapping C : X → Y such that

‖f(x)−A(x)− C(x)‖Y ≤
1

|48| max{|4|ϕ̃a(x), ϕ̃c(x)}, x ∈ X,

where

Mc(x, y) := lim
n→∞

max{|8|iϕ(
x

2i
,
y

2i
) : 1 ≤ i < n},

ϕ̃a(x) := max{|2|Ma(x, x), |2|Ma(0, x),Ma(x, 2x)}
ϕ̃c(x) := max{|2|Mc(x, x), |2|Mc(0, x),Mc(x, 2x)}

for all x ∈ X.

3.11. Corollary. Let r, s, θ be non-negative real numbers such that r, s > 3 or 0 ≤ r, s < 1
and |2| < 1. Suppose that a function f : X → Y with f(0) = 0 satisfies the inequality
Corollary 3.3, for all x, y ∈ X. Then there exist a unique additive mapping A : X → Y
and a unique cubic mapping C : X → Y such that

‖f(x)−A(x)− C(x)‖Y ≤
1

|48|γa1 for all x ∈ X when 0 ≤ r, s < 1
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and

‖f(x)−A(x)− C(x)‖Y ≤
1

|48| max{γa2, γc} for all x ∈ X when r, s > 3,

where

γa1 =


|8|θ, r = s = 0
|8|θ‖x‖rX
|2|r , r > 0, s = 0

|8||2|sθ‖x‖sX
|2|s , r = 0, s > 0

|8|θ( ‖x‖
r
X

|2|r + ‖x‖sX), r, s > 0,

γa2 =


|4|θ, r = s = 0
|4|θ‖x‖rX , r > 0, s = 0
|8|θ‖x‖sX , r = 0, s > 0
|4|θmax{|2|(‖x‖rX + ‖x‖sX), (‖x‖rX + ‖2x‖sX), r, s > 0,

γc =


|8|θ, r = s = 0
|8|θ‖x‖rX
|2|r , r > 0, s = 0

|8|θ‖x‖sX
|2|s max{|2|s, |2|}, r = 0, s > 0

|8|θmax{|2|( ‖x‖
r
X

|2|r +
‖x‖sX
|2|s ), (

‖x‖rX
|2|r + ‖x‖sX)}, r, s > 0.

3.12. Corollary. Let θ ≥ 0 and r, s > 0 be real numbers such that λ := r + s ∈
(0, 1)

⋃
(3,+∞) and |2| < 1. Suppose that a function f : X → Y with f(0) = 0 satisfies

the inequality (3.23) for all x, y ∈ X. Then there exist a unique additive mapping A :
X → Y and a unique cubic mapping C : X → Y such that

‖f(x)−A(x)− C(x)‖Y ≤
1

|48|Wθ‖x‖rX‖x‖sY for all x ∈ X and λ > 3,

where W = max{|2|, |2|s}

‖f(x)−A(x)− C(x)‖Y ≤
|2|s

|6||2|λ θ‖x‖
r
X‖x‖sY for all x ∈ X and 0 < λ < 1.

3.13. Theorem. Let ϕ : X ×X → [0,∞) be a mapping such that

lim
n→∞

1

|2|nϕ(2nx, 2ny) = 0,

Ma(x, y) := lim
n→∞

max{ 1

|2|iϕ(2ix, 2iy) : 0 ≤ i < n} <∞,

lim
t→∞

lim
n→∞

max{ 1

|2|iϕ(2ix, 2iy) : t ≤ i < t+ n} = 0,

for all y ∈ X and all x ∈ {0, y, y
2
}. Also suppose

lim
n→∞

|8|nϕ(
x

2n
,
y

2n
) = 0,

Mc(x, y) := lim
n→∞

max{|8|iϕ(
x

2i
,
y

2i
) : 1 ≤ i < n} <∞,

lim
t→∞

lim
n→∞

max{|8|iϕ(
x

2i
,
y

2i
) : t+ 1 ≤ i < t+ n} = 0,

for all x, y ∈ X and all x ∈ {0, y, y
2
}. Suppose that a mapping f : X → Y with f(0) = 0

satisfies the inequality

‖Df(x, y)‖Y ≤ ϕ(x, y)
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for all x, y ∈ X. Then there exist a unique additive mapping A : X → Y and a unique
cubic mapping C : X → Y such that

‖f(x)−A(x)− C(x)‖Y ≤
1

|48| max{|4|ϕ̃a(x), ϕ̃c(x)}

where

ϕ̃a(x) := max{|2|Ma(x, x), |2|Ma(0, x),Ma(x, 2x)}

ϕ̃c(x) := max{|2|Mc(x, x), |2|Mc(0, x),Mc(x, 2x)}

for all x ∈ X.

Proof. The proof is similar to the proof of Theorem 3.9. �

3.14. Corollary. Let θ, r, s be non-negative real numbers such that 1 < r, s < 3 and
|2| < 1. Suppose that a function f : X → Y with f(0) = 0 satisfies the inequality
‖Df(x, y)‖Y ≤ θ(‖x‖rX + ‖y‖sX) for all x, y ∈ X. Then there exist a unique additive
mapping A : X → Y and a unique cubic mapping C : X → Y such that

‖f(x)−A(x)− C(x)‖Y ≤
1

|48| max{|4|γa(x), γc(x)} for all x ∈ X,

where

γa(x) = max{|2|θ(‖x‖rX + ‖x‖sX), θ(‖x‖rX + ‖2x‖sX)},

γc(x) = |8|θmax{|2|(‖x‖
r
X

|2|r +
‖x‖sX
|2|s ), (

‖x‖rX
|2|r + ‖x‖sX).

3.15. Corollary. Let θ, r, s be non-negative real numbers such that 1 < λ := r + s < 3.
Suppose that a function f : X → Y with f(0) = 0 satisfies the inequality

‖Df(x, y)‖Y ≤


θ‖x‖rX , r > 0, s = 0
θ‖y‖sX , r = 0, s > 0
θ‖x‖rX‖y‖sX , r, s > 0

for all x, y ∈ X. Then there exist a unique additive mapping A : X → Y and a unique
cubic mapping C : X → Y such that

‖f(x)−A(x)− C(x)‖Y ≤
1

|48| max{|4|γa(x), γc(x)} for all x ∈ X

where,

γa(x) =


θ‖x‖rX , r > 0, s = 0
|2|θ‖x‖sX , r = 0, s > 0

θ‖x‖λX max{|2|, |2|s}, r, s > 0,

γc(x) =


|8|θ‖x‖rX
|2|r , r > 0, s = 0

|8|θ‖x‖sX
|2|s max{|2|, |2|s}, r = 0, s > 0

|8|θ‖x‖λX
|2|λ max{|2|, |2|s}, r, s > 0.

3.16. Remark. The hypothesis f(0) = 0 is not essential in the statement of the theo-
rems, since it is possible to deal with the auxiliary function g(x) := f(x)−f(0) for which
we have Dg(x, y) = Df(x, y).



On a functional equation originating from a mixed... 41

References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan
2, 64–66, 1950.

[2] L. M. Arriola and W. A. Beyer, Stability of the Cauchy functional equation over p-adic

fields, Real Anal. Exchange 31, 125–132, 2055/2006.
[3] C. Baak, S. -K. Hong, M. -J. Kim, Generalized quadratic mappings of r-type in several

variables, J. Math. Anal. Appl. 310, 116–127, 2005.

[4] J. -H. Bae and W. -G. Park, A functional equation originating from quadratic forms, J.
Math. Anal. Appl. 326, 1142–1148, 2007.

[5] D. G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer.
Math. Soc. 57, 223–237, 1951.

[6] S. Czerwik, Stability of Functional Equations of Ulam–Hyers–Rassias Type, (Hadronic

Press, Palm Harbor, Florida, 2003).
[7] G. L. Forti, Hyers-Ulam stability of functional equations in several variables Aequationes

Math. 50 (1-2), 143–190, 1995.

[8] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S.
A. 27, 222–224, 1941.

[9] D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math. 44,

125–153, 1992.
[10] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several
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