GENERALIZED SKEW DERIVATIONS ON MULTILINEAR POLYNOMIALS IN RIGHT IDEALS OF PRIME RINGS

Received 09:06:2011 : Accepted 18:12:2012

Abstract

Let R be a prime ring, $f\left(x_{1}, \ldots, x_{n}\right)$ a multilinear polynomial over C in n noncommuting indeterminates, I a nonzero right ideal of R, and $F: R \rightarrow R$ be a nonzero generalized skew derivation of R. Suppose that $F\left(f\left(r_{1}, \ldots, r_{n}\right)\right) f\left(r_{1}, \ldots, r_{n}\right) \in C$, for all $r_{1}, \ldots, r_{n} \in I$. If $f\left(x_{1}, \ldots, x_{n}\right)$ is not central valued on R, then either $\operatorname{char}(R)=2$ and R satisfies s_{4} or one of the following holds: (i) $f\left(x_{1}, \ldots, x_{n}\right) x_{n+1}$ is an identity for I; (ii) $F(I) I=(0)$; (iii) $\left[f\left(x_{1}, \ldots, x_{n}\right), x_{n+1}\right] x_{n+2}$ is an identity for I, there exist $b, c, q \in Q$ with q an invertible element such that $F(x)=$ $b x-q x q^{-1} c$ for all $x \in R$, and $q^{-1} c I \subseteq I$. Moreover, in this case either $(b-c) I=(0)$ or $b-c \in C$ and $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued on R.

Keywords: Identity, generalized skew derivation, automorphism, (semi-)prime ring. 2000 AMS Classification: 16W25, 16N60.

[^0]
1. Introduction.

Throughout this paper, unless specially stated, K denotes a commutative ring with unit, R is always a prime K-algebra with center $Z(R)$, right Martindale quotient ring Q and extended centroid C. The definition, axiomatic formulations and properties of this quotient ring can be found in 2] (Chapter 2).

Many results in literature indicate how the global structure of a ring R is often tightly connected to the behaviour of additive mappings defined on R. A well known result of Posner [32] states that if d is a derivation of R such that $[d(x), x] \in Z(R)$, for any $x \in R$, then either $d=0$ or R is commutative. Later in [3], Bresar proved that if d and δ are derivations of R such that $d(x) x-x \delta(x) \in Z(R)$, for all $x \in R$, then either $d=\delta=0$ or R is commutative. In 29, Lee and Wong extended Bresar's result to the Lie case. They proved that if $d(x) x-x \delta(x) \in Z(R)$, for all x in some non-central Lie ideal L of R then either $d=\delta=0$ or R satisfies s_{4}, the standard identity of degree 4 .

Recently in [28], Lee and Zhou considered the case when the derivations d and δ are replaced respectively by the generalized derivations H and G, and proved that if $R \neq M_{2}(G F(2)), H, G$ are two generalized derivations of R, and m, n are two fixed positive integers, then $H\left(x^{m}\right) x^{n}=x^{n} G\left(x^{m}\right)$ for all $x \in R$ if and only if the following two conditions hold: (1) There exists $w \in Q$ such that $H(x)=x w$ and $G(x)=w x$ for all $x \in R$; (2) either $w \in C$, or x^{m} and x^{n} are C-dependent for all $x \in R$.

More recently in [5, a similar situation is examined: more precisely it is proved that if $H\left(u^{n}\right) u^{n}+u^{n} G\left(u^{n}\right) \in C$, for all $u \in L$, a non-central Lie ideal of R, then there exists $a \in Q$ such that $H(x)=x a, G(x)=-a x$, or R satisfies the standard identity s_{4}. Moreover in this last case a complete description of H and G is given.

Finally, as a partial extension of the above results to the case of derivations and generalized derivations acting on multilinear polynomials, we have the following:
1.1. Fact. (Theorem 2 in [27]) Let R be a prime ring, $f\left(x_{1}, \ldots, x_{n}\right)$ a multilinear polynomial over C in n noncommuting indeterminates, and $d: R \rightarrow R$ a nonzero derivation of R. If $d\left(f\left(r_{1}, \ldots, r_{n}\right)\right) f\left(r_{1}, \ldots, r_{n}\right) \in C$, for all $r_{1}, \ldots, r_{n} \in R$ and $f\left(x_{1}, \ldots, x_{n}\right)$ is not central valued on $R C$, then $\operatorname{char}(R)=2$ and R satisfies s_{4}.
1.2. Fact. (Lemma 3 in [1) Let R be a prime ring, $f\left(x_{1}, \ldots, x_{n}\right)$ a noncentral multilinear polynomial over C in n noncommuting indeterminates, and $G: R \rightarrow R$ a nonzero generalized derivation of R. If $G\left(f\left(r_{1}, \ldots, r_{n}\right)\right) f\left(r_{1}, \ldots, r_{n}\right) \in C$, for all $r_{1}, \ldots, r_{n} \in R$, then either $\operatorname{char}(R)=2$ and R satisfies s_{4} or there exists $b \in C$ such that $G(x)=b x$ for all $x \in R$ and $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued on R.

These facts in a prime K-algebra are natural tests which evidence that, if d is a derivation of R and G is a generalized derivation of R, then the sets $\{d(x) x \mid x \in S\}$ and $\{G(x) x \mid x \in S\}$ are rather large in R, where S is either a non-central Lie ideal of R, or the set of all the evaluations of a non-central multilinear polynomial over K.

In this paper we will continue the study of the set

$$
\left\{F\left(f\left(x_{1}, \ldots, x_{n}\right)\right) f\left(x_{1}, \ldots, x_{n}\right) \mid x_{1}, \ldots, x_{n} \in R\right\}
$$

for a generalized skew derivation F of R instead of a generalized derivation, and for a multilinear polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ in n noncommuting variables over C. For the sake of clearness and completeness we now recall the definition of a generalized skew derivation of R. Let R be an associative ring and α be an automorphism of R. An additive mapping $d: R \longrightarrow R$ is called a skew derivation of R if

$$
d(x y)=d(x) y+\alpha(x) d(y)
$$

for all $x, y \in R$. The automophism α is called an associated automorphism of d. An additive mapping $F: R \longrightarrow R$ is said to be a generalized skew derivation of R if there
exists a skew derivation d of R with associated automorphism α such that

$$
F(x y)=F(x) y+\alpha(x) d(y)
$$

for all $x, y \in R$, and d is said to be an associated skew derivation of F and α is called an associated automorphism of F. For fixed elements a and b of R, the mapping $F: R \rightarrow R$ defined as $F(x)=a x-\sigma(x) b$ for all $x \in R$ is a generalized skew derivation of R. A generalized skew derivation of this form is called an inner generalized skew derivation. The definition of generalized skew derivations is a unified notion of skew derivation and generalized derivation, which have been investigated by many researchers from various view points (see [8, 9, 10], [11, [26]).

The main result of this paper is the following:

1. Theorem. Let R be a prime ring, $f\left(x_{1}, \ldots, x_{n}\right)$ a multilinear polynomial over C in n noncommuting indeterminates, I a nonzero right ideal of R, and $F: R \rightarrow R$ a nonzero generalized skew derivation of R.

Suppose that $F\left(f\left(r_{1}, \ldots, r_{n}\right)\right) f\left(r_{1}, \ldots, r_{n}\right) \in C$, for all $r_{1}, \ldots, r_{n} \in I$. If the polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ is not central valued on R, then either $\operatorname{char}(R)=2$ and R satisfies s_{4} or one of the following holds:
(i) $f\left(x_{1}, \ldots, x_{n}\right) x_{n+1}$ is an identity for I;
(ii) $F(I) I=(0)$;
(iii) $\left[f\left(x_{1}, \ldots, x_{n}\right), x_{n+1}\right] x_{n+2}$ is an identity for I, there exist $b, c, q \in Q$ with q an invertible element such that $F(x)=b x-q x q^{-1} c$ for all $x \in R$, and $q^{-1} c I \subseteq I$. Moreover, in this case either $(b-c) I=(0)$ or $b-c \in C$ and $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued on R.

It is well known that automorphisms, derivations and skew derivations of R can be extended to Q. Chang in 8 extended the definition of a generalized skew derivation to the right Martindale quotient ring Q of R as follows: by a (right) generalized skew derivation we mean an additive mapping $F: Q \longrightarrow Q$ such that $F(x y)=F(x) y+\alpha(x) d(y)$ for all $x, y \in Q$, where d is a skew derivation of R and α is an automorphism of R. Moreover, there exists $F(1)=a \in Q$ such that $F(x)=a x+d(x)$ for all $x \in R$ (Lemma 2 in [8).

2. X-inner Generalized Skew Derivations on Prime Rings.

In this section we consider the case when F is an X-inner generalized skew derivation induced by the elements $b, c \in R$, that is, $F(x)=b x-\alpha(x) c$ for all $x \in R$, where $\alpha \in \operatorname{Aut}(R)$ is the associated automorphism of F. Here $\operatorname{Aut}(R)$ denotes the group of automorphisms of R.

At the outset, we will study the case when $R=M_{m}(K)$ is the algebra of $m \times m$ matrices over a field K. Notice that the set $f(R)=\left\{f\left(r_{1}, \ldots, r_{n}\right): r_{1}, \ldots, r_{n} \in R\right\}$ is invariant under the action of all inner automorphisms of R. Hence if we denote $r=$ $\left(r_{1}, \ldots, r_{n}\right) \in R \times \ldots \times R=R^{n}$, then for any inner automorphism φ of $M_{m}(K)$, we have that $\underline{r}=\left(\varphi\left(r_{1}\right), \ldots, \varphi\left(r_{n}\right)\right) \in R^{n}$ and $\varphi(f(r))=f(\underline{r}) \in f(R)$.

Let us recall some results from [23] and 30. Let T be a ring with 1 and let $e_{i j} \in$ $M_{m}(T)$ be the matrix unit having 1 in the (i, j)-entry and zero elsewhere. For a sequence $u=\left(A_{1}, \ldots, A_{n}\right)$ in $M_{m}(T)$ the value of u is defined to be the product $|u|=A_{1} A_{2} \cdots A_{n}$ and u is nonvanishing if $|u| \neq 0$. For a permutation σ of $\{1,2, \cdots, n\}$ we write $u^{\sigma}=$ $\left(A_{\sigma(1)}, \ldots, A_{\sigma(n)}\right)$. We call u simple if it is of the form $u=\left(a_{1} e_{i_{1} j_{1}}, \ldots, a_{n} e_{i_{n} j_{n}}\right)$, where $a_{i} \in T$. A simple sequence u is called even if for some $\sigma,\left|u^{\sigma}\right|=b e_{i i} \neq 0$, and odd if for some $\sigma,\left|u^{\sigma}\right|=b e_{i j} \neq 0$, where $i \neq j$ and $b \in T$. We have:
2.1. Fact. (Lemma in [23) Let T be a K-algebra with 1 and let $R=M_{m}(T), m \geq 2$. Suppose that $h\left(x_{1}, \ldots, x_{n}\right)$ is a multilinear polynomial over K such that $h(u)=0$ for all odd simple sequences u. Then $h\left(x_{1}, \ldots, x_{n}\right)$ is central valued on R.
2.2. Fact. (Lemma 2 in 30) Let T be a K-algebra with 1 and let $R=M_{m}(T), m \geq 2$. Suppose that $h\left(x_{1}, \ldots, x_{n}\right)$ is a multilinear polynomial over K. Let $u=\left(A_{1}, \ldots, A_{n}\right)$ be a simple sequence from R.

1. If u is even, then $h(u)$ is a diagonal matrix.
2. If u is odd, then $h(u)=a e_{p q}$ for some $a \in T$ and $p \neq q$.
2.3. Fact. Suppose that $f\left(x_{1}, \ldots, x_{n}\right)$ is a multilinear polynomial over a field K not central valued on $R=M_{m}(K)$. Then by Fact 2.1 there exists an odd simple sequence $r=\left(r_{1}, \ldots, r_{n}\right)$ from R such that $f(r)=f\left(r_{1}, \ldots, r_{n}\right) \neq 0$. By Fact 2.2, $f(r)=\beta e_{p q}$, where $0 \neq \beta \in K$ and $p \neq q$. Since $f\left(x_{1}, \ldots, x_{n}\right)$ is a multilinear polynomial and K is a field, we may assume that $\beta=1$. Now, for distinct i and j, let $\sigma \in S_{n}$ be such that $\sigma(p)=i$ and $\sigma(q)=j$, and let ψ be the automorphism of R defined by $\psi\left(\sum_{s, t} \xi_{s t} e_{s t}\right)=$ $\sum_{s, t} \xi_{s t} e_{\sigma(s) \sigma(t)}$. Then $f(\psi(r))=f\left(\psi\left(r_{1}\right), \ldots, \psi\left(r_{n}\right)\right)=\psi(f(r))=\beta e_{i j}=e_{i j}$.

In all that follows we always assume that $f\left(x_{1}, \ldots, x_{n}\right)$ is not central valued on R.
2.4. Lemma. Let $R=M_{m}(K)$ be the algebra of $m \times m$ matrices over the field K and $m \geq 2, f\left(x_{1}, \ldots, x_{n}\right)$ a multilinear polynomial over K, which is not central valued on R. If there exist $b, c, q \in R$ with q an invertible matrix such that

$$
\left(b f\left(r_{1}, \ldots, r_{n}\right)-q f\left(r_{1}, \ldots, r_{n}\right) q^{-1} c\right) f\left(r_{1}, \ldots, r_{n}\right) \in Z(R)
$$

for all $r_{1}, \ldots, r_{n} \in R$, then either char $(R)=2$ and $m=2$, or $q^{-1} c, b-c \in Z(R)$ and $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued on R, provided that $b \neq c$.

Proof. If $q^{-1} c \in Z(R)$ then the conclusion follows from Fact 1.2 Thus we may assume that $q^{-1} c$ is not a scalar matrix and proceed to get a contradiction. Say $q=\sum_{h l} q_{h l} e_{h l}$ and $q^{-1} c=\sum_{h l} p_{h l} e_{h l}$, for $q_{h l}, p_{h l} \in K$. By Fact 2.3. $e_{i j} \in f(R)$ for all $i \neq j$, then for any $i \neq j$

$$
X=\left(b e_{i j}-q e_{i j} q^{-1} c\right) e_{i j} \in Z(R)
$$

By X, we have $q e_{i j} q^{-1} c e_{i j}=q p_{j i} e_{i j} \in Z(R)$. Then for any $1 \leq k \leq m\left[q p_{j i} e_{i j}, e_{i k}\right]=0$, that is $q_{k i} p_{j i}=0$. Since q is invertible $q_{k_{0} i} \neq 0$ for some k_{0}, we get $p_{j i}=0$ for all $i \neq j$. Hence $q^{-1} c$ is a diagonal matrix in R. Let $i \neq j$ and $\varphi(x)=\left(1+e_{j i}\right) x\left(1-e_{j i}\right)$ be an automorphism of R. It is well known that $\varphi\left(f\left(r_{i}\right)\right) \in f(R)$, then

$$
\left(\varphi(b) u-\varphi(q) u \varphi\left(q^{-1} c\right)\right) u \in Z(R)
$$

for all $u \in f(R)$. By the above argument, $\varphi\left(q^{-1} c\right)$ is a diagonal matrix, that is the (j, i) entry of $\varphi\left(q^{-1} c\right)$ is zero. By calculations it follows $p_{i i}=p_{j j}$, and we get the contradiction that $q^{-1} c$ is central in R.
2.5. Lemma. Let R be a prime ring, $f\left(x_{1}, \ldots, x_{n}\right)$ be a non-central multilinear polynomial over C. If there exist $b, c, q \in R$ with q an invertible element such that

$$
\left(b f\left(r_{1}, \ldots, r_{n}\right)-q f\left(r_{1}, \ldots, r_{n}\right) q^{-1} c\right) f\left(r_{1}, \ldots, r_{n}\right) \in C
$$

for all $r_{1}, \ldots, r_{n} \in R$, then either char $(R)=2$ and R satisfies s_{4}, or $q^{-1} c, b-c \in Z(R)$ and $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued on R, provided that $b \neq c$.

Proof. Consider the generalized polynomial

$$
\Phi\left(x_{1}, \ldots, x_{n+1}\right)=\left[\left(b f\left(x_{1}, \ldots, x_{n}\right)-q f\left(x_{1}, \ldots, x_{n}\right) q^{-1} c\right) f\left(x_{1}, \ldots, x_{n}\right), x_{n+1}\right]
$$

which is a generalized polynomial identity for R. If $\left\{1, q^{-1} c\right\}$ is linearly C-dependent, then $q^{-1} c \in C$. In this case R satisfies

$$
\Phi\left(x_{1}, \ldots, x_{n+1}\right)=\left[\left((b-c) f\left(x_{1}, \ldots, x_{n}\right)\right) f\left(x_{1}, \ldots, x_{n}\right), x_{n+1}\right]
$$

and we are done by Fact 1.2
Hence we here assume that $\left\{1, q^{-1} c\right\}$ is linearly C-independent. In this case $\Phi\left(x_{1}, \ldots, x_{n+1}\right)$ is a non-trivial generalized polynomial identity for R and by [12 $\Phi\left(x_{1}, \ldots, x_{n+1}\right)$ is a nontrivial generalized polynomial identity for Q. By Martindale's theorem in [31, Q is a primitive ring having nonzero socle with the field C as its associated division ring. By [20] (p. 75) Q is isomorphic to a dense subring of the ring of linear transformations of a vector space V over C, containing nonzero linear transformations of finite rank. Assume first that $\operatorname{dim}_{C} V=k$ a finite integer. Then $Q \cong M_{k}(C)$ and the conclusion follows from Lemma 2.4 Therefore we may assume that $\operatorname{dim}_{C} V=\infty$. As in Lemma 2 in 33, the set $f(R)=\left\{f\left(r_{1}, \ldots, r_{n}\right): r_{i} \in R\right\}$ is dense in R and so from $\Phi\left(r_{1}, \ldots, r_{n+1}\right)=0$ for all $r_{1}, \ldots, r_{n+1} \in R$, we have that Q satisfies the generalized identity

$$
\left[\left(b x_{1}-q x_{1} q^{-1} c\right) x_{1}, x_{2}\right]
$$

In particular for $x_{1}=1,\left[b-c, x_{2}\right]$ is an identity for Q, that is $b-c \in C$, say $b=c+\lambda$ for some $\lambda \in C$. Thus Q satisfies

$$
\left[\left((c+\lambda) x_{1}-q x_{1} q^{-1} c\right) x_{1}, x_{2}\right]
$$

and by replacing x_{1} with $y_{1}+t_{1}$ we have that

$$
\left[\left((c+\lambda) y_{1}-q y_{1} q^{-1} c\right) t_{1}, x_{2}\right]+\left[\left((c+\lambda) t_{1}-q t_{1} q^{-1} c\right) y_{1}, x_{2}\right]
$$

is an identity for Q. Once again for $y_{1}=1$ it follows that Q satisfies

$$
\left[\lambda t_{1}+(c+\lambda) t_{1}-q t_{1} q^{-1} c, x_{2}\right]
$$

and for $x_{2}=t_{1}$

$$
\left[c t_{1}-q t_{1} q^{-1} c, t_{1}\right] .
$$

By Lemma 3.2 in [17] (or [18] Theorem 1) and since R cannot satisfy any polynomial identity $\left(\operatorname{dim}_{C} V=\infty\right)$, it follows the contradiction $q^{-1} c \in C$.
2.6. Proposition. Let R be a prime ring, $f\left(x_{1}, \ldots, x_{n}\right)$ a non-central multilinear polynomial over C in n non-commuting variables, $b, c \in R$ and $\alpha \in \operatorname{Aut}(R)$ such that $F(x)=$ $b x-\alpha(x) c$ for all $x \in R$. If $F\left(f\left(r_{1}, \ldots, r_{n}\right)\right) f\left(r_{1}, \ldots, r_{n}\right) \in C$, for all $r_{1}, \ldots, r_{n} \in R$, and F is nonzero on R, then either char $(R)=2$ and R satisfies s_{4}, or $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued on R and there exists $\gamma \in C$ such that $F(x)=\gamma x$, for all $x \in R$. When this last case occurs, we have:
(i) if α is X-outer then $\gamma=b$ and $c=0$;
(ii) if $\alpha(x)=q x q^{-1}$ for all $x \in R$ and for some invertible element $q \in Q$, then $\gamma=b-c$ and $q^{-1} c \in C$.

Proof. In case α is an X-inner automorphism of R, there exists an invertible element $q \in Q$ such that $\alpha(x)=q x q^{-1}$ for all $x \in R$ and the conclusion follows from Lemma 2.5 So we may assume here that α is X-outer. Since by $14 R$ and Q satisfy the same generalized identities with automorphisms, then

$$
\Phi\left(x_{1}, \ldots, x_{n+1}\right)=\left[\left(b f\left(x_{1}, \ldots, x_{n}\right)-\alpha\left(f\left(x_{1}, \ldots, x_{n}\right)\right) c\right) f\left(x_{1}, \ldots, x_{n}\right), x_{n+1}\right]
$$

is satisfied by Q, moreover Q is a centrally closed prime C-algebra. Note that if $c=0$ we are done by Fact 1.2 Thus we may assume $c \neq 0$. In this case, by 13] (main Theorem), $\Phi\left(x_{1}, \ldots, x_{n+1}\right)$ is a non-trivial generalized identity for R and for Q. By Theorem 1 in [21, $R C$ has non-zero socle and Q is primitive. Moreover, since α is an outer automorphism and any $\left(x_{i}\right)^{\alpha}$-word degree in $\Phi\left(x_{1}, \ldots, x_{n}\right)$ is equal to 1 , then by Theorem 3 in [14, Q satisfies the identity

$$
\left[\left(b f\left(x_{1}, \ldots, x_{n}\right)-f^{\alpha}\left(y_{1}, \ldots, y_{n}\right) c\right) f\left(x_{1}, \ldots, x_{n}\right), x_{n+1}\right]
$$

where $f^{\alpha}\left(X_{1}, \ldots, X_{n}\right)$ is the polynomial obtained from f by replacing each coefficient γ of f with $\alpha(\gamma)$. By Fact 1.2 we conclude that either $\operatorname{char}(R)=2$ and R satisfies s_{4} or $b, c \in C$ and $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued on R. Moreover, in this last case we also have that Q satisfies

$$
c\left[f\left(y_{1}, \ldots, y_{n}\right) f\left(x_{1}, \ldots, x_{n}\right), x_{n+1}\right]
$$

Since $c \neq 0$ we have $\left[f\left(y_{1}, \ldots, y_{n}\right) f\left(x_{1}, \ldots, x_{n}\right), x_{n+1}\right]$ is a polynomial identity for Q. Thus there exists a suitable field K such that Q and the $l \times l$ matrix ring $M_{l}(K)$ satisfy the same polynomial identities by Lemma 1 in 22]. In particular, $M_{l}(K)$ satisfies $\left[f\left(y_{1}, \ldots, y_{n}\right) f\left(x_{1}, \ldots, x_{n}\right), x_{n+1}\right]$. Hence, since $f\left(x_{1}, \ldots, x_{n}\right)$ is not central valued on $M_{l}(K)$ (and hence $l \geq 2$), by Fact 2.3 we have that for all $i \neq j$ there exist $r_{1}, \ldots, r_{n}, s_{1}, \ldots, s_{n} \in M_{l}(K)$ such that $f\left(r_{1}, \ldots, r_{n}\right)=e_{i j}$ and $f\left(s_{1}, \ldots, s_{n}\right)=e_{j i}$. As a consequence we get $0=\left[e_{i j} e_{j i}, x_{n+1}\right]=\left[e_{i i}, x_{n+1}\right]$, which is a contradiction for a suitable choice of $x_{n+1} \in M_{l}(K)$ (for example $x_{n+1}=e_{i j}$).
2.7. Fact. (Theorem 1 in [15) Let R be a prime ring, D be an X-outer skew derivation of R and α be an X-outer automorphism of R. If $\Phi\left(x_{i}, D\left(x_{i}\right), \alpha\left(x_{i}\right)\right)$ is a generalized polynomial identity for R, then R also satisfies the generalized polynomial identity $\Phi\left(x_{i}, y_{i}, z_{i}\right)$, where x_{i}, y_{i} and z_{i} are distinct indeterminates.

We close this section by collecting the results we obtained so far in the following
2.8. Proposition. Let R be a prime ring, $f\left(x_{1}, \ldots, x_{n}\right)$ a non-central multilinear polynomial over C in n non-commuting variables, $F: R \rightarrow R$ a nonzero X-inner generalized skew derivation of R.

If $F\left(f\left(r_{1}, \ldots, r_{n}\right)\right) f\left(r_{1}, \ldots, r_{n}\right) \in C$, for all $r_{1}, \ldots, r_{n} \in R$, then either char $(R)=2$ and R satisfies s_{4}, or $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued on R and there exists $\gamma \in C$ such that $F(x)=\gamma x$, for all $x \in R$.

Proof. We can write $F(x)=b x+d(x)$ for all $x \in R$ where $b \in Q$ and d is a skew derivation of R (see [8]). We denote $f\left(x_{1}, \ldots, x_{n}\right)=\sum_{\sigma \in S_{n}} \gamma_{\sigma} x_{\sigma(1)} \cdots x_{\sigma(n)}$ with $\gamma_{\sigma} \in C$. By Theorem 2 in [15] R and Q satisfy the same generalized polynomial identities with a single skew derivation, then Q satisfies

$$
\begin{equation*}
\left[\left(b f\left(x_{1}, \ldots, x_{n}\right)+d\left(f\left(x_{1}, \ldots, x_{n}\right)\right)\right) f\left(x_{1}, \ldots, x_{n}\right), x_{n+1}\right] \tag{2.1}
\end{equation*}
$$

Since F is X-inner then d is X-inner, that is there exist $c \in Q$ and $\alpha \in \operatorname{Aut}(Q)$ such that $d(x)=c x-\alpha(x) c$, for all $x \in R$. Hence $F(x)=(b+c) x-\alpha(x) c$ and we conclude by Proposition 2.6
2.9. Corollary. Let R be a prime ring, $f\left(x_{1}, \ldots, x_{n}\right)$ a non-vanishing multilinear polynomial over C in n non-commuting variables, $F: R \rightarrow R$ a non-zero X-inner generalized skew derivation of R. If $F\left(f\left(r_{1}, \ldots, r_{n}\right)\right) f\left(r_{1}, \ldots, r_{n}\right)=0$, for all $r_{1}, \ldots, r_{n} \in R$, then $\operatorname{char}(R)=2$ and R satisfies s_{4}.

3. Generalized Skew Derivations on Right Ideals.

We premit the following:
3.1. Fact. (Main Theorem in [1]) Let R be a prime ring, I a nonzero right ideal of $R, f\left(x_{1}, \ldots, x_{n}\right)$ a multilinear polynomial over C in n non-commuting indeterminates, which is not an identity for R, and $g: R \rightarrow R$ a nonzero generalized derivation of R with the associated derivation $d: R \rightarrow R$, that is $g(x)=a x+d(x)$, for all $x \in R$ and a fixed $a \in Q$.

Suppose that $g\left(f\left(r_{1}, \ldots, r_{n}\right)\right) f\left(r_{1}, \ldots, r_{n}\right) \in C$, for all $r_{1}, \ldots, r_{n} \in I$. Then either $\operatorname{char}(R)=2$ and R satisfies s_{4} or $f\left(x_{1}, \ldots, x_{n}\right) x_{n+1}$ is an identity for I, or there exist $b, c \in Q$ such that $g(x)=b x+x c$ for all $x \in R$ and one of the following holds:
(i) $b, c \in C$ and $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued on R;
(ii) there exists $\lambda \in C$ such that $b=\lambda-c$ and $f\left(x_{1}, \ldots, x_{n}\right)$ is central valued on R;
(iii) $(b+c) I=(0)$ and I satisfies the identity $\left[f\left(x_{1}, \ldots, x_{n}\right), x_{n+1}\right] x_{n+2}$;
(iv) $(b+c) I=(0)$ and there exists $\gamma \in C$ such that $(c-\gamma) I=(0)$.
3.2. Fact. (Theorem 1 in [1]) Under the same situation as in above Fact, we notice that in case $g\left(f\left(r_{1}, \ldots, r_{n}\right)\right) f\left(r_{1}, \ldots, r_{n}\right)=0$, for all $r_{1}, \ldots, r_{n} \in I$, the conclusions (i) and (ii) cannot occur. Hence we have that either $\operatorname{char}(R)=2$ and R satisfies s_{4} or $f\left(x_{1}, \ldots, x_{n}\right) x_{n+1}$ is an identity for I, or there exist $b, c \in Q$ such that $g(x)=b x+x c$ for all $x \in R$ and one of the following holds:
(i) $(b+c) I=(0)$ and I satisfies the identity $\left[f\left(x_{1}, \ldots, x_{n}\right), x_{n+1}\right] x_{n+2}$;
(ii) $(b+c) I=(0)$ and there exists $\gamma \in C$ such that $(c-\gamma) I=(0)$.
3.3. Proposition. Let R be a prime ring, $f\left(x_{1}, \ldots, x_{n}\right)$ a non-central multilinear polynomial over C in n non-commuting indeterminates, I a nonzero right ideal of $R, F: R \rightarrow R$ an X-outer generalized skew derivation of R. If

$$
\begin{equation*}
F\left(f\left(r_{1}, \ldots, r_{n}\right)\right) f\left(r_{1}, \ldots, r_{n}\right) \in C \tag{3.1}
\end{equation*}
$$

for all $r_{1}, \ldots, r_{n} \in I$, then either char $(R)=2$ and R satisfies $s_{4}\left(x_{1}, \ldots, x_{4}\right)$, or $f\left(x_{1}, \ldots, x_{n}\right) x_{n+1}$ is an identity for I.

Proof. As above we write $F(x)=b x+d(x)$ for all $x \in R, b \in Q$ and d is an X-outer skew derivation of R. Let $\alpha \in \operatorname{Aut}(Q)$ be the automorphism which is associated with d. Notice that in case α is the identity map on R, then d is a usual derivation of R and so F is a generalized derivation of R. Therefore by Fact 3.1 we obtain the required conclusions. Hence in what follows we always assume that $\alpha \neq 1 \in \operatorname{Aut}(R)$.

We denote by $f^{d}\left(x_{1}, \ldots, x_{n}\right)$ the polynomial obtained from $f\left(x_{1}, \ldots, x_{n}\right)$ by replacing each coefficient γ_{σ} with $d\left(\gamma_{\sigma}\right)$. Notice that

$$
\begin{aligned}
d\left(\gamma_{\sigma} x_{\sigma(1)} \cdots x_{\sigma(n)}\right) & =d\left(\gamma_{\sigma}\right) x_{\sigma(1)} \cdots x_{\sigma(n)} \\
& +\alpha\left(\gamma_{\sigma}\right) \sum_{j=0}^{n-1} \alpha\left(x_{\sigma(1)} \cdots x_{\sigma(j)}\right) d\left(x_{\sigma(j+1)}\right) x_{\sigma(j+2)} \cdots x_{\sigma(n)}
\end{aligned}
$$

so that

$$
\begin{aligned}
d\left(f\left(x_{1}, \ldots, x_{n}\right)\right) & =f^{d}\left(x_{1}, \ldots, x_{n}\right) \\
& +\sum_{\sigma \in S_{n}} \alpha\left(\gamma_{\sigma}\right) \sum_{j=0}^{n-1} \alpha\left(x_{\sigma(1)} \cdots x_{\sigma(j)}\right) d\left(x_{\sigma(j+1)}\right) x_{\sigma(j+2)} \cdots x_{\sigma(n)} .
\end{aligned}
$$

Since $I Q$ satisfies (3.1), then for all $0 \neq u \in I, Q$ satisfies

$$
\begin{aligned}
& {\left[\left(b f\left(u x_{1}, \ldots, u x_{n}\right)+f^{d}\left(u x_{1}, \ldots, u x_{n}\right)\right) f\left(u x_{1}, \ldots, u x_{n}\right), x_{n+1}\right]} \\
& +\left[\left(\sum_{\sigma \in S_{n}} \alpha\left(\gamma_{\sigma}\right) \sum_{j=0}^{n-1} \alpha\left(u x_{\sigma(1)} \ldots u x_{\sigma(j)}\right) d\left(u x_{\sigma(j+1)}\right) u x_{\sigma(j+2)} \ldots u x_{\sigma(n)}\right) f\left(u x_{1}, \ldots, u x_{n}\right), x_{n+1}\right] .
\end{aligned}
$$

By Theorem 1 in [15], Q satisfies

$$
\begin{aligned}
& {\left[\left(b f\left(u x_{1}, \ldots, u x_{n}\right)+f^{d}\left(u x_{1}, \ldots, u x_{n}\right)\right) f\left(u x_{1}, \ldots, u x_{n}\right), x_{n+1}\right]} \\
& +\left[\left(\sum_{\sigma \in S_{n}} \alpha\left(\gamma_{\sigma}\right) \sum_{j=0}^{n-1} \alpha\left(u x_{\sigma(1)} \ldots u x_{\sigma(j)}\right) d(u) x_{\sigma(j+1)} \ldots u x_{\sigma(n)}\right) f\left(u x_{1}, \ldots, u x_{n}\right), x_{n+1}\right] \\
& \left.+\left[\left(\sum_{\sigma \in S_{n}} \alpha\left(\gamma_{\sigma}\right) \sum_{j=0}^{n-1} \alpha\left(u x_{\sigma(1)}\right) \ldots u x_{\sigma(j)}\right) \alpha(u) y_{\sigma(j+1)} u x_{\sigma(j+2)} \ldots u x_{\sigma(n)}\right) f\left(u x_{1}, \ldots, u x_{n}\right), x_{n+1}\right]
\end{aligned}
$$

In particular Q satisfies

$$
\begin{equation*}
\left[\left(\sum_{\sigma \in S_{n}} \alpha\left(\gamma_{\sigma}\right) \sum_{j=0}^{n-1} \alpha\left(u x_{\sigma(1)} \ldots u x_{\sigma(j)}\right) \alpha(u) y_{\sigma(j+1)} u x_{\sigma(j+2)} \ldots u x_{\sigma(n)}\right) f\left(u x_{1}, \ldots, u x_{n}\right), x_{n+1}\right] \tag{3.2}
\end{equation*}
$$

Here we suppose that either $\operatorname{char}(R) \neq 2$ or R does not satisfy s_{4}, moreover $f\left(x_{1}, \ldots, x_{n}\right) x_{n+1}$ is not an identity for I, if not we are done. Hence suppose there exist $a_{1}, \ldots, a_{n+1} \in I$ such that $f\left(a_{1}, \ldots, a_{n}\right) a_{n+1} \neq 0$. We proceed to get a number of contradictions.

Since $0 \neq \alpha(u)$ is a fixed element of Q, we notice that (3.2) is a non-trivial generalized polynomial identity for Q, then Q has nonzero socle H which satisfies the same generalized polynomial identities of Q (see [12]). In order to prove our result, we may replace Q by H, and by Lemma 1 in [19, we may assume that Q is a regular ring. Thus there exists $0 \neq e=e^{2} \in I Q$ such that $\sum_{i=1}^{n+1} a_{i} Q=e Q$, and $a_{i}=e a_{i}$ for each $i=1, \ldots, n+1$. Notice that $e Q$ satisfies the same generalized identities with skew derivations and automorphisms of I. So that we may assume $e \neq 1$, if not $e Q=Q$ and the conclusion follows from Proposition 2.6

Assume that α is X-outer. Thus, by Fact 2.7 and $3.2, Q$ satisfies

$$
\begin{equation*}
\left[\left(\sum_{\sigma \in S_{n}} \alpha\left(\gamma_{\sigma}\right) \sum_{j=0}^{n-1} \alpha(e) t_{\sigma(1)} \cdots \alpha(e) t_{\sigma(j)} \alpha(e) y_{\sigma(j+1)} e x_{\sigma(j+2)} \cdots e x_{\sigma(n)}\right) f\left(e x_{1}, \ldots, e x_{n}\right), x_{n+1}\right] \tag{3.3}
\end{equation*}
$$

and in particular

$$
\begin{equation*}
\left[\left(\sum_{\sigma \in S_{n}} \alpha\left(\gamma_{\sigma}\right) \alpha(e) y_{\sigma(1)} \cdots \alpha(e) y_{\sigma(n)}\right) f\left(e x_{1}, \ldots, e x_{n}\right), x_{n+1}\right] \tag{3.4}
\end{equation*}
$$

We also denote by $f^{\alpha}\left(x_{1}, \ldots, x_{n}\right)$ the polynomial obtained from $f\left(x_{1}, \ldots, x_{n}\right)$ by replacing each coefficient γ_{σ} with $\alpha\left(\gamma_{\sigma}\right)$. Therefore we may rewrite 3.4 as follows:

$$
\begin{equation*}
\left[f^{\alpha}\left(\alpha(e) r_{1}, \ldots, \alpha(e) r_{n}\right) f\left(e s_{1}, \ldots, e s_{n}\right), X\right]=0 \tag{3.5}
\end{equation*}
$$

for all $r_{1}, \ldots, r_{n}, s_{1}, \ldots, s_{n}, X \in Q$. Choose in $3.5 X=Y(1-\alpha(e))$, then we get

$$
f^{\alpha}\left(\alpha(e) r_{1}, \ldots, \alpha(e) r_{n}\right) f\left(e s_{1}, \ldots, e s_{n}\right) Y(1-\alpha(e))=0
$$

and by the primeness of Q and since $e \neq 1$, it follows that Q satisfies

$$
f^{\alpha}\left(\alpha(e) y_{1}, \ldots, \alpha(e) y_{n}\right) f\left(e x_{1}, \ldots, e x_{n}\right)
$$

that is $f^{\alpha}(\alpha(e) Q) f(e Q)=(0)$, where $\alpha(e) Q$ and $e Q$ are both right ideals of Q and f^{α} and f are distinct polynomials over C (since $\alpha \neq 1$). In this situation, applying the result in [16] (see the proof of Lemma 3, pp. 181), it follows that either $f^{\alpha}(\alpha(e) Q) \alpha(e)=(0)$ or $f(e Q)=(0)$. Since this last case cannot occur, we have that $f^{\alpha}\left(\alpha(e) r_{1}, \ldots, \alpha(e) r_{n}\right) \alpha(e)=0$ for all $r_{1}, \ldots, r_{n} \in Q$. Hence

$$
0=\alpha^{-1}\left(f^{\alpha}\left(\alpha(e) r_{1}, \ldots, \alpha(e) r_{n}\right) \alpha(e)\right)=f\left(e \alpha^{-1}\left(r_{1}\right), \ldots, e \alpha^{-1}\left(r_{n}\right)\right) e
$$

and since α^{-1} is an automorphism of Q, it follows that $f\left(e s_{1}, \ldots, e s_{n}\right) e=0$, for all $s_{1}, \ldots, s_{n} \in Q$, which is again a contradiction.

Finally consider the case when there exists an invertible element $q \in Q$ such that $\alpha(x)=q x q^{-1}$, for all $x \in Q$. Thus from 3.2 we have that Q satisfies

$$
\begin{equation*}
\left[\left(\sum_{\sigma \in S_{n}} \alpha\left(\gamma_{\sigma}\right) \sum_{j=0}^{n-1} q\left(e x_{\sigma(1)} \cdots e x_{\sigma(j)}\right) e q^{-1} y_{\sigma(j+1)} e x_{\sigma(j+2)} \cdots e x_{\sigma(n)}\right) f\left(e x_{1}, \ldots, e x_{n}\right), x_{n+1}\right] . \tag{3.6}
\end{equation*}
$$

Since $\alpha\left(\gamma_{\sigma}\right)=\gamma_{\sigma}$ and by replacing $y_{\sigma(i)}$ with $q x_{\sigma(i)}$, for all $\sigma \in S_{n}$ and for all $i=1, \ldots, n$, it follows that Q satisfies

$$
\begin{equation*}
\left[\left(\sum_{\sigma \in S_{n}} \gamma_{\sigma} q e x_{\sigma(1)} \cdots e x_{\sigma(j)} e x_{\sigma(j+1)} e x_{\sigma(j+2)} \cdots e x_{\sigma(n)}\right) f\left(e x_{1}, \ldots, e x_{n}\right), x_{n+1}\right] \tag{3.7}
\end{equation*}
$$

that is

$$
\begin{equation*}
\left[\left(q f\left(e x_{1}, \ldots, e x_{n}\right)\right) f\left(e x_{1}, \ldots, e x_{n}\right), x_{n+1}\right] \tag{3.8}
\end{equation*}
$$

By Fact 3.1 it follows that one of the following holds:

1. $\operatorname{char}(Q)=2$ and Q satisfies s_{4};
2. $f\left(x_{1}, \ldots, x_{n}\right) x_{n+1}$ is an identity for $e Q$;
3. $q \in C$;
4. $q e Q=(0)$.

Since in any case we get a contradiction, we are done.
3.4. Lemma. Let R be a prime ring, $f\left(x_{1}, \ldots, x_{n}\right)$ a non-central multilinear polynomial over C in n non-commuting indeterminates, I a nonzero right ideal of $R, b, c \in Q$ and $\alpha \in \operatorname{Aut}(R)$ be an automorphism of R such that $F(x)=b x-\alpha(x) c$, for all $x \in R$. Assume that $F\left(f\left(r_{1}, \ldots, r_{n}\right)\right) f\left(r_{1}, \ldots, r_{n}\right) \in C$, for all $r_{1}, \ldots, r_{n} \in I$. If R does not satisfy any non-trivial generalized polynomial identity then $F(I) I=(0)$.

Proof. Let u be any nonzero element of I. By the hypothesis R satisfies the following:

$$
\left[\left(b\left(f\left(u x_{1}, \ldots, u x_{n}\right)\right)-\alpha\left(f\left(u x_{1}, \ldots, u x_{n}\right)\right) c\right) f\left(u x_{1}, \ldots, u x_{n}\right), x_{n+1}\right] .
$$

Also here we denote by $f^{\alpha}\left(x_{1}, \ldots, x_{n}\right)$ the polynomial obtained from $f\left(x_{1}, \ldots, x_{n}\right)$ by replacing each coefficient γ_{σ} of $f\left(x_{1}, \ldots, x_{n}\right)$ with $\alpha\left(\gamma_{\sigma}\right)$. Thus R satisfies

$$
\begin{equation*}
\left[\left(b f\left(u x_{1}, \ldots, u x_{n}\right)-f^{\alpha}\left(\alpha(u) \alpha\left(x_{1}\right), \ldots, \alpha(u) \alpha\left(x_{n}\right)\right) c\right) f\left(u x_{1}, \ldots, u x_{n}\right), x_{n+1}\right] . \tag{3.9}
\end{equation*}
$$

In case α is X-outer, by Theorem 3 in [14] and (3.9) we have that R satisfies

$$
\left[\left(b\left(f\left(u x_{1}, \ldots, u x_{n}\right)\right)-f^{\alpha}\left(\alpha(u) y_{1}, \ldots, \alpha(u) y_{n}\right) c\right) f\left(u x_{1}, \ldots, u x_{n}\right), x_{n+1}\right]
$$

and in particular R satisfies both

$$
\begin{equation*}
\left[b f\left(u x_{1}, \ldots, u x_{n}\right)^{2}, x_{n+1}\right] \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[f^{\alpha}\left(\alpha(u) y_{1}, \ldots, \alpha(u) y_{n}\right) c f\left(u x_{1}, \ldots, u x_{n}\right), x_{n+1}\right] . \tag{3.11}
\end{equation*}
$$

Since (3.10) and (3.11) must be trivial generalized polynomial identities for R, by [12] it follows that $b u=0$ and $c u=0$ that is $F(I) I=(0)$.

Consider now the case $\alpha(x)=q x q^{-1}$ for all $x \in R$, for some invertible element $q \in Q$. Since by (3.9)

$$
\begin{equation*}
\left[\left(b f\left(u x_{1}, \ldots, u x_{n}\right)-q f\left(u x_{1}, \ldots, u x_{n}\right) q^{-1} c\right) f\left(u x_{1}, \ldots, u x_{n}\right), x_{n+1}\right] \tag{3.12}
\end{equation*}
$$

is a trivial generalized polynomial identity for R, again by [12] we have that $b u=\lambda q u$, for some $\lambda \in C$. Thus we may write $\sqrt{3.12}$ as follows

$$
\begin{equation*}
\left[q f\left(u x_{1}, \ldots, u x_{n}\right)\left(\lambda-q^{-1} c\right) f\left(u x_{1}, \ldots, u x_{n}\right), x_{n+1}\right] \tag{3.13}
\end{equation*}
$$

Once again (3.13) is a trivial identity for R, moreover $q u \neq 0$. This implies that $(\lambda-$ $\left.q^{-1} c\right) u=0$ and hence $\left(\lambda_{u}-q^{-1} c\right) u=0$ for all $u \in I$ and for some $\lambda_{u} \in C$. Then u and $q^{-1} c u$ are C-dependent for all $u \in I$. By a standard argument we conclude that $\left(\lambda-q^{-1} c\right) I=(0)$ for some $\lambda \in C$, and thus $F(I) I=(0)$.
3.5. Lemma. Let R be a prime ring, $f\left(x_{1}, \ldots, x_{n}\right)$ a non-central multilinear polynomial over C in n non-commuting indeterminates, I a nonzero right ideal of $R, b, c \in Q$ and $\alpha \in A u t(R)$ be an X-outer automorphism of R such that $F(x)=b x-\alpha(x) c$, for all $x \in R$. If $F\left(f\left(r_{1}, \ldots, r_{n}\right)\right) f\left(r_{1}, \ldots, r_{n}\right) \in C$, for all $r_{1}, \ldots, r_{n} \in I$, then either char $(R)=2$ and R satisfies s_{4} or one of the following holds:
(i) $f\left(x_{1}, \ldots, x_{n}\right) x_{n+1}$ is an identity for I;
(ii) $F(I) I=(0)$;
(iii) $c I=(0), b \in C$ and $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued on R.

Proof. Firstly we notice that in case $c I=(0)$, then $b f\left(r_{1}, \ldots, r_{n}\right)^{2} \in C$, for all $r_{1}, \ldots, r_{n} \in$ I. Thus by Fact 3.1 it follows that either $c I=(0), b \in C$ and $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued on R, or $c I=b I=(0)$ that is $F(I) I=(0)$. Hence in the following we assume $c I \neq(0)$. By previous Lemma we may assume that R satisfies some non-trivial generalized polynomial identity. As above let u be any nonzero element of I. By the hypothesis R satisfies the following:

$$
\begin{equation*}
\left[\left(b f\left(u x_{1}, \ldots, u x_{n}\right)-f^{\alpha}\left(\alpha(u) \alpha\left(x_{1}\right), \ldots, \alpha(u) \alpha\left(x_{n}\right)\right) c\right) f\left(u x_{1}, \ldots, u x_{n}\right), x_{n+1}\right] \tag{3.14}
\end{equation*}
$$

Since α is X-outer, by Theorem 3 in [14, R satisfies

$$
\begin{equation*}
\left[\left(b f\left(u x_{1}, \ldots, u x_{n}\right)-f^{\alpha}\left(\alpha(u) y_{1}, \ldots, \alpha(u) y_{n}\right) c\right) f\left(u x_{1}, \ldots, u x_{n}\right), x_{n+1}\right] \tag{3.15}
\end{equation*}
$$

and in particular R as well as Q satisfy the component

$$
\begin{equation*}
\left[f^{\alpha}\left(\alpha(u) y_{1}, \ldots, \alpha(u) y_{n}\right) c f\left(u x_{1}, \ldots, u x_{n}\right), x_{n+1}\right] \tag{3.16}
\end{equation*}
$$

By 31 Q is a primitive ring having nonzero socle H with the field C as its associated division ring. Moreover H and Q satisfy the same generalized polynomial identities with automorphisms (Theorem 1 in (14). Therefore H satisfies (3.14) and so we may replace Q by H. Suppose there exist $a_{1}, \ldots, a_{n+2} \in I$ such that $f\left(a_{1}, \ldots, a_{n}\right) a_{n+1} \neq 0$ and $c a_{n+2} \neq 0$. Since Q is a regular GPI-ring, there exists an idempotent element $e \in I Q$ such that $e Q=\sum_{i=1}^{n+2} a_{i} Q$ and $a_{i}=e a_{i}$, for any $i=1, \ldots, n+2$. Therefore, by 3.14, Q satisfies

$$
\begin{equation*}
\left[\left(b f\left(e x_{1}, \ldots, e x_{n}\right)-f^{\alpha}\left(\alpha(e) \alpha\left(x_{1}\right), \ldots, \alpha(e) \alpha\left(x_{n}\right)\right) c\right) f\left(e x_{1}, \ldots, e x_{n}\right), x_{n+1}\right] \tag{3.17}
\end{equation*}
$$

Moreover assume $e \neq 1$, if not $e Q=Q$ and by Proposition 2.6 we get $b \in C, c=0$ and $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued on R. Since α is X-outer, as above by 3.17 satisfies

$$
\left[\left(b f\left(e x_{1}, \ldots, e x_{n}\right)-f^{\alpha}\left(\alpha(e) y_{1}, \ldots, \alpha(e) y_{n}\right) c\right) f\left(e x_{1}, \ldots, e x_{n}\right), x_{n+1}\right]
$$

In particular Q satisfies

$$
\left[f^{\alpha}\left(\alpha(e) y_{1}, \ldots, \alpha(e) y_{n}\right) c f\left(e x_{1}, \ldots, e x_{n}\right), x_{n+1}(1-\alpha(e))\right]
$$

that is Q satisfies

$$
f^{\alpha}\left(\alpha(e) y_{1}, \ldots, \alpha(e) y_{n}\right) c f\left(e x_{1}, \ldots, e x_{n}\right) x_{n+1}(1-\alpha(e))
$$

and since Q is prime and $e \neq 0,1$, it follows $f^{\alpha}\left(\alpha(e) r_{1}, \ldots, \alpha(e) r_{n}\right) c f\left(e s_{1}, \ldots, e s_{n}\right)=0$, for all $r_{1}, \ldots, r_{n}, s_{1}, \ldots, s_{n} \in Q$. Since $f\left(e a_{1}, \ldots, e a_{n}\right) e a_{n+1} \neq 0$ and $c e a_{n+2} \neq 0$ and by using the result in [16], it follows that $f^{\alpha}\left(\alpha(e) y_{1}, \ldots, \alpha(e) y_{n}\right)$ is an identity for Q. This implies that $f\left(e \alpha^{-1}\left(y_{1}\right), \ldots, e \alpha^{-1}\left(y_{n}\right)\right)$ is also an identity for Q. Moreover it is clear that α^{-1} is X-outer, therefore $f\left(e x_{1}, \ldots, e x_{n}\right)$ is an identity for Q, a contradiction.
3.6. Lemma. Let R be a prime ring, $f\left(x_{1}, \ldots, x_{n}\right)$ a non-central multilinear polynomial over C in n non-commuting indeterminates, I a nonzero right ideal of $R, b, c, q \in Q$ such that $F(x)=b x-q x q^{-1} c$, for all $x \in R$. If

$$
F\left(f\left(r_{1}, \ldots, r_{n}\right)\right) f\left(r_{1}, \ldots, r_{n}\right)=0
$$

for all $r_{1}, \ldots, r_{n} \in I$, then either char $R=2$ and R satisfies s_{4} or one of the following holds:
(i) $f\left(x_{1}, \ldots, x_{n}\right) x_{n+1}$ is an identity for I;
(ii) $\left[f\left(x_{1}, \ldots, x_{n}\right), x_{n+1}\right] x_{n+2}$ is an identity for $I,(b-c) I=(0)$ and $q^{-1} c I \subseteq I$;
(iii) $F(I) I=(0)$.

Proof. Here I satisfies

$$
\begin{equation*}
\left(b f\left(x_{1}, \ldots, x_{n}\right)-q f\left(x_{1}, \ldots, x_{n}\right) q^{-1} c\right) f\left(x_{1}, \ldots, x_{n}\right) \tag{3.18}
\end{equation*}
$$

and left multiplying by q^{-1}, I satisfies

$$
\begin{equation*}
\left(q^{-1} b\left(f\left(x_{1}, \ldots, x_{n}\right)\right)-\left(f\left(x_{1}, \ldots, x_{n}\right) q^{-1} c\right) f\left(x_{1}, \ldots, x_{n}\right)\right. \tag{3.19}
\end{equation*}
$$

Since we assume $f\left(x_{1}, \ldots, x_{n}\right)$ is not central valued on R, by Fact 3.2 we have that either char $R=2$ and R satisfies the standard identity s_{4}, or $f\left(x_{1}, \ldots, x_{n}\right) x_{n+1}$ is an identity for I, or one of the following holds:

1. there exists $\gamma \in C$ such that $q^{-1} b x=\gamma x=q^{-1} c x$, for all $x \in I$ (this is the case $F(I) I=(0))$.
2. $q^{-1}(b-c) I=(0)$, that is $(b-c) I=(0)$, moreover $\left[f\left(x_{1}, \ldots, x_{n}\right), x_{n+1}\right] x_{n+2}$ is an identity for I.

In this last case, by (3.19) it follows that I satisfies

$$
\begin{equation*}
\left(b f\left(u x_{1}, \ldots, u x_{n}\right)-q f\left(u x_{1}, \ldots, u x_{n}\right) q^{-1} b\right) f\left(u x_{1}, \ldots, u x_{n}\right) \tag{3.20}
\end{equation*}
$$

and moreover, since I satisfies the polynomial identity $\left[f\left(x_{1}, \ldots, x_{n}\right), x_{n+1}\right] x_{n+2}$, in view of Proposition in [25], $I=e Q$ for some idempotent e in the socle of Q. Here we write $f\left(x_{1}, \ldots, x_{n}\right)=\sum t_{i}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right) x_{i}$, where any t_{i} is a multilinear polynomial in $n-1$ variables and x_{i} never appears in t_{i}. Of course, if $t_{i}\left(e x_{1}, \ldots, e x_{i-1}, e x_{i+1}, \ldots, e x_{n}\right) e$ is an identity for Q, then $f\left(x_{1}, \ldots, x_{n}\right) x_{n+1}$ is an identity for I and we are done. Thus assume there exists $i \in\{1, \ldots, n\}$ such that $t_{i}\left(e r_{1}, \ldots, e r_{i-1}, e r_{i+1}, \ldots, e r_{n}\right) e \neq 0$ for some $r_{1}, \ldots, r_{n} \in I$. In particular,

$$
f\left(e x_{1}, \ldots, e x_{i-1}, e x_{i}(1-e), e x_{i+1}, \ldots, e x_{n}\right)=t_{i}\left(e x_{1}, \ldots, e x_{n}\right) e x_{i}(1-e)
$$

and by 3.20 satisfies

$$
\begin{aligned}
& b t_{i}\left(e x_{1}, \ldots, e x_{n}\right) e x_{i}(1-e) t_{i}\left(e x_{1}, \ldots, e x_{n}\right) e x_{i}(1-e) \\
& \quad-q t_{i}\left(e x_{1}, \ldots, e x_{n}\right) e x_{i}(1-e) q^{-1} b t_{i}\left(e x_{1}, \ldots, e x_{n}\right) e x_{i}(1-e)
\end{aligned}
$$

that is Q satisfies

$$
\begin{equation*}
\left(-q t_{i}\left(e x_{1}, \ldots, e x_{n}\right) e x_{i}(1-e) q^{-1} b\right) t_{i}\left(e x_{1}, \ldots, e x_{n}\right) e x_{i}(1-e) \tag{3.21}
\end{equation*}
$$

and left multiplying by $(1-e) q^{-1} b q^{-1}$, we easily have that Q satisfies

$$
\begin{equation*}
(1-e) q^{-1} b t_{i}\left(e x_{1}, \ldots, e x_{n}\right) e X(1-e) q^{-1} b t_{i}\left(e x_{1}, \ldots, e x_{n}\right) e X(1-e) \tag{3.22}
\end{equation*}
$$

By Lemma 2 in 32 and since $e \neq 1$, it follows that

$$
(1-e) q^{-1} b t_{i}\left(e x_{1}, \ldots, e x_{i-1}, e x_{i+1}, \ldots, e x_{n}\right) e
$$

is an identity for Q, that is $(1-e) q^{-1} b e t_{i}\left(x_{1} e, \ldots, x_{i-1} e, x_{i+1} e, \ldots, x_{n} e\right)$ is an identity for Q. In this case, since $t_{i}\left(x_{1} e, \ldots, x_{i-1} e, x_{i+1} e, \ldots, x_{n} e\right)$ is not an identity for Q, we get in view of the result in [16], $(1-e) q^{-1} b e=0$, that is $q^{-1} b I \subseteq I$ and also $q^{-1} c I \subseteq I$.
3.7. Theorem. Let R be a prime ring, $f\left(x_{1}, \ldots, x_{n}\right)$ a multilinear polynomial over C in n non-commuting variables, I a non-zero right ideal of $R, F: R \rightarrow R$ be a non-zero generalized skew derivation of R. Suppose that

$$
F\left(f\left(r_{1}, \ldots, r_{n}\right)\right) f\left(r_{1}, \ldots, r_{n}\right) \in C
$$

for all $r_{1}, \ldots, r_{n} \in I$. If $f\left(x_{1}, \ldots, x_{n}\right)$ is not central valued on R, then either char $(R)=2$ and R satisfies s_{4} or one of the following holds:
(i) $f\left(x_{1}, \ldots, x_{n}\right) x_{n+1}$ is an identity for I;
(ii) $F(I) I=(0)$;
(iii) $\left[f\left(x_{1}, \ldots, x_{n}\right), x_{n+1}\right] x_{n+2}$ is an identity for I, there exist $b, c, q \in Q$ with q invertible such that $F(x)=b x-q x q^{-1} c$ for all $x \in R$, and $q^{-1} c I \subseteq I$; moreover in this case either $(b-c) I=(0)$ or $b-c \in C$ and $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued on R provided that $b \neq c$.

Proof. In view of all previous Lemmas and Propositions, we may assume $I \neq R$ and $F(x)=b x-q x q^{-1} c$, for all $x \in R$. Moreover we may assume that there exist $s_{1}, \ldots, s_{n} \in I$ such that $F\left(f\left(s_{1}, \ldots, s_{n}\right)\right) f\left(s_{1}, \ldots, s_{n}\right) \neq 0$. Therefore

$$
\left(b f\left(x_{1}, \ldots, x_{n}\right)-q f\left(x_{1}, \ldots, x_{n}\right) q^{-1} c\right) f\left(x_{1}, \ldots, x_{n}\right)
$$

is a central generalized polynomial identity for I. Thus R is a PI-ring and so $R C$ is a finite dimensional central simple C-algebra (the proof of this fact is the same of Theorem

1 in [7]). By Wedderburn-Artin theorem, $R C \cong M_{k}(D)$ for some $k \geq 1$ and D a finitedimensional central division C-algebra. By Theorem 2 in 24

$$
\left(b f\left(x_{1}, \ldots, x_{n}\right)-q f\left(x_{1}, \ldots, x_{n}\right) q^{-1} c\right) f\left(x_{1}, \ldots, x_{n}\right) \in C
$$

for all $x_{1}, \ldots, x_{n} \in I C$. Without loss of generality we may replace R with $R C$ and assume that $R=M_{k}(D)$. Let E be a maximal subfield of D, so that $M_{k}(D) \otimes_{C} E \cong M_{t}(E)$ where $t=k \cdot[E: C]$. Hence $\left(b f\left(r_{1}, \ldots, r_{n}\right)-q f\left(r_{1}, \ldots, r_{n}\right) q^{-1} c\right) f\left(r_{1}, \ldots, r_{n}\right) \in C$, for any $r_{1}, \ldots, r_{n} \in I \otimes E$ (Lemma 2 in [24] and Proposition in 29]). Therefore we may assume that $R \cong M_{t}(E)$ and $I=e R=\left(e_{11} R+\cdots+e_{l l} R\right)$, where $t \geq 2$ and $l \leq t$.

Suppose that $t \geq 2$, otherwise we are done and denote $q=\sum_{r, s} q_{r s} e_{r s}$ and $q^{-1} c=$ $\sum_{r, s} c_{r s} e_{r s}$, for $q_{r s}, c_{r s} \in E$. As in Lemma 3.6 we write

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum t_{i}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right) x_{i}
$$

and there exists some $t_{i}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right) x_{i}$ which is not an identity for I. In particular $q t_{i}\left(e x_{1}, \ldots, e x_{i-1}, e x_{i+1}, \ldots, e x_{n}\right) e x_{i}$ is not an identity for R, because q is invertible. Hence, again for
$f\left(e x_{1},, \ldots, e x_{i-1}, e x_{i}(1-e), e x_{i+1}, \ldots, e x_{n}\right)=t_{i}\left(e x_{1}, \ldots, e x_{i-1}, e x_{i+1}, \ldots, e x_{n}\right) e x_{i}(1-e)$
and by our hypothesis, we have that
$q t_{i}\left(e x_{1}, \ldots, e x_{i-1}, e x_{i+1}, \ldots, e x_{n}\right) e x_{i}(1-e) q^{-1} c t_{i}\left(e x_{1}, \ldots, e x_{i-1}, e x_{i+1}, \ldots, e x_{n}\right) e x_{i}(1-e)$
is an identity for R, and by the primeness of R it follows that

$$
(1-e) q^{-1} c t_{i}\left(e x_{1}, \ldots, e x_{i-1}, e x_{i+1}, \ldots, e x_{n}\right) e
$$

is an identity for R. By [16] and since $t_{i}\left(e x_{1}, \ldots, e x_{i-1}, e x_{i+1}, \ldots, e x_{n}\right) e x_{i}$ is not an identity for R, the previous identity says that $(1-e) q^{-1} c e=0$. Thus $q^{-1} c I \subseteq I$.
In case $\left[f\left(x_{1}, \ldots, x_{n}\right), x_{n+1}\right] x_{n+2}$ is an identity for I, then by our assumption we get $(b-c) f\left(r_{1}, \ldots, r_{n}\right)^{2} \in C$ for all $r_{1}, \ldots, r_{n} \in I$. In view of Fact 3.1 either $(b-c) I=(0)$ and we are done, or $b-c \in C$ and $f\left(x_{1}, \ldots, x_{n}\right)^{2}$ is central valued on R, provided that $b \neq c$.

Consider finally the case $\left[f\left(x_{1}, \ldots, x_{n}\right), x_{n+1}\right] x_{n+2}$ is not an identity for I. By Lemma 3 in [6], for any $i \leq l, j \neq i$, the element $e_{i j}$ falls in the additive subgroup of $R C$ generated by all valuations of $f\left(x_{1}, \ldots, x_{n}\right)$ in I. Since the matrix $\left(b e_{i j}-q e_{i j} q^{-1} c\right) e_{i j}$ has rank at most 1 , then it is not central. Therefore $q e_{i j} q^{-1} c e_{i j}=0$, i.e. $q_{k i}\left(q^{-1} c\right)_{j i}=0$ for all k and for all $j \neq i$. Since q is invertible, there exists some $q_{k i} \neq 0$, therefore $\left(q^{-1} c\right)_{j i}=0$ for all $j \neq i$.

Consider the following automorphism of R :

$$
\lambda(x)=\left(1+e_{i j}\right) x\left(1-e_{i j}\right)=x+e_{i j} x-x e_{i j}-e_{i j} x e_{i j}
$$

for any $i, j \leq l$, and note that $\lambda(I) \subseteq I$ is a right ideal of R satisfying

$$
\left[\left(\lambda(b) f\left(x_{1}, \ldots, x_{n}\right)-\lambda(q) f\left(x_{1}, \ldots, x_{n}\right) \lambda\left(q^{-1} c\right)\right) f\left(x_{1}, \ldots, x_{n}\right), x_{n+1}\right] .
$$

If we denote $\lambda\left(q^{-1} c\right)=\sum_{r s} c_{r s}^{\prime} e_{r s}$, the above argument says that $c_{r s}^{\prime}=0$ for all $s \leq l$ and $r \neq s$. In particular the (i, j)-entry of $\lambda\left(q^{-1} c\right)$ is zero. This implies that $c_{i i}=c_{j j}=\alpha$, for all $i, j \leq l$. Therefore $q^{-1} c x=\alpha x$ for all $x \in I$. This leads to $(b-c) f\left(r_{1}, \ldots, r_{n}\right)^{2} \in C$ for all $r_{1}, \ldots, r_{n} \in I$ and we conclude by the same argument above.

For the sake of completeness, we would like to conclude this paper by showing the explicit meaning of the conclusion $F(I) I=(0)$, more precisely we state the following:
3.8. Remark. Let R be a prime ring, I be a non-zero right ideal of R and $F: R \rightarrow R$ be a non-zero generalized skew derivation of R. If $F(I) I=(0)$ then there exist $a, b \in Q$ and $\alpha \in \operatorname{Aut}(R)$ such that $F(x)=(a+b) x-\alpha(x) b$ for all $x \in R, a I=(0)$ and one of the following holds:
(i) $b I=(0)$;
(ii) there exist $\lambda \in C$ and an invertible element $q \in Q$ such that $\alpha(x)=q x q^{-1}$, for all $x \in R$, and $q^{-1} b y=\lambda y$, for all $y \in I$.

Proof. As previously remarked we can write $F(x)=a x+d(x)$ for all $x \in R$, where $a \in Q$ and d is a skew derivation of R (see [8). Let $\alpha \in \operatorname{Aut}(R)$ be the automorphism associated with d, in the sense that $d(x y)=d(x) y+\alpha(x) d(y)$, for all $x, y \in R$. Thus, by the hypothesis, for all $x, y \in I$,
(3.23) $\quad(a x+d(x)) y=0$.

For all $x, y, z \in I$ we have:

$$
0=F(x z) y=(a x+d(x)) z y+\alpha(x) d(z) y
$$

and by (3.23) we obtain $\alpha(x) d(z) y=0$ for all $x, y, z \in I$. Moreover $\alpha(I)$ is a non-zero right ideal of R, so that it follows

$$
\begin{equation*}
d(z) y=0 \tag{3.24}
\end{equation*}
$$

for all $y, z \in I$. Once again by $\sqrt{3.23}$ we get $a z y=0$ for all $z, y \in I$, that is $a I=(0)$.
Finally in (3.24) replace z with $x s$, for any $x \in I$ and $s \in R$, then:

$$
\begin{equation*}
0=d(x s) y=d(x) s y+\alpha(x) d(s) y \tag{3.25}
\end{equation*}
$$

for all $x, y \in I, s \in R$. In case d is X-outer, it follows that $d(x) s y+\alpha(x) t y=0$, for all $x, y \in I$ and $s, t \in R$ (Theorem 1 in [15). In particular $\alpha(x) t y=0$, which implies the contradiction $\alpha(x)=0$ for all $x \in I$. Therefore we may assume that d is X-inner, that is there exists $b \in Q$ such that $d(r)=b r-\alpha(r) b$, for all $r \in R$ and by 3.24)

$$
\begin{equation*}
(b x-\alpha(x) b) y=0 \tag{3.26}
\end{equation*}
$$

for all $x, y \in I$. Consider first the case α is X-outer and replace x with $x r$, for any $r \in R$. Then $(b x r-\alpha(x) \alpha(r) b) y=0$ and, by Theorem 3 in [14], $(b x r-\alpha(x) s b) y=0$ for all $x, y \in I$ and $r, s \in R$. In particular $b I R I=(0)$, which implies $b I=(0)$ and we are done.

On the other hand, if there exists an invertible element $q \in Q$ such that $\alpha(r)=q r q^{-1}$, for all $r \in R$, from 3.26 we have $\left(b x-q x q^{-1} b\right) y=0$, for all $x, y \in I$. Left multiplying by q^{-1}, it follows $\left[q^{-1} b, x\right] y=0$, and by Lemma in [4] there exists $\lambda \in C$ such that $q^{-1} b x=\lambda x$ for all $x \in I$.

References

[1] Ç. Demir, N. Argaç, Prime rings with generalized derivations on right ideals, Algebra Colloq. 18 (Spec. 1), 987-998, 2011.
[2] K.I. Beidar, W.S. Martindale, III, A.V. Mikhalev, Rings with generalized identities(Monographs and Textbooks in Pure and Applied Mathematics, 196, 1996).
[3] M. Bresar, Centralizing mappings and derivations in prime rings, J. Algebra 156 (2), 385394, 1993.
[4] M. Bresar, One-sided ideals and derivations of prime rings, Proc. Amer. Math. Soc. 122 (4), 979-983, 1994.
[5] L. Carini, V. De Filippis, Identities with generalized derivations on prime rings and Banach algebras, Algebra Colloq., 19 (Spec. 1), 971-986, 2012.
[6] C.M. Chang, Power central values of derivations on multilinear polynomials, Taiwanese J. Math. 7 (2), 329-338, 2003.
[7] C.M. Chang, T.K. Lee, Annihilators of power values of derivations in prime rings, Comm. in Algebra 26 (7), 2091-2113, 1998.
[8] J.C. Chang, On the identitity $h(x)=a f(x)+g(x) b$, Taiwanese J. Math. 7 (1), 103-113, 2003.
[9] J. C. Chang, Generalized skew derivations with annihilating Engel conditions, Taiwanese J. Math. 12 (7), 1641-1650, 2008.
[10] J. C. Chang, Generalized skew derivations with nilpotent values on Lie ideals, Monatsh. Math. 161 (2), 155-160, 2010.
[11] H. W. Cheng and F. Wei, Generalized skew derivations of rings, Adv. Math. (China), 35 (2), 237-243, 2006.
[12] C.L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103 (3), 723-728, 1988.
[13] C.L. Chuang, Differential identities with automorphisms and antiautomorphisms I, J. Algebra 149 (2), 371-404, 1992.
[14] C.L. Chuang, Differential identities with automorphisms and antiautomorphisms II, J. Algebra 160 (1), 130-171, 1993.
[15] C.L. Chuang, T.K. Lee, Identities with a single skew derivation, J. Algebra 288 (1), 59-77, 2005.
[16] C.L. Chuang, T.K. Lee, Rings with annihilator conditions on multilinear polynomials, Chinese J. Math. 24 (2), 177-185, 1996.
[17] M.C. Chou, C.K. Liu, An Engel condition with skew derivations, Monatsh. Math. 158 (3), 259-270, 2009.
[18] V. De Filippis, F. Wei, Posner's second theorem for skew derivations on left ideals, Houston J. Math. 38 (2), 373-395, 2012.
[19] C. Faith, Y. Utumi, On a new proof of Litoff's Theorem, Acta Math. Acad. Sci. Hungar 14, 369-371, 1963.
[20] N. Jacobson, Structure of rings (American Mathematical Society Colloquium Publications, Vol. 37. Revised edition American Mathematical Society, Providence, R.I. 1964).
[21] V.K. Kharchenko, Generalized identities with automorphisms, Algebra and Logic 14 (2), 132-148, 1975.
[22] C. Lanski, An Engel condition with derivation, Proc. Amer. Math. Soc. 118 (3), 731-734, 1993.
[23] T.K. Lee, Derivations with invertible values on a multilinear polynomial, Proc. Amer. Math. Soc. 119 (4), 1077-1083, 1993.
[24] T.K. Lee, Left annihilators characterized by GPIs, Trans. Amer. Math. Soc. 347 (8), 31593165, 1995.
[25] T.K. Lee, Power reduction property for generalized identities of one-sided ideals, Algebra Colloq. 3 (1), 19-24, 1996.
[26] T.K. Lee, Generalized skew derivations characterized by acting on zero products, Pacific J. Math. 216 (2), 293-301, 2004.
[27] T.K. Lee, W.K. Shiue Derivations cocentralizing polynomials, Taiwanese J. Math. 2 (4), 457-467, 1998.
[28] T.K. Lee, Y. Zhou, An identity with generalized derivations, J. Algebra and Appl. 8 (3), 307-317, 2009.
[29] P.H. Lee, T.L. Wong, Derivations cocentralizing Lie ideals, Bull. Inst. Math. Acad. Sinica 23 (1), 1-5, 1995.
[30] U. Leron, Nil and power central polynomials in rings, Trans. Amer. Math. Soc. 202, 97-103, 1975.
[31] W.S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12, 576-584, 1969.
[32] E.C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 8, 1093-1100, 1957.
[33] T.L. Wong, Derivations with power central values on multilinear polynomials, Algebra Colloq. 3 (4), 369-378, 1996.

[^0]: *Department of Mathematics, Science Faculty, Ege University, 35100, Bornova, Izmir, Turkey, Email: emine.albas@ege.edu.tr
 ${ }^{\dagger}$ Department of Mathematics, Science Faculty, Ege University, 35100, Bornova, Izmir, Turkey, Email: nurcan.argac@ege.edu.tr
 ${ }^{\ddagger}$ Di.S.I.A., Faculty of Engineering, University of Messina, 98166 Messina, Italy, Email: defilippis@unime.it
 ${ }^{\S}$ Department of Mathematics, Science Faculty, Ege University, 35100, Bornova, Izmir, Turkey, Email: cagri.demir@ege.edu.tr

