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Abstract

Let R be a prime ring, f(x1, . . . , xn) a multilinear polynomial over C
in n noncommuting indeterminates, I a nonzero right ideal of R, and
F : R→ R be a nonzero generalized skew derivation of R.
Suppose that F (f(r1, . . . , rn))f(r1, . . . , rn) ∈ C, for all r1, . . . , rn ∈ I.
If f(x1, . . . , xn) is not central valued on R, then either char(R) = 2
and R satisfies s4 or one of the following holds:

(i) f(x1, . . . , xn)xn+1 is an identity for I;
(ii) F (I)I = (0);

(iii) [f(x1, . . . , xn), xn+1]xn+2 is an identity for I, there exist
b, c, q ∈ Q with q an invertible element such that F (x) =
bx − qxq−1c for all x ∈ R, and q−1cI ⊆ I. Moreover, in
this case either (b− c)I = (0) or b− c ∈ C and f(x1, . . . , xn)2

is central valued on R.
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1. Introduction.

Throughout this paper, unless specially stated, K denotes a commutative ring with
unit, R is always a prime K-algebra with center Z(R), right Martindale quotient ring Q
and extended centroid C. The definition, axiomatic formulations and properties of this
quotient ring can be found in [2] (Chapter 2).

Many results in literature indicate how the global structure of a ring R is often tightly
connected to the behaviour of additive mappings defined on R. A well known result of
Posner [32] states that if d is a derivation of R such that [d(x), x] ∈ Z(R), for any x ∈ R,
then either d = 0 or R is commutative. Later in [3], Bresar proved that if d and δ are
derivations of R such that d(x)x− xδ(x) ∈ Z(R), for all x ∈ R, then either d = δ = 0 or
R is commutative. In [29], Lee and Wong extended Bresar’s result to the Lie case. They
proved that if d(x)x− xδ(x) ∈ Z(R), for all x in some non-central Lie ideal L of R then
either d = δ = 0 or R satisfies s4, the standard identity of degree 4.

Recently in [28], Lee and Zhou considered the case when the derivations d and δ
are replaced respectively by the generalized derivations H and G, and proved that if
R 6= M2(GF (2)), H,G are two generalized derivations of R, and m,n are two fixed
positive integers, then H(xm)xn = xnG(xm) for all x ∈ R if and only if the following
two conditions hold: (1) There exists w ∈ Q such that H(x) = xw and G(x) = wx for
all x ∈ R; (2) either w ∈ C, or xm and xn are C-dependent for all x ∈ R.

More recently in [5], a similar situation is examined: more precisely it is proved that
if H(un)un + unG(un) ∈ C, for all u ∈ L, a non-central Lie ideal of R, then there
exists a ∈ Q such that H(x) = xa, G(x) = −ax, or R satisfies the standard identity s4.
Moreover in this last case a complete description of H and G is given.

Finally, as a partial extension of the above results to the case of derivations and
generalized derivations acting on multilinear polynomials, we have the following:

1.1. Fact. (Theorem 2 in [27]) Let R be a prime ring, f(x1, . . . , xn) a multilinear poly-
nomial over C in n noncommuting indeterminates, and d : R → R a nonzero derivation
of R. If d(f(r1, . . . , rn))f(r1, . . . , rn) ∈ C, for all r1, . . . , rn ∈ R and f(x1, . . . , xn) is not
central valued on RC, then char(R) = 2 and R satisfies s4.

1.2. Fact. (Lemma 3 in [1]) Let R be a prime ring, f(x1, . . . , xn) a noncentral multi-
linear polynomial over C in n noncommuting indeterminates, and G : R→ R a nonzero
generalized derivation of R. If G(f(r1, . . . , rn))f(r1, . . . , rn) ∈ C, for all r1, . . . , rn ∈ R,
then either char(R) = 2 and R satisfies s4 or there exists b ∈ C such that G(x) = bx for
all x ∈ R and f(x1, . . . , xn)2 is central valued on R.

These facts in a prime K-algebra are natural tests which evidence that, if d is a
derivation of R and G is a generalized derivation of R, then the sets {d(x)x | x ∈ S} and
{G(x)x | x ∈ S} are rather large in R, where S is either a non-central Lie ideal of R, or
the set of all the evaluations of a non-central multilinear polynomial over K.

In this paper we will continue the study of the set

{F (f(x1, . . . , xn))f(x1, . . . , xn) | x1, . . . , xn ∈ R}
for a generalized skew derivation F of R instead of a generalized derivation, and for a
multilinear polynomial f(x1, . . . , xn) in n noncommuting variables over C. For the sake
of clearness and completeness we now recall the definition of a generalized skew derivation
of R. Let R be an associative ring and α be an automorphism of R. An additive mapping
d : R −→ R is called a skew derivation of R if

d(xy) = d(x)y + α(x)d(y)

for all x, y ∈ R. The automophism α is called an associated automorphism of d. An
additive mapping F : R −→ R is said to be a generalized skew derivation of R if there
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exists a skew derivation d of R with associated automorphism α such that

F (xy) = F (x)y + α(x)d(y)

for all x, y ∈ R, and d is said to be an associated skew derivation of F and α is called an
associated automorphism of F . For fixed elements a and b of R, the mapping F : R→ R
defined as F (x) = ax − σ(x)b for all x ∈ R is a generalized skew derivation of R. A
generalized skew derivation of this form is called an inner generalized skew derivation.
The definition of generalized skew derivations is a unified notion of skew derivation and
generalized derivation, which have been investigated by many researchers from various
view points (see [8, 9, 10], [11], [26]).

The main result of this paper is the following:

1. Theorem. Let R be a prime ring, f(x1, . . . , xn) a multilinear polynomial over C in
n noncommuting indeterminates, I a nonzero right ideal of R, and F : R→ R a nonzero
generalized skew derivation of R.

Suppose that F (f(r1, . . . , rn))f(r1, . . . , rn) ∈ C, for all r1, . . . , rn ∈ I. If the polyno-
mial f(x1, . . . , xn) is not central valued on R, then either char(R) = 2 and R satisfies s4
or one of the following holds:

(i) f(x1, . . . , xn)xn+1 is an identity for I;
(ii) F (I)I = (0);

(iii) [f(x1, . . . , xn), xn+1]xn+2 is an identity for I, there exist b, c, q ∈ Q with q an
invertible element such that F (x) = bx − qxq−1c for all x ∈ R, and q−1cI ⊆ I.
Moreover, in this case either (b − c)I = (0) or b − c ∈ C and f(x1, . . . , xn)2 is
central valued on R.

It is well known that automorphisms, derivations and skew derivations of R can be
extended toQ. Chang in [8] extended the definition of a generalized skew derivation to the
right Martindale quotient ring Q of R as follows: by a (right) generalized skew derivation
we mean an additive mapping F : Q −→ Q such that F (xy) = F (x)y + α(x)d(y) for all
x, y ∈ Q, where d is a skew derivation of R and α is an automorphism of R. Moreover,
there exists F (1) = a ∈ Q such that F (x) = ax+ d(x) for all x ∈ R (Lemma 2 in [8]).

2. X-inner Generalized Skew Derivations on Prime Rings.

In this section we consider the case when F is an X-inner generalized skew derivation
induced by the elements b, c ∈ R, that is, F (x) = bx − α(x)c for all x ∈ R, where
α ∈ Aut(R) is the associated automorphism of F . Here Aut(R) denotes the group of
automorphisms of R.

At the outset, we will study the case when R = Mm(K) is the algebra of m × m
matrices over a field K. Notice that the set f(R) = {f(r1, . . . , rn) : r1, . . . , rn ∈ R}
is invariant under the action of all inner automorphisms of R. Hence if we denote r =
(r1, . . . , rn) ∈ R× . . .×R = Rn, then for any inner automorphism ϕ of Mm(K), we have
that r = (ϕ(r1), . . . , ϕ(rn)) ∈ Rn and ϕ(f(r)) = f(r) ∈ f(R).

Let us recall some results from [23] and [30]. Let T be a ring with 1 and let eij ∈
Mm(T ) be the matrix unit having 1 in the (i, j)-entry and zero elsewhere. For a sequence
u = (A1, . . . , An) in Mm(T ) the value of u is defined to be the product |u| = A1A2 · · ·An
and u is nonvanishing if |u| 6= 0. For a permutation σ of {1, 2, · · · , n} we write uσ =
(Aσ(1), . . . , Aσ(n)). We call u simple if it is of the form u = (a1ei1j1 , . . . , aneinjn), where
ai ∈ T . A simple sequence u is called even if for some σ, |uσ| = beii 6= 0, and odd if for
some σ, |uσ| = beij 6= 0, where i 6= j and b ∈ T . We have:
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2.1. Fact. (Lemma in [23]) Let T be a K-algebra with 1 and let R = Mm(T ), m ≥ 2.
Suppose that h(x1, . . . , xn) is a multilinear polynomial over K such that h(u) = 0 for all
odd simple sequences u. Then h(x1, . . . , xn) is central valued on R.

2.2. Fact. (Lemma 2 in [30]) Let T be a K-algebra with 1 and let R = Mm(T ), m ≥ 2.
Suppose that h(x1, . . . , xn) is a multilinear polynomial over K. Let u = (A1, . . . , An) be
a simple sequence from R.

1. If u is even, then h(u) is a diagonal matrix.
2. If u is odd, then h(u) = aepq for some a ∈ T and p 6= q.

2.3. Fact. Suppose that f(x1, . . . , xn) is a multilinear polynomial over a field K not
central valued on R = Mm(K). Then by Fact 2.1 there exists an odd simple sequence
r = (r1, . . . , rn) from R such that f(r) = f(r1, . . . , rn) 6= 0. By Fact 2.2, f(r) = βepq,
where 0 6= β ∈ K and p 6= q. Since f(x1, . . . , xn) is a multilinear polynomial and K is
a field, we may assume that β = 1. Now, for distinct i and j, let σ ∈ Sn be such that
σ(p) = i and σ(q) = j, and let ψ be the automorphism of R defined by ψ(

∑
s,t ξstest) =∑

s,t ξsteσ(s)σ(t). Then f(ψ(r)) = f(ψ(r1), . . . , ψ(rn)) = ψ(f(r)) = βeij = eij .

In all that follows we always assume that f(x1, . . . , xn) is not central valued on R.

2.4. Lemma. Let R = Mm(K) be the algebra of m ×m matrices over the field K and
m ≥ 2, f(x1, . . . , xn) a multilinear polynomial over K, which is not central valued on R.
If there exist b, c, q ∈ R with q an invertible matrix such that(

bf(r1, . . . , rn)− qf(r1, . . . , rn)q−1c

)
f(r1, . . . , rn) ∈ Z(R)

for all r1, . . . , rn ∈ R, then either char(R) = 2 and m = 2, or q−1c, b − c ∈ Z(R) and
f(x1, . . . , xn)2 is central valued on R, provided that b 6= c.

Proof. If q−1c ∈ Z(R) then the conclusion follows from Fact 1.2. Thus we may assume
that q−1c is not a scalar matrix and proceed to get a contradiction. Say q =

∑
hl qhlehl

and q−1c =
∑
hl phlehl, for qhl, phl ∈ K. By Fact 2.3, eij ∈ f(R) for all i 6= j, then for

any i 6= j

X = (beij − qeijq−1c)eij ∈ Z(R).

By X, we have qeijq
−1ceij = qpjieij ∈ Z(R). Then for any 1 ≤ k ≤ m [qpjieij , eik] = 0,

that is qkipji = 0. Since q is invertible qk0i 6= 0 for some k0, we get pji = 0 for all i 6= j.
Hence q−1c is a diagonal matrix in R. Let i 6= j and ϕ(x) = (1 + eji)x(1 − eji) be an
automorphism of R. It is well known that ϕ(f(ri)) ∈ f(R), then(

ϕ(b)u− ϕ(q)uϕ(q−1c)

)
u ∈ Z(R)

for all u ∈ f(R). By the above argument, ϕ(q−1c) is a diagonal matrix, that is the (j, i)-
entry of ϕ(q−1c) is zero. By calculations it follows pii = pjj , and we get the contradiction
that q−1c is central in R. �

2.5. Lemma. Let R be a prime ring, f(x1, . . . , xn) be a non-central multilinear polyno-
mial over C. If there exist b, c, q ∈ R with q an invertible element such that

(bf(r1, . . . , rn)− qf(r1, . . . , rn)q−1c)f(r1, . . . , rn) ∈ C

for all r1, . . . , rn ∈ R, then either char(R) = 2 and R satisfies s4, or q−1c, b− c ∈ Z(R)
and f(x1, . . . , xn)2 is central valued on R, provided that b 6= c.
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Proof. Consider the generalized polynomial

Φ(x1, . . . , xn+1) =

[(
bf(x1, . . . , xn)− qf(x1, . . . , xn)q−1c

)
f(x1, . . . , xn), xn+1

]
which is a generalized polynomial identity for R. If {1, q−1c} is linearly C-dependent,
then q−1c ∈ C. In this case R satisfies

Φ(x1, . . . , xn+1) =

[(
(b− c)f(x1, . . . , xn)

)
f(x1, . . . , xn), xn+1

]
and we are done by Fact 1.2.

Hence we here assume that {1, q−1c} is linearly C-independent. In this case Φ(x1, . . . , xn+1)
is a non-trivial generalized polynomial identity for R and by [12] Φ(x1, . . . , xn+1) is a non-
trivial generalized polynomial identity for Q. By Martindale’s theorem in [31], Q is a
primitive ring having nonzero socle with the field C as its associated division ring. By
[20] (p. 75) Q is isomorphic to a dense subring of the ring of linear transformations of a
vector space V over C, containing nonzero linear transformations of finite rank. Assume
first that dimCV = k a finite integer. Then Q ∼= Mk(C) and the conclusion follows from
Lemma 2.4. Therefore we may assume that dimCV = ∞. As in Lemma 2 in [33], the
set f(R) = {f(r1, . . . , rn) : ri ∈ R} is dense in R and so from Φ(r1, . . . , rn+1) = 0 for all
r1, . . . , rn+1 ∈ R, we have that Q satisfies the generalized identity[(

bx1 − qx1q−1c
)
x1, x2

]
.

In particular for x1 = 1, [b − c, x2] is an identity for Q, that is b − c ∈ C, say b = c + λ
for some λ ∈ C. Thus Q satisfies[(

(c+ λ)x1 − qx1q−1c
)
x1, x2

]
and by replacing x1 with y1 + t1 we have that[(

(c+ λ)y1 − qy1q−1c

)
t1, x2

]
+

[(
(c+ λ)t1 − qt1q−1c

)
y1, x2

]
is an identity for Q. Once again for y1 = 1 it follows that Q satisfies[

λt1 + (c+ λ)t1 − qt1q−1c, x2
]

and for x2 = t1 [
ct1 − qt1q−1c, t1

]
.

By Lemma 3.2 in [17] (or [18] Theorem 1) and since R cannot satisfy any polynomial
identity (dimCV =∞), it follows the contradiction q−1c ∈ C. �

2.6. Proposition. Let R be a prime ring, f(x1, . . . , xn) a non-central multilinear poly-
nomial over C in n non-commuting variables, b, c ∈ R and α ∈ Aut(R) such that F (x) =
bx − α(x)c for all x ∈ R. If F (f(r1, . . . , rn))f(r1, . . . , rn) ∈ C, for all r1, . . . , rn ∈ R,
and F is nonzero on R, then either char(R) = 2 and R satisfies s4, or f(x1, . . . , xn)2 is
central valued on R and there exists γ ∈ C such that F (x) = γx, for all x ∈ R. When
this last case occurs, we have:

(i) if α is X-outer then γ = b and c = 0;
(ii) if α(x) = qxq−1 for all x ∈ R and for some invertible element q ∈ Q, then

γ = b− c and q−1c ∈ C.

Proof. In case α is an X-inner automorphism of R, there exists an invertible element
q ∈ Q such that α(x) = qxq−1 for all x ∈ R and the conclusion follows from Lemma
2.5. So we may assume here that α is X-outer. Since by [14] R and Q satisfy the same
generalized identities with automorphisms, then

Φ(x1, . . . , xn+1) =
[(
bf(x1, . . . , xn)− α(f(x1, . . . , xn))c

)
f(x1, . . . , xn), xn+1

]
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is satisfied by Q, moreover Q is a centrally closed prime C-algebra. Note that if c = 0
we are done by Fact 1.2. Thus we may assume c 6= 0. In this case, by [13] (main
Theorem), Φ(x1, . . . , xn+1) is a non-trivial generalized identity for R and for Q. By
Theorem 1 in [21], RC has non-zero socle and Q is primitive. Moreover, since α is an
outer automorphism and any (xi)

α-word degree in Φ(x1, . . . , xn) is equal to 1, then by
Theorem 3 in [14], Q satisfies the identity[(

bf(x1, . . . , xn)− fα(y1, . . . , yn)c
)
f(x1, . . . , xn), xn+1

]
,

where fα(X1, . . . , Xn) is the polynomial obtained from f by replacing each coefficient γ
of f with α(γ). By Fact 1.2 we conclude that either char(R) = 2 and R satisfies s4 or
b, c ∈ C and f(x1, . . . , xn)2 is central valued on R. Moreover, in this last case we also
have that Q satisfies

c
[
f(y1, . . . , yn)f(x1, . . . , xn), xn+1

]
.

Since c 6= 0 we have [f(y1, . . . , yn)f(x1, . . . , xn), xn+1] is a polynomial identity for Q.
Thus there exists a suitable field K such that Q and the l × l matrix ring Ml(K)
satisfy the same polynomial identities by Lemma 1 in [22]. In particular, Ml(K) sat-
isfies [f(y1, . . . , yn)f(x1, . . . , xn), xn+1]. Hence, since f(x1, . . . , xn) is not central val-
ued on Ml(K) (and hence l ≥ 2), by Fact 2.3 we have that for all i 6= j there exist
r1, . . . , rn, s1, . . . , sn ∈Ml(K) such that f(r1, . . . , rn) = eij and f(s1, . . . , sn) = eji. As a
consequence we get 0 = [eijeji, xn+1] = [eii, xn+1], which is a contradiction for a suitable
choice of xn+1 ∈Ml(K) (for example xn+1 = eij). �

2.7. Fact. (Theorem 1 in [15]) Let R be a prime ring, D be an X-outer skew derivation of
R and α be an X-outer automorphism of R. If Φ(xi, D(xi), α(xi)) is a generalized polyno-
mial identity for R, then R also satisfies the generalized polynomial identity Φ(xi, yi, zi),
where xi, yi and zi are distinct indeterminates.

We close this section by collecting the results we obtained so far in the following

2.8. Proposition. Let R be a prime ring, f(x1, . . . , xn) a non-central multilinear poly-
nomial over C in n non-commuting variables, F : R→ R a nonzero X-inner generalized
skew derivation of R.

If F (f(r1, . . . , rn))f(r1, . . . , rn) ∈ C, for all r1, . . . , rn ∈ R, then either char(R) = 2
and R satisfies s4, or f(x1, . . . , xn)2 is central valued on R and there exists γ ∈ C such
that F (x) = γx, for all x ∈ R.

Proof. We can write F (x) = bx+d(x) for all x ∈ R where b ∈ Q and d is a skew derivation
of R (see [8]). We denote f(x1, . . . , xn) =

∑
σ∈Sn

γσxσ(1) · · ·xσ(n) with γσ ∈ C. By

Theorem 2 in [15] R and Q satisfy the same generalized polynomial identities with a
single skew derivation, then Q satisfies

(2.1)

[(
bf(x1, . . . , xn) + d(f(x1, . . . , xn))

)
f(x1, . . . , xn), xn+1

]
.

Since F is X-inner then d is X-inner, that is there exist c ∈ Q and α ∈ Aut(Q) such
that d(x) = cx − α(x)c, for all x ∈ R. Hence F (x) = (b + c)x − α(x)c and we conclude
by Proposition 2.6. �

2.9. Corollary. Let R be a prime ring, f(x1, . . . , xn) a non-vanishing multilinear poly-
nomial over C in n non-commuting variables, F : R→ R a non-zero X-inner generalized
skew derivation of R. If F (f(r1, . . . , rn))f(r1, . . . , rn) = 0, for all r1, . . . , rn ∈ R, then
char(R) = 2 and R satisfies s4.
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3. Generalized Skew Derivations on Right Ideals.

We premit the following:

3.1. Fact. (Main Theorem in [1]) Let R be a prime ring, I a nonzero right ideal of
R, f(x1, . . . , xn) a multilinear polynomial over C in n non-commuting indeterminates,
which is not an identity for R, and g : R→ R a nonzero generalized derivation of R with
the associated derivation d : R → R, that is g(x) = ax+ d(x), for all x ∈ R and a fixed
a ∈ Q.

Suppose that g(f(r1, . . . , rn))f(r1, . . . , rn) ∈ C, for all r1, . . . , rn ∈ I. Then either
char(R) = 2 and R satisfies s4 or f(x1, . . . , xn)xn+1 is an identity for I, or there exist
b, c ∈ Q such that g(x) = bx+ xc for all x ∈ R and one of the following holds:

(i) b, c ∈ C and f(x1, . . . , xn)2 is central valued on R;
(ii) there exists λ ∈ C such that b = λ− c and f(x1, . . . , xn) is central valued on R;

(iii) (b+ c)I = (0) and I satisfies the identity [f(x1, . . . , xn), xn+1]xn+2;
(iv) (b+ c)I = (0) and there exists γ ∈ C such that (c− γ)I = (0).

3.2. Fact. (Theorem 1 in [1]) Under the same situation as in above Fact, we notice
that in case g(f(r1, . . . , rn))f(r1, . . . , rn) = 0, for all r1, . . . , rn ∈ I, the conclusions (i)
and (ii) cannot occur. Hence we have that either char(R) = 2 and R satisfies s4 or
f(x1, . . . , xn)xn+1 is an identity for I, or there exist b, c ∈ Q such that g(x) = bx + xc
for all x ∈ R and one of the following holds:

(i) (b+ c)I = (0) and I satisfies the identity [f(x1, . . . , xn), xn+1]xn+2;
(ii) (b+ c)I = (0) and there exists γ ∈ C such that (c− γ)I = (0).

3.3. Proposition. Let R be a prime ring, f(x1, . . . , xn) a non-central multilinear polyno-
mial over C in n non-commuting indeterminates, I a nonzero right ideal of R, F : R→ R
an X-outer generalized skew derivation of R. If

(3.1) F (f(r1, . . . , rn))f(r1, . . . , rn) ∈ C,

for all r1, . . . , rn ∈ I, then either char(R) = 2 and R satisfies s4(x1, . . . , x4), or f(x1, . . . , xn)xn+1

is an identity for I.

Proof. As above we write F (x) = bx + d(x) for all x ∈ R, b ∈ Q and d is an X-outer
skew derivation of R. Let α ∈ Aut(Q) be the automorphism which is associated with
d. Notice that in case α is the identity map on R, then d is a usual derivation of R
and so F is a generalized derivation of R. Therefore by Fact 3.1 we obtain the required
conclusions. Hence in what follows we always assume that α 6= 1 ∈ Aut(R).

We denote by fd(x1, . . . , xn) the polynomial obtained from f(x1, . . . , xn) by replacing
each coefficient γσ with d(γσ). Notice that

d
(
γσxσ(1) · · ·xσ(n)

)
= d(γσ)xσ(1) · · ·xσ(n)

+ α(γσ)

n−1∑
j=0

α(xσ(1) · · ·xσ(j))d(xσ(j+1))xσ(j+2) · · ·xσ(n)

so that

d(f(x1, . . . , xn)) = fd(x1, . . . , xn)

+
∑
σ∈Sn

α(γσ)

n−1∑
j=0

α(xσ(1) · · ·xσ(j))d(xσ(j+1))xσ(j+2) · · ·xσ(n).
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Since IQ satisfies (3.1), then for all 0 6= u ∈ I, Q satisfies[(
bf(ux1, . . . , uxn) + fd(ux1, . . . , uxn)

)
f(ux1, . . . , uxn), xn+1

]
+

[(∑
σ∈Sn

α(γσ)

n−1∑
j=0

α(uxσ(1) . . . uxσ(j))d(uxσ(j+1))uxσ(j+2) . . . uxσ(n)

)
f(ux1, . . . , uxn), xn+1

]
.

By Theorem 1 in [15], Q satisfies[(
bf(ux1, . . . , uxn) + fd(ux1, . . . , uxn)

)
f(ux1, . . . , uxn), xn+1

]
+

[( ∑
σ∈Sn

α(γσ)

n−1∑
j=0

α(uxσ(1) . . . uxσ(j))d(u)xσ(j+1) . . . uxσ(n)

)
f(ux1, . . . , uxn), xn+1

]

+

[(∑
σ∈Sn

α(γσ)

n−1∑
j=0

α(uxσ(1)) . . . uxσ(j))α(u)yσ(j+1)uxσ(j+2) . . . uxσ(n)

)
f(ux1, . . . , uxn), xn+1

]
.

In particular Q satisfies

(3.2) [(∑
σ∈Sn

α(γσ)

n−1∑
j=0

α(uxσ(1) . . . uxσ(j))α(u)yσ(j+1)uxσ(j+2) . . . uxσ(n)

)
f(ux1, . . . , uxn), xn+1

]
.

Here we suppose that either char(R) 6= 2 orR does not satisfy s4, moreover f(x1, . . . , xn)xn+1

is not an identity for I, if not we are done. Hence suppose there exist a1, . . . , an+1 ∈ I
such that f(a1, . . . , an)an+1 6= 0. We proceed to get a number of contradictions.

Since 0 6= α(u) is a fixed element of Q, we notice that (3.2) is a non-trivial generalized
polynomial identity forQ, thenQ has nonzero socleH which satisfies the same generalized
polynomial identities of Q (see [12]). In order to prove our result, we may replace Q by
H, and by Lemma 1 in [19], we may assume that Q is a regular ring. Thus there exists

0 6= e = e2 ∈ IQ such that
∑n+1
i=1 aiQ = eQ, and ai = eai for each i = 1, . . . , n+1. Notice

that eQ satisfies the same generalized identities with skew derivations and automorphisms
of I. So that we may assume e 6= 1, if not eQ = Q and the conclusion follows from
Proposition 2.6.

Assume that α is X-outer. Thus, by Fact 2.7 and (3.2), Q satisfies

(3.3) [(∑
σ∈Sn

α(γσ)

n−1∑
j=0

α(e)tσ(1) · · ·α(e)tσ(j)α(e)yσ(j+1)exσ(j+2) · · · exσ(n)
)
f(ex1, . . . , exn), xn+1

]
and in particular

(3.4)

[(∑
σ∈Sn

α(γσ)α(e)yσ(1) · · ·α(e)yσ(n)

)
f(ex1, . . . , exn), xn+1

]
.

We also denote by fα(x1, . . . , xn) the polynomial obtained from f(x1, . . . , xn) by replac-
ing each coefficient γσ with α(γσ). Therefore we may rewrite (3.4) as follows:

(3.5)

[
fα(α(e)r1, . . . , α(e)rn

)
f(es1, . . . , esn), X

]
= 0

for all r1, . . . , rn, s1, . . . , sn, X ∈ Q. Choose in (3.5) X = Y (1− α(e)), then we get

fα(α(e)r1, . . . , α(e)rn)f(es1, . . . , esn)Y (1− α(e)) = 0
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and by the primeness of Q and since e 6= 1, it follows that Q satisfies

fα(α(e)y1, . . . , α(e)yn)f(ex1, . . . , exn)

that is fα(α(e)Q)f(eQ) = (0), where α(e)Q and eQ are both right ideals of Q and
fα and f are distinct polynomials over C (since α 6= 1). In this situation, apply-
ing the result in [16] (see the proof of Lemma 3, pp. 181), it follows that either
fα(α(e)Q)α(e) = (0) or f(eQ) = (0). Since this last case cannot occur, we have that
fα(α(e)r1, . . . , α(e)rn)α(e) = 0 for all r1, . . . , rn ∈ Q. Hence

0 = α−1

(
fα(α(e)r1, . . . , α(e)rn)α(e)

)
= f(eα−1(r1), . . . , eα−1(rn))e

and since α−1 is an automorphism of Q, it follows that f(es1, . . . , esn)e = 0, for all
s1, . . . , sn ∈ Q, which is again a contradiction.

Finally consider the case when there exists an invertible element q ∈ Q such that
α(x) = qxq−1, for all x ∈ Q. Thus from (3.2) we have that Q satisfies

(3.6) [(∑
σ∈Sn

α(γσ)

n−1∑
j=0

q(exσ(1) · · · exσ(j))eq−1yσ(j+1)exσ(j+2) · · · exσ(n)
)
f(ex1, . . . , exn), xn+1

]
.

Since α(γσ) = γσ and by replacing yσ(i) with qxσ(i), for all σ ∈ Sn and for all i = 1, . . . , n,
it follows that Q satisfies

(3.7)

[(∑
σ∈Sn

γσqexσ(1) · · · exσ(j)exσ(j+1)exσ(j+2) · · · exσ(n)
)
f(ex1, . . . , exn), xn+1

]
that is

(3.8)

[(
qf(ex1, . . . , exn)

)
f(ex1, . . . , exn), xn+1

]
.

By Fact 3.1 it follows that one of the following holds:

1. char(Q) = 2 and Q satisfies s4;
2. f(x1, . . . , xn)xn+1 is an identity for eQ;
3. q ∈ C;
4. qeQ = (0).

Since in any case we get a contradiction, we are done. �

3.4. Lemma. Let R be a prime ring, f(x1, . . . , xn) a non-central multilinear polynomial
over C in n non-commuting indeterminates, I a nonzero right ideal of R, b, c ∈ Q and
α ∈ Aut(R) be an automorphism of R such that F (x) = bx−α(x)c, for all x ∈ R. Assume
that F (f(r1, . . . , rn))f(r1, . . . , rn) ∈ C, for all r1, . . . , rn ∈ I. If R does not satisfy any
non-trivial generalized polynomial identity then F (I)I = (0).

Proof. Let u be any nonzero element of I. By the hypothesis R satisfies the following:[(
b(f(ux1, . . . , uxn))− α(f(ux1, . . . , uxn))c

)
f(ux1, . . . , uxn), xn+1

]
.

Also here we denote by fα(x1, . . . , xn) the polynomial obtained from f(x1, . . . , xn) by
replacing each coefficient γσ of f(x1, . . . , xn) with α(γσ). Thus R satisfies

(3.9)

[(
bf(ux1, . . . , uxn)− fα(α(u)α(x1), . . . , α(u)α(xn))c

)
f(ux1, . . . , uxn), xn+1

]
.
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In case α is X-outer, by Theorem 3 in [14] and (3.9) we have that R satisfies[(
b(f(ux1, . . . , uxn))− fα(α(u)y1, . . . , α(u)yn)c

)
f(ux1, . . . , uxn), xn+1

]
and in particular R satisfies both

(3.10)

[
bf(ux1, . . . , uxn)2, xn+1

]
and

(3.11)

[
fα(α(u)y1, . . . , α(u)yn)cf(ux1, . . . , uxn), xn+1

]
.

Since (3.10) and (3.11) must be trivial generalized polynomial identities for R, by [12] it
follows that bu = 0 and cu = 0 that is F (I)I = (0).

Consider now the case α(x) = qxq−1 for all x ∈ R, for some invertible element q ∈ Q.
Since by (3.9)

(3.12)

[(
bf(ux1, . . . , uxn)− qf(ux1, . . . , uxn)q−1c

)
f(ux1, . . . , uxn), xn+1

]
is a trivial generalized polynomial identity for R, again by [12] we have that bu = λqu,
for some λ ∈ C. Thus we may write (3.12) as follows

(3.13)

[
qf(ux1, . . . , uxn)(λ− q−1c)f(ux1, . . . , uxn), xn+1

]
.

Once again (3.13) is a trivial identity for R, moreover qu 6= 0. This implies that (λ −
q−1c)u = 0 and hence (λu − q−1c)u = 0 for all u ∈ I and for some λu ∈ C. Then u
and q−1cu are C-dependent for all u ∈ I. By a standard argument we conclude that
(λ− q−1c)I = (0) for some λ ∈ C, and thus F (I)I = (0). �

3.5. Lemma. Let R be a prime ring, f(x1, . . . , xn) a non-central multilinear polynomial
over C in n non-commuting indeterminates, I a nonzero right ideal of R, b, c ∈ Q and
α ∈ Aut(R) be an X-outer automorphism of R such that F (x) = bx−α(x)c, for all x ∈ R.
If F (f(r1, . . . , rn))f(r1, . . . , rn) ∈ C, for all r1, . . . , rn ∈ I, then either char(R) = 2 and
R satisfies s4 or one of the following holds:

(i) f(x1, . . . , xn)xn+1 is an identity for I;
(ii) F (I)I = (0);

(iii) cI = (0), b ∈ C and f(x1, . . . , xn)2 is central valued on R.

Proof. Firstly we notice that in case cI = (0), then bf(r1, . . . , rn)2 ∈ C, for all r1, . . . , rn ∈
I. Thus by Fact 3.1 it follows that either cI = (0), b ∈ C and f(x1, . . . , xn)2 is central
valued on R, or cI = bI = (0) that is F (I)I = (0). Hence in the following we assume
cI 6= (0). By previous Lemma we may assume that R satisfies some non-trivial general-
ized polynomial identity. As above let u be any nonzero element of I. By the hypothesis
R satisfies the following:

(3.14)

[(
bf(ux1, . . . , uxn)− fα(α(u)α(x1), . . . , α(u)α(xn))c

)
f(ux1, . . . , uxn), xn+1

]
.

Since α is X-outer, by Theorem 3 in [14], R satisfies

(3.15)

[(
bf(ux1, . . . , uxn)− fα(α(u)y1, . . . , α(u)yn)c

)
f(ux1, . . . , uxn), xn+1

]
and in particular R as well as Q satisfy the component

(3.16)

[
fα(α(u)y1, . . . , α(u)yn)cf(ux1, . . . , uxn), xn+1

]
.
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By [31] Q is a primitive ring having nonzero socle H with the field C as its associated
division ring. Moreover H and Q satisfy the same generalized polynomial identities with
automorphisms (Theorem 1 in [14]). Therefore H satisfies (3.14) and so we may replace
Q by H. Suppose there exist a1, . . . , an+2 ∈ I such that f(a1, . . . , an)an+1 6= 0 and
can+2 6= 0. Since Q is a regular GPI-ring, there exists an idempotent element e ∈ IQ
such that eQ =

∑n+2
i=1 aiQ and ai = eai, for any i = 1, . . . , n + 2. Therefore, by (3.14),

Q satisfies

(3.17)

[(
bf(ex1, . . . , exn)− fα(α(e)α(x1), . . . , α(e)α(xn))c

)
f(ex1, . . . , exn), xn+1

]
.

Moreover assume e 6= 1, if not eQ = Q and by Proposition 2.6 we get b ∈ C, c = 0 and
f(x1, . . . , xn)2 is central valued on R. Since α is X-outer, as above by (3.17) Q satisfies[(

bf(ex1, . . . , exn)− fα(α(e)y1, . . . , α(e)yn)c

)
f(ex1, . . . , exn), xn+1

]
.

In particular Q satisfies[
fα(α(e)y1, . . . , α(e)yn)cf(ex1, . . . , exn), xn+1(1− α(e))

]
that is Q satisfies

fα(α(e)y1, . . . , α(e)yn)cf(ex1, . . . , exn)xn+1(1− α(e))

and since Q is prime and e 6= 0, 1, it follows fα(α(e)r1, . . . , α(e)rn)cf(es1, . . . , esn) = 0,
for all r1, . . . , rn, s1, . . . , sn ∈ Q. Since f(ea1, . . . , ean)ean+1 6= 0 and cean+2 6= 0 and by
using the result in [16], it follows that fα(α(e)y1, . . . , α(e)yn) is an identity for Q. This
implies that f(eα−1(y1), . . . , eα−1(yn)) is also an identity for Q. Moreover it is clear that
α−1 is X-outer, therefore f(ex1, . . . , exn) is an identity for Q, a contradiction. �

3.6. Lemma. Let R be a prime ring, f(x1, . . . , xn) a non-central multilinear polynomial
over C in n non-commuting indeterminates, I a nonzero right ideal of R, b, c, q ∈ Q such
that F (x) = bx− qxq−1c, for all x ∈ R. If

F (f(r1, . . . , rn))f(r1, . . . , rn) = 0,

for all r1, . . . , rn ∈ I, then either charR = 2 and R satisfies s4 or one of the following
holds:

(i) f(x1, . . . , xn)xn+1 is an identity for I;
(ii) [f(x1, . . . , xn), xn+1]xn+2 is an identity for I, (b− c)I = (0) and q−1cI ⊆ I;

(iii) F (I)I = (0).

Proof. Here I satisfies

(3.18)

(
bf(x1, . . . , xn)− qf(x1, . . . , xn)q−1c

)
f(x1, . . . , xn)

and left multiplying by q−1, I satisfies

(3.19)

(
q−1b(f(x1, . . . , xn))− (f(x1, . . . , xn)q−1c

)
f(x1, . . . , xn).

Since we assume f(x1, . . . , xn) is not central valued on R, by Fact 3.2 we have that either
charR = 2 and R satisfies the standard identity s4, or f(x1, . . . , xn)xn+1 is an identity
for I, or one of the following holds:

1. there exists γ ∈ C such that q−1bx = γx = q−1cx, for all x ∈ I (this is the case
F (I)I = (0)).

2. q−1(b − c)I = (0), that is (b − c)I = (0), moreover [f(x1, . . . , xn), xn+1]xn+2 is
an identity for I.
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In this last case, by (3.19) it follows that I satisfies

(3.20)

(
bf(ux1, . . . , uxn)− qf(ux1, . . . , uxn)q−1b

)
f(ux1, . . . , uxn)

and moreover, since I satisfies the polynomial identity [f(x1, . . . , xn), xn+1]xn+2, in view
of Proposition in [25], I = eQ for some idempotent e in the socle of Q. Here we write
f(x1, . . . , xn) =

∑
ti(x1, . . . , xi−1, xi+1, . . . , xn)xi, where any ti is a multilinear polyno-

mial in n−1 variables and xi never appears in ti. Of course, if ti(ex1, . . . , exi−1, exi+1, . . . , exn)e
is an identity for Q, then f(x1, . . . , xn)xn+1 is an identity for I and we are done. Thus
assume there exists i ∈ {1, . . . , n} such that ti(er1, . . . , eri−1, eri+1, . . . , ern)e 6= 0 for
some r1, . . . , rn ∈ I. In particular,

f(ex1, . . . , exi−1, exi(1− e), exi+1, . . . , exn) = ti(ex1, . . . , exn)exi(1− e)

and by (3.20) Q satisfies

bti(ex1, . . . , exn)exi(1− e)ti(ex1, . . . , exn)exi(1− e)

− qti(ex1, . . . , exn)exi(1− e)q−1bti(ex1, . . . , exn)exi(1− e)

that is Q satisfies

(3.21)

(
−qti(ex1, . . . , exn)exi(1− e)q−1b

)
ti(ex1, . . . , exn)exi(1− e)

and left multiplying by (1− e)q−1bq−1, we easily have that Q satisfies

(3.22) (1− e)q−1bti(ex1, . . . , exn)eX(1− e)q−1bti(ex1, . . . , exn)eX(1− e).

By Lemma 2 in [32] and since e 6= 1, it follows that

(1− e)q−1bti(ex1, . . . , exi−1, exi+1, . . . , exn)e

is an identity for Q, that is (1 − e)q−1beti(x1e, . . . , xi−1e, xi+1e, . . . , xne) is an identity
for Q. In this case, since ti(x1e, . . . , xi−1e, xi+1e, . . . , xne) is not an identity for Q, we get
in view of the result in [16], (1− e)q−1be = 0, that is q−1bI ⊆ I and also q−1cI ⊆ I. �

3.7. Theorem. Let R be a prime ring, f(x1, . . . , xn) a multilinear polynomial over C
in n non-commuting variables, I a non-zero right ideal of R, F : R → R be a non-zero
generalized skew derivation of R. Suppose that

F (f(r1, . . . , rn))f(r1, . . . , rn) ∈ C,

for all r1, . . . , rn ∈ I. If f(x1, . . . , xn) is not central valued on R, then either char(R) = 2
and R satisfies s4 or one of the following holds:

(i) f(x1, . . . , xn)xn+1 is an identity for I;
(ii) F (I)I = (0);

(iii) [f(x1, . . . , xn), xn+1]xn+2 is an identity for I, there exist b, c, q ∈ Q with q in-
vertible such that F (x) = bx−qxq−1c for all x ∈ R, and q−1cI ⊆ I; moreover in
this case either (b− c)I = (0) or b− c ∈ C and f(x1, . . . , xn)2 is central valued
on R provided that b 6= c.

Proof. In view of all previous Lemmas and Propositions, we may assume I 6= R and
F (x) = bx−qxq−1c, for all x ∈ R. Moreover we may assume that there exist s1, . . . , sn ∈ I
such that F (f(s1, . . . , sn))f(s1, . . . , sn) 6= 0. Therefore

(bf(x1, . . . , xn)− qf(x1, . . . , xn)q−1c)f(x1, . . . , xn)

is a central generalized polynomial identity for I. Thus R is a PI-ring and so RC is a
finite dimensional central simple C-algebra (the proof of this fact is the same of Theorem
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1 in [7]). By Wedderburn-Artin theorem, RC ∼= Mk(D) for some k ≥ 1 and D a finite-
dimensional central division C-algebra. By Theorem 2 in [24]

(bf(x1, . . . , xn)− qf(x1, . . . , xn)q−1c)f(x1, . . . , xn) ∈ C

for all x1, . . . , xn ∈ IC. Without loss of generality we may replace R with RC and assume
that R = Mk(D). Let E be a maximal subfield of D, so that Mk(D) ⊗C E ∼= Mt(E)
where t = k · [E : C]. Hence (bf(r1, . . . , rn) − qf(r1, . . . , rn)q−1c)f(r1, . . . , rn) ∈ C, for
any r1, . . . , rn ∈ I ⊗ E (Lemma 2 in [24] and Proposition in [29]). Therefore we may
assume that R ∼= Mt(E) and I = eR = (e11R+ · · ·+ ellR), where t ≥ 2 and l ≤ t.

Suppose that t ≥ 2, otherwise we are done and denote q =
∑
r,s qrsers and q−1c =∑

r,s crsers, for qrs, crs ∈ E. As in Lemma 3.6 we write

f(x1, . . . , xn) =
∑

ti(x1, . . . , xi−1, xi+1, . . . , xn)xi

and there exists some ti(x1, . . . , xi−1, xi+1, . . . , xn)xi which is not an identity for I. In
particular qti(ex1, . . . , exi−1, exi+1, . . . , exn)exi is not an identity for R, because q is
invertible. Hence, again for

f(ex1, , . . . , exi−1, exi(1−e), exi+1, . . . , exn) = ti(ex1, . . . , exi−1, exi+1, . . . , exn)exi(1−e)

and by our hypothesis, we have that

qti(ex1, . . . , exi−1, exi+1, . . . , exn)exi(1−e)q−1cti(ex1, . . . , exi−1, exi+1, . . . , exn)exi(1−e)

is an identity for R, and by the primeness of R it follows that

(1− e)q−1cti(ex1, . . . , exi−1, exi+1, . . . , exn)e

is an identity for R. By [16] and since ti(ex1, . . . , exi−1, exi+1, . . . , exn)exi is not an
identity for R, the previous identity says that (1− e)q−1ce = 0. Thus q−1cI ⊆ I.
In case [f(x1, . . . , xn), xn+1]xn+2 is an identity for I, then by our assumption we get
(b− c)f(r1, . . . , rn)2 ∈ C for all r1, . . . , rn ∈ I. In view of Fact 3.1, either (b− c)I = (0)
and we are done, or b − c ∈ C and f(x1, . . . , xn)2 is central valued on R, provided that
b 6= c.

Consider finally the case [f(x1, . . . , xn), xn+1]xn+2 is not an identity for I. By Lemma
3 in [6], for any i ≤ l, j 6= i, the element eij falls in the additive subgroup of RC generated
by all valuations of f(x1, . . . , xn) in I. Since the matrix (beij − qeijq−1c)eij has rank at
most 1, then it is not central. Therefore qeijq

−1ceij = 0, i.e. qki(q
−1c)ji = 0 for all k

and for all j 6= i. Since q is invertible, there exists some qki 6= 0, therefore (q−1c)ji = 0
for all j 6= i.

Consider the following automorphism of R:

λ(x) = (1 + eij)x(1− eij) = x+ eijx− xeij − eijxeij

for any i, j ≤ l, and note that λ(I) ⊆ I is a right ideal of R satisfying[(
λ(b)f(x1, . . . , xn)− λ(q)f(x1, . . . , xn)λ(q−1c)

)
f(x1, . . . , xn), xn+1

]
.

If we denote λ(q−1c) =
∑
rs c
′
rsers, the above argument says that c′rs = 0 for all s ≤ l and

r 6= s. In particular the (i, j)-entry of λ(q−1c) is zero. This implies that cii = cjj = α, for
all i, j ≤ l. Therefore q−1cx = αx for all x ∈ I. This leads to (b − c)f(r1, . . . , rn)2 ∈ C
for all r1, . . . , rn ∈ I and we conclude by the same argument above. �

For the sake of completeness, we would like to conclude this paper by showing the
explicit meaning of the conclusion F (I)I = (0), more precisely we state the following:
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3.8. Remark. Let R be a prime ring, I be a non-zero right ideal of R and F : R → R
be a non-zero generalized skew derivation of R. If F (I)I = (0) then there exist a, b ∈ Q
and α ∈ Aut(R) such that F (x) = (a + b)x − α(x)b for all x ∈ R, aI = (0) and one of
the following holds:

(i) bI = (0);
(ii) there exist λ ∈ C and an invertible element q ∈ Q such that α(x) = qxq−1, for

all x ∈ R, and q−1by = λy, for all y ∈ I.

Proof. As previously remarked we can write F (x) = ax + d(x) for all x ∈ R, where
a ∈ Q and d is a skew derivation of R (see [8]). Let α ∈ Aut(R) be the automorphism
associated with d, in the sense that d(xy) = d(x)y + α(x)d(y), for all x, y ∈ R. Thus, by
the hypothesis, for all x, y ∈ I,

(3.23) (ax+ d(x))y = 0.

For all x, y, z ∈ I we have:

0 = F (xz)y = (ax+ d(x))zy + α(x)d(z)y

and by (3.23) we obtain α(x)d(z)y = 0 for all x, y, z ∈ I. Moreover α(I) is a non-zero
right ideal of R, so that it follows

(3.24) d(z)y = 0

for all y, z ∈ I. Once again by (3.23) we get azy = 0 for all z, y ∈ I, that is aI = (0).
Finally in (3.24) replace z with xs, for any x ∈ I and s ∈ R, then:

(3.25) 0 = d(xs)y = d(x)sy + α(x)d(s)y

for all x, y ∈ I, s ∈ R. In case d is X-outer, it follows that d(x)sy + α(x)ty = 0, for all
x, y ∈ I and s, t ∈ R (Theorem 1 in [15]). In particular α(x)ty = 0, which implies the
contradiction α(x) = 0 for all x ∈ I. Therefore we may assume that d is X-inner, that is
there exists b ∈ Q such that d(r) = br − α(r)b, for all r ∈ R and by (3.24)

(3.26) (bx− α(x)b)y = 0

for all x, y ∈ I. Consider first the case α is X-outer and replace x with xr, for any r ∈ R.
Then (bxr − α(x)α(r)b)y = 0 and, by Theorem 3 in [14], (bxr − α(x)sb)y = 0 for all
x, y ∈ I and r, s ∈ R. In particular bIRI = (0), which implies bI = (0) and we are done.

On the other hand, if there exists an invertible element q ∈ Q such that α(r) = qrq−1,
for all r ∈ R, from (3.26) we have (bx− qxq−1b)y = 0, for all x, y ∈ I. Left multiplying
by q−1, it follows [q−1b, x]y = 0, and by Lemma in [4] there exists λ ∈ C such that
q−1bx = λx for all x ∈ I. �
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