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Abstract

In the present paper, we introduce a new notion of weak module
amenability for Banach algebras which is related to module homomor-
phisms. Among other results, we investigate the relationship between
this concept for a Banach algebra A which is a Banach A-bimodule with
compatible actions, and the quotient Banach algebra A/J where J is
the closed ideal of A generated by elements of the form (a ·α)b−a(α ·b)
for a ∈ A and α ∈ A. We then study this concept for an inverse
semigroup S, where some examples on `1(S) and C∗(S) are given.
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1. Introduction

Let S be a (discrete) semigroup. The semigroup algebra `1(S) is the Banach algebra
consisting of all absolutely summable complex-valued functions on S, with the convolu-
tion product and the `1-norm; ‖f‖1 =

∑
s∈S |f(s)| (f ∈ `1(S)). We will use δs to denote

the point mass function at s; δs(t) = 1 if t = s and = 0 elsewhere. Using point masses
we may represent a function f on S as f =

∑
s∈S f(s)δs. Here we recall that an inverse

semigroup is a discrete semigroup S such that for each s ∈ S, there is a unique element
s∗ ∈ S with ss∗s = s and s∗ss∗ = s∗. The set of elements of the form s∗s are called
idempotents of S and denoted by E.

The concept of amenability for a Banach algebra A was introduced by B. E. John-
son in [18]. A Banach algebra A is amenable if every bounded derivation from A into
any dual Banach A-module is inner, equivalently if H1(A, X∗) = {0} for every Banach
A-module X, where H1(A, X∗) is the first Hochschild cohomology group of A with coef-
ficients in X∗, the first dual space of X. Also, a Banach algebra A is weakly amenable
if H1(A,A∗) = {0}. Bade, Curtis and Dales introduced the notion of weak amenability
in [5]. They considered this concept only for commutative Banach algebras. After that
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Johnson defined the weak amenability for arbitrary Banach algebras [19] and showed
that for a locally compact group G, L1(G) is weakly amenable [20]. This fact fails for
semigroups though. For example, if S is the bicyclic inverse semigroup, then `1(S) is not
weakly amenable [9].

Homomorphisms on Banach algebras play an important role in Functional Analysis.
Papers [8] and [21] defined and investigated two concepts of the amenability for Ba-
nach algebras by using homomorphisms which are different from weak amenability and
amenability. In [1], Amini introduced the concept of module amenability of a Banach
algebra A which is a Banach module over another Banach algebra A with compatible
actions. Later this notion of amenability is generalized by the author in [7]. The notion
of weak module amenability of Banach algebras is defined in [4] and studied in [2]. In
fact, the author and Amini investigated the concept of weak module amenability in [2]
and obtained some results on the seond dual of a Banach algebra. In [6], the author
showed that for an arbitrary inverse semigroup S with a set of idempotents E, the semi-
group algebra `1(S) as an `1(E)-module with trivial left action is always weakly module
amenable. The abelian case for S was proved earlier in [4]. These papers motivated us
to generalize of the concept of weak module amenability by homomorphisms.

Let A and A be Banach algebras such that A is a Banach A-bimodule with compatible
actions. Then every A-module homomorphism σ (not necessarily C-linear) on A induces
a linear continuous homomorphism σ̂ on A/J , where J is a closed ideal of A. In section
three, we generalize the concept of weak module amenability of Banach algebras by using
A-module homomorphisms. On the other hand, for each pair A-module homomorphism
σ and τ on A, we define (σ, τ)-weak module amenability of Banach algebras and among
other results, we study the relation between (σ, τ)-weak module amenability of A and
(σ̂, τ̂)-weak amenability of A/J , where J is the closed ideal of A generated by elements
of the form (a · α)b− a(α · b), for a ∈ A and α ∈ A (see also [8]).

In the last part of this paper, we show that under some conditions, `1(S) is (σ, τ)-
weakly module amenable for all `1(E)-module homomorphisms σ and τ on `1(S). Finally
by applying our results, we give an example that `1(S) [C∗(S)] is (σ, σ)-weakly module
amenable as an `1(E)-bimodule [as an C∗(E)-bimodule]. These examples show that this
new concept and module amenability on Banach algebras do not coincide.

2. Preliminaries and Notations

Throughout this paper, A and A are Banach algebras such that A is a Banach A-
bimodule with compatible actions as follows:

α · (ab) = (α · a)b, (ab) · α = a(b · α) (a, b ∈ A, α ∈ A).

Let X be a Banach A-bimodule and a Banach A-bimodule with the following com-
patible actions:

α · (a · x) = (α · a) · x, a · (α · x) = (a ·α) · x, (α · x) · a = α · (x · a) (a ∈ A, α ∈ A, x ∈ X)

and similar for the right or two-sided actions. Then we say that X is a Banach A-A-
module. Moreover, if α · x = x · α for all α ∈ A, x ∈ X, then X is called a commutative
A-A-module. If X is a commutative Banach A-A-module, then so is X∗, where the
actions of A and A on X∗ are defined as follows:

〈f · α, x〉 = 〈f, α · x〉, 〈f · a, x〉 = 〈f, a · x〉,

〈α · f, x〉 = 〈f, x · α〉, 〈a · f, x〉 = 〈f, x · a〉 (a ∈ A, α ∈ A, x ∈ X, f ∈ X∗).
One should remember that A is not an A-A-module in general because A does not satisfy
the compatibility condition a · (α · b) = (a · α) · b for α ∈ A, a, b ∈ A. But when A is
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a commutative A-module and acts on itself by multiplication from both sides, then it is
also a Banach A-A-module.

Let E and F be Banach algebras. We denote by Hom(E,F ) the metric space of all
bounded homomorphisms from E into F , with the metric derived from the bounded
linear operators from E into F , and denote Hom(E,E) by Hom(E).

Now let A and B be A-bimodules. Then a A-module homomorphism from A to B is
a bounded map T : A −→ B with T (a± b) = T (a)± T (b), and is multiplicative, that is
T (ab) = T (a)T (b) for all a, b ∈ A, and

T (α · a) = α · T (a), T (a · α) = T (a) · α, (a,∈ A, α ∈ A).

We denote by HomA(A,B), the space of all such homomorphisms and denote HomA(A,A)
by HomA(A). Note that when A = C, the set of complex numbers, then HomC(A,B) =
Hom(A,B). Although the elements of HomA(A,B) are not necessarily linear, their
boundedness still implies their norm continuity.

Let A and A be as above and X be a Banach A-A-module. Recall that the mapping
D : A −→ X is bounded if there exists M > 0 such that ‖D(a)‖ ≤ M‖a‖ for all a ∈ A.
Suppose that ϕ and ψ are in HomA(A). A bounded map D : A −→ X is called a module
(ϕ,ψ)-derivation if

D(α · a) = α ·D(a), D(a · α) = D(a) · α (a ∈ A, α ∈ A)

and

D(a± b) = D(a)±D(b), D(ab) = D(a) · ϕ(b) + ψ(a) ·D(b) (a, b ∈ A).

If X is a commutative A-A-module, then each x ∈ X defines a module (ϕ,ψ)-derivation
Dx(a) = x · ϕ(a) − ψ(a) · x on A. These are called module (ϕ,ψ)-inner derivations.
Derivations of these forms are studied in [7]. A Banach algebra A is called module (ϕ,ψ)-
amenable (as an A-module) if for any commutative Banach A-A-module X, each module
(ϕ,ψ)-derivation D : A −→ X∗ is (ϕ,ψ)-inner [7]. We use the notations ZA(A, (X(ϕ,ψ))

∗)
for the space of all module (ϕ,ψ)-derivations D : A −→ X∗, BA(A, (X(ϕ,ψ))

∗) for those
which are inner (ϕ,ψ)-derivations, and HA(A, (X(ϕ,ψ))

∗) for the quotient space which we
call the first relative (to A) (ϕ,ψ)-cohomology group of A with coefficients in X∗. Hence
A is module (ϕ,ψ)-amenable if and only if HA(A, (X(ϕ,ψ))

∗) = {0} for all commutative
Banach A-A-module X. Indeed, for any φ, ψ ∈ Hom(A), a Banach algebra A is (φ, ψ)-
weakly amenable if H1(A, (A(φ,ψ))

∗) = {0} (for details see [8]).

3. (σ, τ)-weak module amenability of Banach algebras

Let Y be a subspace A∗ as a vector space which is A-submodule and commutative
Banach A-submodule. From now on, such subspaces are called commutative Banach
A-A-submodule of A∗.

3.1. Definition. Let A be a Banach A-module and σ, τ ∈ HomA(A). Then A is called
(σ, τ)-weakly module amenable (as an A-module) if for any commutative Banach A-A-
submodule Y of A∗, each module derivation from A to Y(σ,τ) is inner.

In other words, in the above definition the module actions on A are considered as
follows:

a · x := σ(a)x, x · a = xτ(a) (a, x ∈ A).

Thus, the module actions A on Y ⊆ A∗ are as follows:

〈a · y, b〉 = 〈y, bτ(a)〉, 〈y · a, b〉 = 〈y, σ(a)b〉 (a, b ∈ A, y ∈ Y ).

Note that if σ and τ are the identity maps, then (σ, τ)-weak module amenability
becomes weak module amenability (see [2]).
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Consider the closed ideal J of A generated by elements of the form (a · α)b− a(α · b)
for α ∈ A, a, b ∈ A. The ideal J is both A-submodule and A-submodules of A. Hence the
quotient Banach algebra A/J is a Banach A-A-module with compatible actions when A

acts on A/J canonically. Now, if A/J is a commutative Banach A-module and σ, τ are
epimorphisms in HomA(A), then A is (σ, τ)-weakly module amenable if and only if every
module derivation from A to (A/J)∗ is inner. In fact for each α ∈ A, a, b ∈ A, y ∈ Y , we
have

〈y, (σ(a) · α)τ(b)− σ(a)(α · τ(b))〉 = 〈y, (σ(a) · α)τ(b)〉 − 〈y, σ(a)(α · τ(b))〉
= 〈b · y, σ(a) · α〉 − 〈y · a, α · τ(b)〉
= 〈α · (b · y), σ(a)〉 − 〈(y · a).α, τ(b)〉
= 〈(b · y) · α, σ(a)〉 − 〈α · (y · a), τ(b)〉
= 〈b · (y · α), σ(a)〉 − 〈(α · y) · a, τ(b)〉
= 〈y · α, σ(a)τ(b)〉 − 〈α · y, σ(a)τ(b)〉
= 〈y · α− α · y, σ(a)τ(b)〉 = 0.

Thus for α ∈ A, a, b ∈ A, y ∈ Y with σ(a0) = a and τ(b0) = b, we get

〈y, (a · α)b− a(α · b)〉 = 〈y, (σ(a0) · α)τ(b0)− σ(a0)(α · τ(b0))〉 = 0.

By continuity of D, we see D(a) ⊆ J⊥ = (A/J)∗. It immediately follows from
the above definition that a module amenable Banach algebra A is (σ, τ)-weakly module
amenable for all σ, τ ∈ HomA(A). As we will see later in section four with some examples,

the converse is false. Here and subsequently, we denote

n−times︷ ︸︸ ︷
σ ◦ σ... ◦ σ by σn for all n ∈ N.

3.2. Proposition. Let A be a Banach A-bimodule and σ, τ, µ ∈ HomA(A). If µ is an
epimorphism and A is (σ ◦ µ, τ ◦ µ)-weakly module amenable, then A is (σ, τ)-weakly
module amenable. The converse is true if µ2 is the identity map.

Proof. Let Y be a commutative Banach A-A-submodule of A∗ and let D : A → Y(σ,τ)

be a module (σ, τ)-derivation. Then D ◦ µ is a module (σ ◦ µ, τ ◦ µ)-derivation. So there
exists y ∈ Y(σ◦µ,τ◦µ) such that for each a ∈ A, D(a) = y · (σ ◦µ)(a)− (τ ◦µ)(a) · y. Given
b ∈ A. Then there exists a ∈ A such that µ(a) = b and hence

D(b) = D(µ(a)) = y · σ(µ(a))− τ(µ(a)) · y = y · σ(b)− τ(b) · y.
Thus D is (σ, τ)-inner.

Conversely, suppose that D : A → Y(σ◦µ,τ◦µ) is a module (σ ◦ µ, τ ◦ µ)-derivation. It

is easy to show that D̃ = D ◦ µ−1 is in ZA(A, (Y(σ,τ))). Thus there exists y ∈ Y(σ,τ) so
that for each a ∈ A, D(a) = y · σ(a)− τ(a) · y. We have

D(a) = D(µ−1(µ(a))) = D̃(µ(a)) = y · (σ ◦ µ)(a)− (τ ◦ µ)(a) · y,
for all a ∈ A. Therefore D is (σ ◦ µ, τ ◦ µ)-inner. �

3.3. Corollary. Let A be a Banach A-module and σ ∈ HomA(A). Then the following
statements hold:

(i) If σ is an epimorphism and A is (σn, σn)-weakly module amenable for some
n ∈ N, then A is weakly module amenable;

(ii) If A is weakly module amenable and σ2 is the identity map, then A is (σ, σ)-
weakly module amenable.

3.4. Proposition. Let σ, τ ∈ HomA(A) such that σ be an epimorphism and let the
restriction of σ on the set {ab− ba | a, b ∈ A} be the identity map. If A is (τ, τ)-weakly
module amenable, then A is (σ ◦ τ, σ ◦ τ)-weakly module amenable.
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Proof. Let Y be a commutative Banach A-A-submodule of A∗ and let D : A→ Y(σ◦τ,σ◦τ)

be a module (σ ◦ τ, σ ◦ τ)-derivation. Define D̃ : A→ Y(τ,τ) via 〈D̃(a), b〉 := 〈D(a), σ(b)〉.
It is easy to check that D̃ is a module (τ, τ)-derivation and thus there exists y ∈ Y(τ,τ)

such that D̃(a) = y · τ(a) − τ(a) · y for every a ∈ A. Take x ∈ A. Since σ is an
epimorphism, there exists b ∈ A such that x = σ(b). Then for each a ∈ A, we get

〈D(a), x〉 = 〈D̃(a), b〉 = 〈y · τ(a)− τ(a) · y, b〉
= 〈y, σ(τ(a)b− bτ(a))〉
= 〈y · σ ◦ τ(a)− σ ◦ τ(a) · y, x〉.

It follows that D is an (σ ◦ τ, σ ◦ τ)-inner derivation. �

3.5. Corollary. Let σ ∈ HomA(A) such that σ is an epimorphism and let the restriction

of σ on Ã = {ab − ba | a, b ∈ A} be the identity map. If A is weakly module amenable,
then A is (σn, σn)-weakly module amenable for all n ∈ N.

Recall that A has a bounded approximate identity for A if there is a bounded net
{αj} in A such that ‖αj · a− a‖ → 0 and ‖a · αj − a‖ → 0, for each a ∈ A.

3.6. Proposition. Let A be a Banach A-module and σ, τ ∈ HomA(A). If A has a
bounded approximate identity, then (σ, τ)-weak amenability of A implies its (σ, τ)-weak
module amenability.

Proof. Let Y be a commutative Banach A-A-submodule of A∗ and let D : A → Y(σ,τ)

be a module (σ, τ)-derivation. If {αj} is a bounded approximate identity for A, then by
the Cohen factorization theorem [11], it is a bounded approximate identity for A. Thus
for each a ∈ A there are β ∈ A and b ∈ A such that a = β · b. Hence for each a ∈ A and
ρ ∈ C, we deduce that

σ(ρa) = σ(ρ(β · b)) = lim
j
σ(ρ(αjβ) · b) = lim

j
σ(ραj · a) = lim

j
ραj · σ(a) = ρσ(a).

Therefore σ is C-linear. Similarly, τ ∈ Hom(A). To complete of the proof, it is enough
to show that D is C-linear. Again, by the Cohen factorization theorem for each a ∈ A

there are γ ∈ A and y ∈ Y such that D(a) = γ · y. Then

D(ρa) = D(ρ(β · b)) = lim
j
D(ρ(αjβ) · b)

= lim
j
D(ραj · a) = lim

j
ραj ·D(a)

= lim
j
ραj · (γ · y) = ρ(γ · y) = ρD(a).

for all a ∈ A and ρ ∈ C. �

3.7. Proposition. Let A be a commutative Banach algebra and a commutative Banach
A-bimodule. Suppose that σ ∈ HomA(A) such that σ2 = σ, and the range of σ is a closed
ideal of A. If A is weakly module amenable and A has a bounded approximate identity
for A, then A is (σ, σ)-weakly module amenable.

Proof. Let Y be a Banach A-A-submodule of A∗ and let D : A → Y(σ,σ) be a mod-

ule (σ, σ)-derivation. It is easily verified that the mapping D : A → Y is defined by

〈D(a), b〉 := 〈D(a), σ(b)〉, is a module derivation. Thus there exists y ∈ Y such that

D(a) = y · a − a · y. Since A = ker(σ) ⊕ Im(σ), it follows from [4, Proposition 2.1] that
A/Im(σ) ∼= ker(σ) is a weakly module amenable Banach algebra. For every a ∈ A, we
put a = a1 + a2 in which a1 ∈ ker(σ) and a2 ∈ Im(σ). By [4, Proposition 2.4] and the
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Cohen factorization theorem, (ker(σ))2 is dense in ker(σ). Hence, there is a bounded net
(albl)l ⊂ (ker(σ))2 such that albl → a1, and

D(a1) = lim
l
D(albl) = lim

l
(D(al) · σ(bl)− σ(al) ·D(bl)) = 0.

This shows that D(a) = D(σ(a)) for all a ∈ A. Now, suppose that b ∈ A such that
b = b1 + b2 where b1 ∈ ker(σ) and b2 ∈ Im(σ). Take a ∈ A and the bounded nets
(al1bl2)l ⊂ (ker(σ))2 and (ak1bk2)k ⊂ A2 such that al1bl2 → b1 and ak1bk2 → a. Then,
we have

〈D(a), b1〉 = lim
l

lim
k
〈D(ak1bk2), al1bl2〉

= lim
l

lim
k
〈D(ak1) · σ(bk2) + σ(bk1) ·D(bk2), al1bl2〉

= lim
l

lim
k
〈D(ak1), σ(bk2)al1bl2〉+ lim

l
lim
k
〈D(bk2), al1bl2σ(bk1)〉 = 0.

The last equality follows from the fact that σ(bk2)al1bl2 and al1bl2σ(bk1) are in ker(σ)∩
Im(σ) = {0}. Also,

〈D(a), b2〉 = 〈D(a), σ(b2)〉 = 〈D(σ(a)), σ(b2)〉

= 〈D(σ(a)), b2〉 = 〈y · σ(a)− σ(a) · y, b2〉

= 〈y, σ(a)b2 − b2σ(a)〉 = 〈D(−b2), σ(a)〉

= 〈D(−σ(b2)), σ2(a)〉 = 〈D(−σ(b2)), σ(a)〉
= 〈y · σ(a)− σ(a) · y, b2〉.

The above computations show that D ∈ BA(A, Y(σ,σ)). Therefore A is (σ, σ)-weakly
module amenable. �

Let A and A be as in the previous section and X be a Banach A-A-module with the
compatible actions, and J be the corresponding closed ideals of A. Let σ ∈ HomA(A).
Then for each a, b ∈ A and α ∈ A, we have

σ((a · α)b− a(α · b)) = (σ(a) · α)σ(b)− σ(a)(α · σ(b)) ∈ J.

Since J is a closed ideal of A and σ is continuous, σ(J) ⊆ J . Therefore, the mapping
σ̂ : A/J −→ A/J is defined by σ̂(a+ J) = σ(a) + J is well defined.

Recall that a left Banach A-module X is called a left essential A-module if the linear
span of A · X = {a · x : a ∈ A, x ∈ X} is dense in X. Right essential A-modules
and (two-sided) essential A-bimodules are defined similarly. We remark that if A is an
essential left (right) A-module, then every A-module homomorphism σ is also a linear
homomorphism. If a ∈ A, then there is a sequence (bn) ⊆ A · A such that limn bn = a.

Assume that bn =
∑Kn
m=1 αn,man,m for some finite sequences (an,m)m=Kn

m=1 ⊆ A and

(αn,m)m=Kn
m=1 ⊆ A. Let t ∈ C. Then

σ(tbn) = σ(t
∑Kn
m=1 αn,m · an,m) =

∑Kn
m=1 σ((tαn,m) · an,m)

=
∑Kn
m=1(tαn,m) · σ(an,m) =

∑Kn
m=1 tσ(αn,m · an,m) = tσ(bn),

and so by the continuity of σ, σ(ta) = tσ(a). By definition of σ̂, it is also C-linear.
We say the Banach algebra A acts trivially on A from left (right) if for each α ∈ A

and a ∈ A, α · a = φ(α)a (a ·α = φ(α)a), where φ is a continuous linear functional on A.
The following lemma is proved in [3, Lemma 3.1].

3.8. Lemma. Let A be a Banach algebra and Banach A-module with compatible actions,
and J0 be a closed ideal of A such that J ⊆ J0. If A/J0 has a left or right identity e+J0,
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then for each α ∈ A and a ∈ A we have a · α − α · a ∈ J0, i.e., A/J0 is a commutative
Banach A-module.

The concept of (σ̂, τ̂)-weak amenability of A/J has been investigated in [8]. Relating
to this, we now prove the main result in this section which gives the sufficient conditions
for being (σ, τ)-weakly module amenable of a Banach algebra.

3.9. Theorem. Let A be a Banach A-module with trivial left action, and let σ, τ be in
HomA(A) and A/J has an identity. If A is a right essential A-module, then (σ̂, τ̂)-weak
amenability of A/J implies (σ, τ)-weak module amenability of A. The converse is true if
σ and τ are epimorphisms.

Proof. Let Y be a commutative Banach A-A-submodule of A∗, and let D : A → Y(σ,τ)

be a module (σ, τ)-derivation. For y ∈ Y, a, b ∈ A and α ∈ A, we get

((a · α)b− a(α · b)) · y = (a · α) · (b · y)− a · ((α · b) · y)

= a · (α · (b · y))− a · (α · (b · y)) = 0.

Hence, J · Y = {0}. Similarly, we have Y · J = {0}. Therefore, the following module
actions are well-defined

(a+ J) · y := a · y, y · (a+ J) := y · a (y ∈ Y, a ∈ A).

Thus Y is a Banach A/J-A-module. Define D̃ : A/J −→ Y ⊆ J⊥ = ((A/J)(σ̂,τ̂))
∗ via

D̃(a+ J) = D(a). For each α ∈ A and a, b ∈ A we have

D((a · α)b− a(α · b)) = D((a · α)b)−D(a(α · b))
= D(a · α) · σ(b) + τ(a · α) ·D(b)

− (D(a) · σ(α · b)− τ(a) ·D(α · b))
= (D(a) · α) · σ(b)−D(a) · (α · σ(b))

+ (τ(a) · α) ·D(b)− τ(a) · (α ·D(b)) = 0.

It means that D vanishes on J . Therefore D̃ is well-defined. For each a, b in A we have

D̃(ab+ J) = D(ab) = D(a) · σ(b) + τ(a) ·D(b)

= D̃(a+ J) · (σ(b) + J) + (τ(a) + J) · D̃(b+ J)

= D̃(a+ J) · σ̂(b+ J) + τ̂(a+ J) · D̃(b+ J).

Since A is a right essential A-module, σ̂ and τ̂ are homomorphism. Thus σ̂, τ̂ ∈Hom(A/J).

Now, it follows from the above discussion that D̃ is also C-linear, and so it is (σ̂, τ̂)-inner.
Hence there exists y ∈ Y such that

D(a) = D̃(a+ J) = y · σ̂(a+ J)− τ̂(a+ J) · y = y · σ(a)− τ(a) · y.
Therefore D is a module (σ, τ)-inner derivation.

Conversely, suppose that σ, τ ∈HomA(A) are epimorphisms, andD : A/J −→ ((A/J)(σ̂,τ̂))
∗

is a (σ̂, τ̂)-derivation. We define D̃ : A −→ ((A/J)(σ,τ))
∗ by D̃(a) = D(a + J), for all

a ∈ A. Lemma 3.8 shows that when A acts on A trivially from left or right, then A/J

is a commutative A-module and thus Y = J⊥ ⊆ A∗. Hence D̃ could be considered as a
map from A to Y . Now, for each α ∈ A and a ∈ A we have

D̃(α · a) = D(α · a+ J) = D(φ(α)a+ J) = φ(α)D(a+ J) = α · D̃(a)

and
D̃(a · α) = D(a · α+ J) = D(φ(α)a+ J) = φ(α)D(a+ J) = D̃(a) · α.

Also, for a, b ∈ A we obtain D̃(ab) = D̃(a) · σ(b) + τ(a) · D̃(b). Thus D̃ is a (σ, τ)-
module derivation. Due to (σ, τ)-weak module amenability of A, there exists y ∈ Y ∼=
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((A/J)(σ,τ))
∗ such that D̃(a) = σ(a) · y − y · τ(a), and so D(a + J) = σ̂(a + J) · y − y ·

τ̂(a+ J). �

The Banach algebras with compatible A-module structure could be considered as ob-
jects of a category CA whose morphisms are bounded A-module maps. We are interested
in the case where A is an injective object in CA, that is for any objects A,B ∈ CA

and monomorphism θ : B −→ A and morphism µ : B −→ A, there exists a morphism
µ̃ : A −→ A such that µ = µ̃ ◦ θ. This is the case when A = C (Hahn Banach Theorem).

3.10. Proposition. Let A be a commutative A-module and let σ, τ be in HomA(A) such
that σ(a)b = aτ(b) for all a, b ∈ A. Also let A be injective and has a bounded approximate
identity. If A is (σ, τ)-weakly module amenable, then span (AAA) is dense in A.

Proof. Let B be the linear span of (AAA). Suppose that B 6= A. Take a0 ∈ A\B
and f1 ∈ A∗ such that f1(a0) = 1 and f1|B = 0. Since a0 is not in B, similar to
the proof of [2, lemma 2.1] we can construct an epimorphism f2 : A −→ A such that
f2|B = 0 and f2(a0) = 1. Define D : A −→ ((A)(σ,τ))

∗ via D(a) = f2(a) · f1 for all
a ∈ A. Then D is (σ, τ)-module derivation and hence there exists g ∈ (A(σ,τ))

∗ such that
D(a) = g · σ(a)− τ(a) · g, for all a ∈ A. Thus, we have

1 = f2(a0)f1(a0) = 〈D(a0), a0〉
= 〈g · σ(a0)− τ(a0) · g, a0〉
= 〈g, σ(a0)a0 − τ(a0)a0〉 = 0,

which is a contradiction. �

3.11. Corollary. With the hypotheses of the above Proposition, A is (0, 0)-weakly module
amenable if and only if span (AAA) is dense in A.

Proof. Let D : A → (A(0,0))
∗ be a (0, 0)-module derivation. Then we have D(AAA) =

{0}. Since D is continuous, we have D = 0. So D is (0, 0)-inner. Conversely, let A be

(0, 0)-weakly amenable. Then by Proposition (3.10), AAA = A. �

3.12. Remark. Let A be a commutative A-module and let σ, τ ∈ HomA(A) such that
σ(a)b = aτ(b) for all a, b ∈ A. Then the second adjoints σ′′ and τ ′′ belong to HomA(A∗∗)
and are also w∗-w∗-continuous. We thus can show that σ′′(F )�G = F�τ ′′(G), where
� is the first Arens product on the second dual A∗∗ (for more information about this
product see [10]). Now, if A∗∗ is (σ′′, τ ′′)-weakly amenable then by Proposition 3.10,

A∗∗AA∗∗ = A∗∗. It follows from the proof of [2, Proposition 3.6] that AAA = A.
Therefore A is (0, 0)-weakly amenable by Corollary 3.11.

4. (σ, τ)-weak module amenability of semigroup algebras

Let S be an (discrete) inverse semigroup with the set of idempotents ES (or E), where
the order of E is defined by

e ≤ d⇐⇒ ed = e (e, d ∈ E).

It is easy to show that E is a (commutative) subsemigroup of S [17, Theorem V.1.2].
In particular `1(E) could be regarded as a subalgebra of `1(S), and thereby `1(S) is a
Banach algebra and a Banach `1(E)-module with compatible actions [1]. We consider
the following module actions `1(E) on `1(S):

(4.1) δe · δs = δs, δs · δe = δse = δs ∗ δe (s ∈ S, e ∈ E).
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If φ is a continuous linear function on `1(E), then for each e ∈ E we have φ(δe) = 1.
So for each f =

∑
e∈E f(e)δe ∈ `1(E) and g =

∑
s∈S g(s)δs ∈ `1(S), we get

f · g = (
∑
e∈E

f(e)δe) · (
∑
s∈S

g(s)δs) =
∑

s∈S,e∈E

f(e)g(s)δe · δs

=
∑

s∈S,e∈E

f(e)g(s) · δs = (
∑
e∈E

f(e))(
∑
s∈S

g(s)δs) = φ(f)g.

Therefore multiplication from left is trivial. In this case, the ideal J (see section 3) is the
closed linear span of {δset− δst : s, t ∈ S, e ∈ E}. We consider an equivalence relation on
S as follows:

s ≈ t⇐⇒ δs − δt ∈ J (s, t ∈ S).

For an inverse semigroup S, the quotient S/≈ is a discrete group (see [3] and [23]). As in
[24, Theorem 3.3], we may observe that `1(S)/J ∼= `1(S/ ≈). We consider the following
module actions `1(E) on `1(S)/J ∼= `1(S/ ≈):

δe · (δs + J) = δs + J, (δs + J) · δe = δse + J (s ∈ S, e ∈ E).

Indeed δs − δse ∈ J if and only if δst − δset ∈ J , for all s, t ∈ S, e ∈ E. Therefore
`1(S/ ≈) is a commutative `1(E)-bimodule. For each σ ∈ Hom`1(E)(`

1(S)), we define

σ̂ in Hom(`1(S/ ≈)) by σ̂(δ[s]) = δ[σ(s)] and extend by linearity, where [s] denote the
equivalence class of s in S/≈ (see the explanations after Proposition 3.7). We see that all
conditions of Theorem 3.9 hold for σ, τ ∈ Hom`1(E)(`

1(S)) which are also epimorphism.

Now, if `1(S) is (σ, τ)-weakly module amenable then `1(S/ ≈) is (σ̂, τ̂)-weakly amenable.
We are now going to prove the main result in this section.

4.1. Theorem. Let S be an inverse semigroup with the set of idempotents E. Then for
each σ and τ in Hom`1(E)(`

1(S)), the semigroup algebra `1(S) is (σ, τ)-weakly module

amenable as an `1(E)-module, with trivial left action.

Proof. Suppose firstly that σ or τ is zero map. Since S/≈ is a discrete group, the group
algebra `1(S/ ≈) has an identity, and thus `1(S/ ≈) is (σ̂, 0) and (0, σ̂)-weakly amenable
by [8, Example 4.2]. With the actions considered in (4.1), for each f ∈ `1(S), we have

f =
∑
s∈S

f(s)δs =
∑
s∈S

f(s)δs ∗ δs∗s =
∑
s∈S

f(s)δs · δs∗s.

Consequently f belongs to the closed linear span of `1(S) ·`1(E) = {δs ·δe : e ∈ E, s ∈ S}.
This shows that `1(S) is a right essential `1(E)-module. For A = `1(S) and A = `1(E),
the result of this case follows from Theorem 3.9. For the case that both σ and τ are
non-zero homomorphisms, it is proved in [14, Theorem 2.5] that for any locally compact
group G, the group algebra L1(G) is (ϕ,ψ)-weakly amenable for all ϕ,ψ ∈ Hom(L1(G)).
In particular, `1(S/ ≈) is (σ̂, τ̂)-weakly amenable. Now, Theorem 3.9 again shows that
`1(S) is (σ, τ)-weakly module amenable. �

Note that for an amenable inverse semigroup S, `1(S) is module `1(E)-amenable [1,
Theorem 3.1] and so, it is module (σ, τ)-amenable [7, Corollary 2.3]. We close this section
by two examples.

4.2. Example. Let S be a commutative inverse semigroup. Then `1(S) is a commutative
Banach algebra and commutative Banach `1(E)-module with the following actions:

δe · δs = δs · δe = δes (s ∈ S, e ∈ E).

We consider the mapping σ as follows:

σ : `1(S) −→ `1(S);
∑
s∈S

f(s)δs 7→
∑
s∈S

f(s)δs∗ (s ∈ S),
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where f(s) is the complex conjugate of f(s). Obviously σ ∈ Hom`1(E)(`
1(S)). Also, σ is

also C-linear and σ2 is the identity map. It is shown in [4, Theorem 3.1] that `1(S) is
weakly module amenable. Now it follows from Corollary 3.3 that `1(S) is (σ, σ)-weakly
module amenable. Note that if S is not amenable, `1(S) is not module amenable [1,
Theorem 3.1].

4.3. Example. Let S be an inverse semigroup with the set of idempotents E. Let C∗(S)
be the enveloping C∗-algebra of `1(S) (see [13]). Then by continuity, the action of `1(E)
on `1(S) extends to an action of C∗(E) on C∗(S). The C∗-algebra C∗(E) has a bounded
approximate identity, and so it is (σ, 0) and (0, σ)-weakly module amenable by Proposition
3.6 and [8, Example 4.2], for all σ ∈ HomC∗(E)(C

∗(S)) . Now, suppose that σ2 is the
identity map (see Example 4.2). Since C∗(S) is weakly amenable [16, Theorem 1.10],
C∗(S) is (σ, σ)-weakly module amenable by Corollary 3.3. However, if C∗(S) is nuclear
then it is amenable [15]. By [1, Proposition 2.1], C∗(S) is module amenable as an C∗(E)-
module. Therefore C∗(S) is module (σ, τ)-amenable, for all σ, τ ∈ HomC∗(E)(C

∗(S)) by
[7, Corollary 2.3].

Acknowledgements. The author express his sincere thanks to the referee for the careful
and detailed reading of the manuscript and very helpful suggestions that improved the
manuscript substantially.

References

[1] M. Amini, Module amenability for semigroup algebras, Semigroup Forum 69, 243–254, 2004.

[2] M. Amini and A. Bodaghi, Module amenability and weak module amenability for second
dual of Banach algeras, Chamchuri J. Math. 2, No. 1, 57–71, 2010.

[3] M. Amini, A. Bodaghi and D. Ebrahimi Bagha, Module amenability of the second dual and

module topological center of semigroup algebras, Semigroup Forum 80, 302–312, 2010.
[4] M. Amini and D. Ebrahimi Bagha, Weak Module Amenability for semigroup algebras, Semi-

group Forum 71, 18–26, 2005.

[5] W. G. Bade, P. C. Curtis and H. G. Dales, Amenability and weak amenability for Beurling
and Lipschits algebra, Proc. London Math. Soc. 55 (3), 359–377, 1987.

[6] A. Bodaghi, Semigroup algebras and their weak module amenability, J. Appl. Func. Anal.

7, No. 4, 332–338, 2012.
[7] A. Bodaghi, Module (ϕ,ψ)-amenability of Banach algeras, Arch. Math (Brno) 46, No. 4,

227–235, 2010.

[8] A. Bodaghi, M. Eshaghi Gordji and A. R. Medghalchi, A generalization of the weak
amenability of Banach algebras, Banach J. Math. Anal. 3, No. 1, 131–142, 2009.

[9] S. Bowling and J. Duncan, Order cohomology of Banach semigroup algebras, Semigroup
Forum 56, 130–145, 1998.

[10] H. G. Dales, Banach Algebras and Automatic Continuity, Oxford University Press, Oxford,

2000.
[11] R. S. Doran and J. Wichmann, Approximate Identities and Factorization in Banch Modules,

Lecture Notes in Mathematics 768, Springer, Berlin, 1979.

[12] J. Duncan and I. Namioka, Amenability of inverse semigroups and their semigroup algebras,
Proc. Roy. Soc. Edinburgh 80A, 309-321, 1988.

[13] J. Duncan and A. L. T. Paterson, C∗-algebras of inverse semigroups, Proc. Roy. Soc.

Edinburgh Soc. 28, 41–58, 1985.
[14] M. Eshaghi Gordji and A. Jabbari, Generalization of weak amenability of group algebras,

preprint.

[15] U. Haagerup, All nuclear C∗-algebras are amenable, Invent. Math. 74, 305–319, 1983.
[16] U. Haagerup and N. J. Laustsen, Weak amenability of C∗-algebras and theorem of Goldstien,

In Banach algebra 97. 223–243.
[17] J. M. Howie, An Introduction to Semigroup Theory, Academic Press, London, 1976.



Generalized notion of weak module amenability 95

[18] B. E. Johnson, Cohomology in Banach Algebras, Memoirs Amer. Math. Soc. 127, American

Math. Soc., Providence, 1972.

[19] B. E. Johnson, Derivation from L1(G) into L1(G) and L∞(G), Lecture Note in Math.
1359, 191–198, 1988.

[20] B. E. Johnson, Weak amenability of group Algebras, Bull. London Math. Soc. 23 (3), 281–

284, 1991.
[21] M. S. Moslehian and A. N. Motlagh, Some notes on (σ, τ)-amenability of Banach algebras

, Stud. Univ. Babes-Bolyai. Math. 53, No. 3, 57–68, 2008.

[22] A. L. T. Paterson, Amenability, American Math. Soc., Providence, Rhode Island, 1988.
[23] H. Pourmahmood-Aghababa, (Super)Module amenability, module topological center and

semigroup algebras, Semigroup Forum. 81, 344–356, 2010.

[24] R. Rezavand, M. Amini, M. H. Sattari and D. Ebrahimi Bagha, Module Arens regularity
for semigroup algebras, Semigroup Forum. 77, 300–305, 2008.


	GENERALIZED NOTION OF WEAK MODULE AMENABILITY. By A. Bodaghi

