hacettepe Journal of Mathematics and Statistics

 $\bigcirc \quad \text{Volume } 43\,(1)\,\,(2014),\,85-95$

GENERALIZED NOTION OF WEAK MODULE AMENABILITY

Abasalt Bodaghi*

Received 16:06:2011 : Accepted 28:02:2013

Abstract

In the present paper, we introduce a new notion of weak module amenability for Banach algebras which is related to module homomorphisms. Among other results, we investigate the relationship between this concept for a Banach algebra \mathcal{A} which is a Banach \mathfrak{A} -bimodule with compatible actions, and the quotient Banach algebra \mathcal{A}/J where J is the closed ideal of \mathcal{A} generated by elements of the form $(a \cdot \alpha)b - a(\alpha \cdot b)$ for $a \in \mathcal{A}$ and $\alpha \in \mathfrak{A}$. We then study this concept for an inverse semigroup S, where some examples on $\ell^1(S)$ and $C^*(S)$ are given.

Keywords: Banach modules; Module derivation; Weak amenability; Weak module amenability; Inverse semigroup.

2000 AMS Classification: 46H25.

1. Introduction

Let S be a (discrete) semigroup. The semigroup algebra $\ell^1(S)$ is the Banach algebra consisting of all absolutely summable complex-valued functions on S, with the convolution product and the ℓ^1 -norm; $||f||_1 = \sum_{s \in S} |f(s)|$ ($f \in \ell^1(S)$). We will use δ_s to denote the point mass function at s; $\delta_s(t) = 1$ if t = s and = 0 elsewhere. Using point masses we may represent a function f on S as $f = \sum_{s \in S} f(s)\delta_s$. Here we recall that an *inverse semigroup* is a discrete semigroup S such that for each $s \in S$, there is a unique element $s^* \in S$ with $ss^*s = s$ and $s^*ss^* = s^*$. The set of elements of the form s^*s are called *idempotents* of S and denoted by E.

The concept of amenability for a Banach algebra \mathcal{A} was introduced by B. E. Johnson in [18]. A Banach algebra \mathcal{A} is *amenable* if every bounded derivation from \mathcal{A} into any dual Banach \mathcal{A} -module is inner, equivalently if $H^1(\mathcal{A}, X^*) = \{0\}$ for every Banach \mathcal{A} -module X, where $H^1(\mathcal{A}, X^*)$ is the first Hochschild cohomology group of \mathcal{A} with coefficients in X^* , the first dual space of X. Also, a Banach algebra \mathcal{A} is weakly amenable if $H^1(\mathcal{A}, \mathcal{A}^*) = \{0\}$. Bade, Curtis and Dales introduced the notion of weak amenability in [5]. They considered this concept only for commutative Banach algebras. After that

^{*} Department of Mathematics, Garmsar Branch, Islamic Azad University, Garmsar, Iran, Email: abasalt.bodaghi@gmail.com

Johnson defined the weak amenability for arbitrary Banach algebras [19] and showed that for a locally compact group G, $L^1(G)$ is weakly amenable [20]. This fact fails for semigroups though. For example, if S is the bicyclic inverse semigroup, then $\ell^1(S)$ is not weakly amenable [9].

Homomorphisms on Banach algebras play an important role in Functional Analysis. Papers [8] and [21] defined and investigated two concepts of the amenability for Banach algebras by using homomorphisms which are different from weak amenability and amenability. In [1], Amini introduced the concept of module amenability of a Banach algebra \mathcal{A} which is a Banach module over another Banach algebra \mathfrak{A} with compatible actions. Later this notion of amenability is generalized by the author in [7]. The notion of weak module amenability of Banach algebras is defined in [4] and studied in [2]. In fact, the author and Amini investigated the concept of weak module amenability in [2] and obtained some results on the seond dual of a Banach algebra. In [6], the author showed that for an arbitrary inverse semigroup S with a set of idempotents E, the semigroup algebra $\ell^1(S)$ as an $\ell^1(E)$ -module with trivial left action is always weakly module amenable. The abelian case for S was proved earlier in [4]. These papers motivated us to generalize of the concept of weak module amenability by homomorphisms.

Let \mathcal{A} and \mathfrak{A} be Banach algebras such that \mathcal{A} is a Banach \mathfrak{A} -bimodule with compatible actions. Then every \mathfrak{A} -module homomorphism σ (not necessarily \mathbb{C} -linear) on \mathcal{A} induces a linear continuous homomorphism $\hat{\sigma}$ on \mathcal{A}/J , where J is a closed ideal of \mathcal{A} . In section three, we generalize the concept of weak module amenability of Banach algebras by using \mathfrak{A} -module homomorphisms. On the other hand, for each pair \mathfrak{A} -module homomorphism σ and τ on \mathcal{A} , we define (σ, τ) -weak module amenability of Banach algebras and among other results, we study the relation between (σ, τ) -weak module amenability of \mathcal{A} and $(\hat{\sigma}, \hat{\tau})$ -weak amenability of \mathcal{A}/J , where J is the closed ideal of \mathcal{A} generated by elements of the form $(a \cdot \alpha)b - a(\alpha \cdot b)$, for $a \in \mathcal{A}$ and $\alpha \in \mathfrak{A}$ (see also [8]).

In the last part of this paper, we show that under some conditions, $\ell^1(S)$ is (σ, τ) -weakly module amenable for all $\ell^1(E)$ -module homomorphisms σ and τ on $\ell^1(S)$. Finally by applying our results, we give an example that $\ell^1(S)$ [$C^*(S)$] is (σ, σ) -weakly module amenable as an $\ell^1(E)$ -bimodule [as an $C^*(E)$ -bimodule]. These examples show that this new concept and module amenability on Banach algebras do not coincide.

2. Preliminaries and Notations

Throughout this paper, \mathcal{A} and \mathfrak{A} are Banach algebras such that \mathcal{A} is a Banach \mathfrak{A} -bimodule with compatible actions as follows:

 $\alpha \cdot (ab) = (\alpha \cdot a)b, \quad (ab) \cdot \alpha = a(b \cdot \alpha) \quad (a, b \in \mathcal{A}, \alpha \in \mathfrak{A}).$

Let X be a Banach A-bimodule and a Banach $\mathfrak{A}\text{-bimodule}$ with the following compatible actions:

 $\alpha \cdot (a \cdot x) = (\alpha \cdot a) \cdot x, \ a \cdot (\alpha \cdot x) = (a \cdot \alpha) \cdot x, \ (\alpha \cdot x) \cdot a = \alpha \cdot (x \cdot a) \quad (a \in \mathcal{A}, \alpha \in \mathfrak{A}, x \in X)$

and similar for the right or two-sided actions. Then we say that X is a Banach \mathcal{A} - \mathfrak{A} -module. Moreover, if $\alpha \cdot x = x \cdot \alpha$ for all $\alpha \in \mathfrak{A}, x \in X$, then X is called a *commutative* \mathcal{A} - \mathfrak{A} -module. If X is a commutative Banach \mathcal{A} - \mathfrak{A} -module, then so is X^* , where the actions of \mathcal{A} and \mathfrak{A} on X^* are defined as follows:

$$\langle f \cdot \alpha, x \rangle = \langle f, \alpha \cdot x \rangle, \ \langle f \cdot a, x \rangle = \langle f, a \cdot x \rangle,$$

 $\langle \alpha \cdot f, x \rangle = \langle f, x \cdot \alpha \rangle, \ \langle a \cdot f, x \rangle = \langle f, x \cdot a \rangle \quad (a \in \mathcal{A}, \alpha \in \mathfrak{A}, x \in X, f \in X^*).$

One should remember that \mathcal{A} is not an \mathcal{A} - \mathfrak{A} -module in general because \mathcal{A} does not satisfy the compatibility condition $a \cdot (\alpha \cdot b) = (a \cdot \alpha) \cdot b$ for $\alpha \in \mathfrak{A}, a, b \in \mathcal{A}$. But when \mathcal{A} is a commutative \mathfrak{A} -module and acts on itself by multiplication from both sides, then it is also a Banach \mathcal{A} - \mathfrak{A} -module.

Let E and F be Banach algebras. We denote by Hom(E, F) the metric space of all bounded homomorphisms from E into F, with the metric derived from the bounded linear operators from E into F, and denote Hom(E, E) by Hom(E).

Now let \mathcal{A} and \mathcal{B} be \mathfrak{A} -bimodules. Then a \mathfrak{A} -module homomorphism from \mathcal{A} to \mathcal{B} is a bounded map $T : \mathcal{A} \longrightarrow \mathcal{B}$ with $T(a \pm b) = T(a) \pm T(b)$, and is multiplicative, that is T(ab) = T(a)T(b) for all $a, b \in \mathcal{A}$, and

$$T(\alpha \cdot a) = \alpha \cdot T(a), \ T(a \cdot \alpha) = T(a) \cdot \alpha, \quad (a \in \mathcal{A}, \alpha \in \mathfrak{A}).$$

We denote by $\operatorname{Hom}_{\mathfrak{A}}(\mathcal{A}, \mathcal{B})$, the space of all such homomorphisms and denote $\operatorname{Hom}_{\mathfrak{A}}(\mathcal{A}, \mathcal{A})$ by $\operatorname{Hom}_{\mathfrak{A}}(\mathcal{A})$. Note that when $\mathfrak{A} = \mathbb{C}$, the set of complex numbers, then $\operatorname{Hom}_{\mathbb{C}}(\mathcal{A}, \mathcal{B}) =$ $\operatorname{Hom}(\mathcal{A}, \mathcal{B})$. Although the elements of $\operatorname{Hom}_{\mathfrak{A}}(\mathcal{A}, \mathcal{B})$ are not necessarily linear, their boundedness still implies their norm continuity.

Let \mathcal{A} and \mathfrak{A} be as above and X be a Banach \mathcal{A} - \mathfrak{A} -module. Recall that the mapping $D: \mathcal{A} \longrightarrow X$ is bounded if there exists M > 0 such that $||D(a)|| \leq M||a||$ for all $a \in \mathcal{A}$. Suppose that φ and ψ are in Hom_{\mathfrak{A}}(A). A bounded map $D: \mathcal{A} \longrightarrow X$ is called a *module* (φ, ψ) -derivation if

$$D(\alpha \cdot a) = \alpha \cdot D(a), \quad D(a \cdot \alpha) = D(a) \cdot \alpha \quad (a \in \mathcal{A}, \alpha \in \mathfrak{A})$$

and

$$D(a \pm b) = D(a) \pm D(b), \quad D(ab) = D(a) \cdot \varphi(b) + \psi(a) \cdot D(b) \quad (a, b \in \mathcal{A})$$

If X is a commutative A- \mathfrak{A} -module, then each $x \in X$ defines a module (φ, ψ) -derivation $D_x(a) = x \cdot \varphi(a) - \psi(a) \cdot x$ on \mathcal{A} . These are called *module* (φ, ψ) -inner derivations. Derivations of these forms are studied in [7]. A Banach algebra \mathcal{A} is called *module* (φ, ψ) -amenable (as an \mathfrak{A} -module) if for any commutative Banach \mathcal{A} - \mathfrak{A} -module X, each module (φ, ψ) -derivation $D : \mathcal{A} \longrightarrow X^*$ is (φ, ψ) -inner [7]. We use the notations $\mathbb{Z}_{\mathfrak{A}}(\mathcal{A}, (X_{(\varphi,\psi)})^*)$ for the space of all module (φ, ψ) -derivations $D : \mathcal{A} \longrightarrow X^*$, $\mathcal{B}_{\mathfrak{A}}(\mathcal{A}, (X_{(\varphi,\psi)})^*)$ for those which are inner (φ, ψ) -derivations, and $\mathcal{H}_{\mathfrak{A}}(\mathcal{A}, (X_{(\varphi,\psi)})^*)$ for the quotient space which we call the first relative (to \mathfrak{A}) (φ, ψ) -cohomology group of \mathcal{A} with coefficients in X^* . Hence \mathcal{A} is module (φ, ψ) -amenable if and only if $\mathcal{H}_{\mathfrak{A}}(\mathcal{A}, (X_{(\varphi,\psi)})^*) = \{0\}$ for all commutative Banach \mathcal{A} - \mathfrak{A} -module X. Indeed, for any $\phi, \psi \in \text{Hom}(\mathcal{A})$, a Banach algebra \mathcal{A} is (ϕ, ψ) -weakly amenable if $\mathcal{H}^1(\mathcal{A}, (\mathcal{A}_{(\phi,\psi)})^*) = \{0\}$ (for details see [8]).

3. (σ, τ) -weak module amenability of Banach algebras

Let Y be a subspace \mathcal{A}^* as a vector space which is \mathcal{A} -submodule and commutative Banach \mathfrak{A} -submodule. From now on, such subspaces are called commutative Banach \mathcal{A} - \mathfrak{A} -submodule of \mathcal{A}^* .

3.1. Definition. Let \mathcal{A} be a Banach \mathfrak{A} -module and $\sigma, \tau \in \operatorname{Hom}_{\mathfrak{A}}(\mathcal{A})$. Then \mathcal{A} is called (σ, τ) -weakly module amenable (as an \mathfrak{A} -module) if for any commutative Banach \mathcal{A} - \mathfrak{A} -submodule Y of \mathcal{A}^* , each module derivation from \mathcal{A} to $Y_{(\sigma,\tau)}$ is inner.

In other words, in the above definition the module actions on $\mathcal A$ are considered as follows:

$$a \cdot x := \sigma(a)x, \quad x \cdot a = x\tau(a) \quad (a, x \in \mathcal{A}).$$

Thus, the module actions $\mathcal A$ on $Y\subseteq \mathcal A^*$ are as follows:

$$\langle a \cdot y, b \rangle = \langle y, b\tau(a) \rangle, \quad \langle y \cdot a, b \rangle = \langle y, \sigma(a)b \rangle \quad (a, b \in \mathcal{A}, y \in Y).$$

Note that if σ and τ are the identity maps, then (σ, τ) -weak module amenability becomes weak module amenability (see [2]).

A. Bodaghi

Consider the closed ideal J of \mathcal{A} generated by elements of the form $(a \cdot \alpha)b - a(\alpha \cdot b)$ for $\alpha \in \mathfrak{A}, a, b \in \mathcal{A}$. The ideal J is both \mathcal{A} -submodule and \mathfrak{A} -submodules of \mathcal{A} . Hence the quotient Banach algebra \mathcal{A}/J is a Banach \mathcal{A} - \mathfrak{A} -module with compatible actions when \mathcal{A} acts on \mathcal{A}/J canonically. Now, if \mathcal{A}/J is a commutative Banach \mathfrak{A} -module and σ, τ are epimorphisms in Hom_{\mathfrak{A}}(\mathcal{A}), then \mathcal{A} is (σ, τ) -weakly module amenable if and only if every module derivation from \mathcal{A} to $(\mathcal{A}/J)^*$ is inner. In fact for each $\alpha \in \mathfrak{A}, a, b \in \mathcal{A}, y \in Y$, we have

$$\begin{aligned} \langle y, (\sigma(a) \cdot \alpha)\tau(b) - \sigma(a)(\alpha \cdot \tau(b)) \rangle &= \langle y, (\sigma(a) \cdot \alpha)\tau(b) \rangle - \langle y, \sigma(a)(\alpha \cdot \tau(b)) \rangle \\ &= \langle b \cdot y, \sigma(a) \cdot \alpha \rangle - \langle y \cdot a, \alpha \cdot \tau(b) \rangle \\ &= \langle a \cdot (b \cdot y), \sigma(a) \rangle - \langle (y \cdot a).\alpha, \tau(b) \rangle \\ &= \langle (b \cdot y) \cdot \alpha, \sigma(a) \rangle - \langle \alpha \cdot (y \cdot a), \tau(b) \rangle \\ &= \langle b \cdot (y \cdot \alpha), \sigma(a) \rangle - \langle (\alpha \cdot y) \cdot a, \tau(b) \rangle \\ &= \langle y \cdot \alpha, \sigma(a)\tau(b) \rangle - \langle \alpha \cdot y, \sigma(a)\tau(b) \rangle \\ &= \langle y \cdot \alpha - \alpha \cdot y, \sigma(a)\tau(b) \rangle = 0. \end{aligned}$$

Thus for $\alpha \in \mathfrak{A}, a, b \in \mathcal{A}, y \in Y$ with $\sigma(a_0) = a$ and $\tau(b_0) = b$, we get

$$\langle y, (a \cdot \alpha)b - a(\alpha \cdot b) \rangle = \langle y, (\sigma(a_0) \cdot \alpha)\tau(b_0) - \sigma(a_0)(\alpha \cdot \tau(b_0)) \rangle = 0.$$

By continuity of D, we see $D(a) \subseteq J^{\perp} = (\mathcal{A}/J)^*$. It immediately follows from the above definition that a module amenable Banach algebra \mathcal{A} is (σ, τ) -weakly module amenable for all $\sigma, \tau \in \operatorname{Hom}_{\mathfrak{A}}(\mathcal{A})$. As we will see later in section four with some examples, n-times

the converse is false. Here and subsequently, we denote $\overline{\sigma \circ \sigma \ldots \circ \sigma}$ by σ^n for all $n \in \mathbb{N}$.

3.2. Proposition. Let \mathcal{A} be a Banach \mathfrak{A} -bimodule and $\sigma, \tau, \mu \in \operatorname{Hom}_{\mathfrak{A}}(\mathcal{A})$. If μ is an epimorphism and \mathcal{A} is $(\sigma \circ \mu, \tau \circ \mu)$ -weakly module amenable, then \mathcal{A} is (σ, τ) -weakly module amenable. The converse is true if μ^2 is the identity map.

Proof. Let Y be a commutative Banach \mathcal{A} - \mathfrak{A} -submodule of \mathcal{A}^* and let $D : \mathcal{A} \to Y_{(\sigma,\tau)}$ be a module (σ, τ) -derivation. Then $D \circ \mu$ is a module $(\sigma \circ \mu, \tau \circ \mu)$ -derivation. So there exists $y \in Y_{(\sigma \circ \mu, \tau \circ \mu)}$ such that for each $a \in \mathcal{A}$, $D(a) = y \cdot (\sigma \circ \mu)(a) - (\tau \circ \mu)(a) \cdot y$. Given $b \in \mathcal{A}$. Then there exists $a \in \mathcal{A}$ such that $\mu(a) = b$ and hence

$$D(b) = D(\mu(a)) = y \cdot \sigma(\mu(a)) - \tau(\mu(a)) \cdot y = y \cdot \sigma(b) - \tau(b) \cdot y.$$

Thus D is (σ, τ) -inner.

Conversely, suppose that $D : \mathcal{A} \to Y_{(\sigma \circ \mu, \tau \circ \mu)}$ is a module $(\sigma \circ \mu, \tau \circ \mu)$ -derivation. It is easy to show that $\widetilde{D} = D \circ \mu^{-1}$ is in $Z_{\mathfrak{A}}(\mathcal{A}, (Y_{(\sigma, \tau)}))$. Thus there exists $y \in Y_{(\sigma, \tau)}$ so that for each $a \in \mathcal{A}$, $D(a) = y \cdot \sigma(a) - \tau(a) \cdot y$. We have

$$D(a) = D(\mu^{-1}(\mu(a))) = D(\mu(a)) = y \cdot (\sigma \circ \mu)(a) - (\tau \circ \mu)(a) \cdot y,$$

for all $a \in \mathcal{A}$. Therefore D is $(\sigma \circ \mu, \tau \circ \mu)$ -inner.

3.3. Corollary. Let \mathcal{A} be a Banach \mathfrak{A} -module and $\sigma \in \operatorname{Hom}_{\mathfrak{A}}(\mathcal{A})$. Then the following statements hold:

(i) If σ is an epimorphism and A is (σ^n, σ^n) -weakly module amenable for some $n \in \mathbb{N}$, then A is weakly module amenable;

(ii) If A is weakly module amenable and σ² is the identity map, then A is (σ, σ)-weakly module amenable.

3.4. Proposition. Let $\sigma, \tau \in \text{Hom}_{\mathfrak{A}}(\mathcal{A})$ such that σ be an epimorphism and let the restriction of σ on the set $\{ab - ba \mid a, b \in \mathcal{A}\}$ be the identity map. If \mathcal{A} is (τ, τ) -weakly module amenable, then \mathcal{A} is $(\sigma \circ \tau, \sigma \circ \tau)$ -weakly module amenable.

88

Proof. Let Y be a commutative Banach \mathcal{A} - \mathfrak{A} -submodule of \mathcal{A}^* and let $D : \mathcal{A} \to Y_{(\sigma \circ \tau, \sigma \circ \tau)}$ be a module $(\sigma \circ \tau, \sigma \circ \tau)$ -derivation. Define $\widetilde{D} : \mathcal{A} \to Y_{(\tau,\tau)}$ via $\langle \widetilde{D}(a), b \rangle := \langle D(a), \sigma(b) \rangle$. It is easy to check that \widetilde{D} is a module (τ, τ) -derivation and thus there exists $y \in Y_{(\tau,\tau)}$ such that $\widetilde{D}(a) = y \cdot \tau(a) - \tau(a) \cdot y$ for every $a \in \mathcal{A}$. Take $x \in \mathcal{A}$. Since σ is an epimorphism, there exists $b \in \mathcal{A}$ such that $x = \sigma(b)$. Then for each $a \in \mathcal{A}$, we get

$$\begin{split} \langle D(a), x \rangle &= \langle \widetilde{D}(a), b \rangle = \langle y \cdot \tau(a) - \tau(a) \cdot y, b \rangle \\ &= \langle y, \sigma(\tau(a)b - b\tau(a)) \rangle \\ &= \langle y \cdot \sigma \circ \tau(a) - \sigma \circ \tau(a) \cdot y, x \rangle. \end{split}$$

It follows that D is an $(\sigma \circ \tau, \sigma \circ \tau)$ -inner derivation.

3.5. Corollary. Let $\sigma \in \operatorname{Hom}_{\mathfrak{A}}(\mathcal{A})$ such that σ is an epimorphism and let the restriction of σ on $\widetilde{\mathcal{A}} = \{ab - ba \mid a, b \in \mathcal{A}\}$ be the identity map. If \mathcal{A} is weakly module amenable, then \mathcal{A} is (σ^n, σ^n) -weakly module amenable for all $n \in \mathbb{N}$.

Recall that \mathfrak{A} has a bounded approximate identity for \mathcal{A} if there is a bounded net $\{\alpha_j\}$ in \mathfrak{A} such that $\|\alpha_j \cdot a - a\| \to 0$ and $\|a \cdot \alpha_j - a\| \to 0$, for each $a \in \mathcal{A}$.

3.6. Proposition. Let \mathcal{A} be a Banach \mathfrak{A} -module and $\sigma, \tau \in \operatorname{Hom}_{\mathfrak{A}}(\mathcal{A})$. If \mathfrak{A} has a bounded approximate identity, then (σ, τ) -weak amenability of \mathcal{A} implies its (σ, τ) -weak module amenability.

Proof. Let Y be a commutative Banach \mathcal{A} - \mathfrak{A} -submodule of \mathcal{A}^* and let $D : \mathcal{A} \to Y_{(\sigma,\tau)}$ be a module (σ, τ) -derivation. If $\{\alpha_j\}$ is a bounded approximate identity for \mathfrak{A} , then by the Cohen factorization theorem [11], it is a bounded approximate identity for \mathcal{A} . Thus for each $a \in \mathcal{A}$ there are $\beta \in \mathfrak{A}$ and $b \in \mathcal{A}$ such that $a = \beta \cdot b$. Hence for each $a \in \mathcal{A}$ and $\rho \in \mathbb{C}$, we deduce that

$$\sigma(\rho a) = \sigma(\rho(\beta \cdot b)) = \lim_{i} \sigma(\rho(\alpha_{j}\beta) \cdot b) = \lim_{i} \sigma(\rho\alpha_{j} \cdot a) = \lim_{i} \rho\alpha_{j} \cdot \sigma(a) = \rho\sigma(a).$$

Therefore σ is \mathbb{C} -linear. Similarly, $\tau \in \text{Hom}(\mathcal{A})$. To complete of the proof, it is enough to show that D is \mathbb{C} -linear. Again, by the Cohen factorization theorem for each $a \in \mathcal{A}$ there are $\gamma \in \mathfrak{A}$ and $y \in Y$ such that $D(a) = \gamma \cdot y$. Then

$$D(\rho a) = D(\rho(\beta \cdot b)) = \lim_{j} D(\rho(\alpha_{j}\beta) \cdot b)$$

=
$$\lim_{j} D(\rho\alpha_{j} \cdot a) = \lim_{j} \rho\alpha_{j} \cdot D(a)$$

=
$$\lim_{j} \rho\alpha_{j} \cdot (\gamma \cdot y) = \rho(\gamma \cdot y) = \rho D(a).$$

for all $a \in \mathcal{A}$ and $\rho \in \mathbb{C}$.

3.7. Proposition. Let \mathcal{A} be a commutative Banach algebra and a commutative Banach \mathfrak{A} -bimodule. Suppose that $\sigma \in \operatorname{Hom}_{\mathfrak{A}}(\mathcal{A})$ such that $\sigma^2 = \sigma$, and the range of σ is a closed ideal of \mathcal{A} . If \mathcal{A} is weakly module amenable and \mathfrak{A} has a bounded approximate identity for \mathcal{A} , then \mathcal{A} is (σ, σ) -weakly module amenable.

Proof. Let Y be a Banach \mathcal{A} - \mathfrak{A} -submodule of \mathcal{A}^* and let $D : \mathcal{A} \to Y_{(\sigma,\sigma)}$ be a module (σ, σ) -derivation. It is easily verified that the mapping $\overline{D} : \mathcal{A} \to Y$ is defined by $\langle \overline{D}(a), b \rangle := \langle D(a), \sigma(b) \rangle$, is a module derivation. Thus there exists $y \in Y$ such that $\overline{D}(a) = y \cdot a - a \cdot y$. Since $\mathcal{A} = \ker(\sigma) \oplus \operatorname{Im}(\sigma)$, it follows from [4, Proposition 2.1] that $\mathcal{A}/\operatorname{Im}(\sigma) \cong \ker(\sigma)$ is a weakly module amenable Banach algebra. For every $a \in \mathcal{A}$, we put $a = a_1 + a_2$ in which $a_1 \in \ker(\sigma)$ and $a_2 \in \operatorname{Im}(\sigma)$. By [4, Proposition 2.4] and the

A. Bodaghi

Cohen factorization theorem, $(\ker(\sigma))^2$ is dense in $\ker(\sigma)$. Hence, there is a bounded net $(a_lb_l)_l \subset (\ker(\sigma))^2$ such that $a_lb_l \to a_1$, and

$$D(a_1) = \lim_{l \to 0} D(a_l b_l) = \lim_{l \to 0} (D(a_l) \cdot \sigma(b_l) - \sigma(a_l) \cdot D(b_l)) = 0.$$

This shows that $D(a) = D(\sigma(a))$ for all $a \in \mathcal{A}$. Now, suppose that $b \in \mathcal{A}$ such that $b = b_1 + b_2$ where $b_1 \in \ker(\sigma)$ and $b_2 \in \operatorname{Im}(\sigma)$. Take $a \in \mathcal{A}$ and the bounded nets $(a_{l_1}b_{l_2})_l \subset (\ker(\sigma))^2$ and $(a_{k_1}b_{k_2})_k \subset \mathcal{A}^2$ such that $a_{l_1}b_{l_2} \to b_1$ and $a_{k_1}b_{k_2} \to a$. Then, we have

$$\begin{aligned} \langle D(a), b_1 \rangle &= \lim_l \lim_k \langle D(a_{k_1} b_{k_2}), a_{l_1} b_{l_2} \rangle \\ &= \lim_l \lim_k \langle D(a_{k_1}) \cdot \sigma(b_{k_2}) + \sigma(b_{k_1}) \cdot D(b_{k_2}), a_{l_1} b_{l_2} \rangle \\ &= \lim_l \lim_k \langle D(a_{k_1}), \sigma(b_{k_2}) a_{l_1} b_{l_2} \rangle + \lim_l \lim_k \langle D(b_{k_2}), a_{l_1} b_{l_2} \sigma(b_{k_1}) \rangle = 0. \end{aligned}$$

The last equality follows from the fact that $\sigma(b_{k_2})a_{l_1}b_{l_2}$ and $a_{l_1}b_{l_2}\sigma(b_{k_1})$ are in ker $(\sigma) \cap$ Im $(\sigma) = \{0\}$. Also,

$$\begin{split} \langle D(a), b_2 \rangle &= \langle D(a), \sigma(b_2) \rangle = \langle D(\sigma(a)), \sigma(b_2) \rangle \\ &= \langle \overline{D}(\sigma(a)), b_2 \rangle = \langle y \cdot \sigma(a) - \sigma(a) \cdot y, b_2 \rangle \\ &= \langle y, \sigma(a)b_2 - b_2\sigma(a) \rangle = \langle \overline{D}(-b_2), \sigma(a) \rangle \\ &= \langle D(-\sigma(b_2)), \sigma^2(a) \rangle = \langle \overline{D}(-\sigma(b_2)), \sigma(a) \rangle \\ &= \langle y \cdot \sigma(a) - \sigma(a) \cdot y, b_2 \rangle. \end{split}$$

The above computations show that $D \in B_{\mathfrak{A}}(\mathcal{A}, Y_{(\sigma,\sigma)})$. Therefore \mathcal{A} is (σ, σ) -weakly module amenable.

Let \mathcal{A} and \mathfrak{A} be as in the previous section and X be a Banach \mathcal{A} - \mathfrak{A} -module with the compatible actions, and J be the corresponding closed ideals of \mathcal{A} . Let $\sigma \in \operatorname{Hom}_{\mathfrak{A}}(\mathcal{A})$. Then for each $a, b \in \mathcal{A}$ and $\alpha \in \mathfrak{A}$, we have

$$\sigma((a \cdot \alpha)b - a(\alpha \cdot b)) = (\sigma(a) \cdot \alpha)\sigma(b) - \sigma(a)(\alpha \cdot \sigma(b)) \in J.$$

Since J is a closed ideal of \mathcal{A} and σ is continuous, $\sigma(J) \subseteq J$. Therefore, the mapping $\widehat{\sigma} : \mathcal{A}/J \longrightarrow \mathcal{A}/J$ is defined by $\widehat{\sigma}(a+J) = \sigma(a) + J$ is well defined.

Recall that a left Banach \mathcal{A} -module X is called a *left essential* \mathcal{A} -module if the linear span of $\mathcal{A} \cdot X = \{a \cdot x : a \in \mathcal{A}, x \in X\}$ is dense in X. Right essential \mathcal{A} -modules and (two-sided) essential \mathcal{A} -bimodules are defined similarly. We remark that if \mathcal{A} is an essential left (right) \mathfrak{A} -module, then every \mathfrak{A} -module homomorphism σ is also a linear homomorphism. If $a \in \mathcal{A}$, then there is a sequence $(b_n) \subseteq \mathcal{A} \cdot \mathfrak{A}$ such that $\lim_n b_n = a$. Assume that $b_n = \sum_{m=1}^{K_n} \alpha_{n,m} a_{n,m}$ for some finite sequences $(a_{n,m})_{m=1}^{m=K_n} \subseteq \mathcal{A}$ and $(\alpha_{n,m})_{m=1}^{m=K_n} \subseteq \mathfrak{A}$. Let $t \in \mathbb{C}$. Then

$$\begin{aligned} \sigma(tb_n) &= \sigma(t\sum_{m=1}^{K_n} \alpha_{n,m} \cdot a_{n,m}) = \sum_{m=1}^{K_n} \sigma((t\alpha_{n,m}) \cdot a_{n,m}) \\ &= \sum_{m=1}^{K_n} (t\alpha_{n,m}) \cdot \sigma(a_{n,m}) = \sum_{m=1}^{K_n} t\sigma(\alpha_{n,m} \cdot a_{n,m}) = t\sigma(b_n) \end{aligned}$$

and so by the continuity of σ , $\sigma(ta) = t\sigma(a)$. By definition of $\hat{\sigma}$, it is also \mathbb{C} -linear.

We say the Banach algebra \mathfrak{A} acts trivially on \mathcal{A} from left (right) if for each $\alpha \in \mathfrak{A}$ and $a \in \mathcal{A}$, $\alpha \cdot a = \phi(\alpha)a$ ($a \cdot \alpha = \phi(\alpha)a$), where ϕ is a continuous linear functional on \mathfrak{A} . The following lemma is proved in [3, Lemma 3.1].

3.8. Lemma. Let \mathcal{A} be a Banach algebra and Banach \mathfrak{A} -module with compatible actions, and J_0 be a closed ideal of \mathcal{A} such that $J \subseteq J_0$. If \mathcal{A}/J_0 has a left or right identity $e + J_0$,

then for each $\alpha \in \mathfrak{A}$ and $a \in \mathcal{A}$ we have $a \cdot \alpha - \alpha \cdot a \in J_0$, i.e., \mathcal{A}/J_0 is a commutative Banach \mathfrak{A} -module.

The concept of $(\hat{\sigma}, \hat{\tau})$ -weak amenability of \mathcal{A}/J has been investigated in [8]. Relating to this, we now prove the main result in this section which gives the sufficient conditions for being (σ, τ) -weakly module amenable of a Banach algebra.

3.9. Theorem. Let \mathcal{A} be a Banach \mathfrak{A} -module with trivial left action, and let σ, τ be in $\operatorname{Hom}_{\mathfrak{A}}(\mathcal{A})$ and \mathcal{A}/J has an identity. If \mathcal{A} is a right essential \mathfrak{A} -module, then $(\widehat{\sigma}, \widehat{\tau})$ -weak amenability of \mathcal{A}/J implies (σ, τ) -weak module amenability of \mathcal{A} . The converse is true if σ and τ are epimorphisms.

Proof. Let Y be a commutative Banach \mathcal{A} - \mathfrak{A} -submodule of \mathcal{A}^* , and let $D : \mathcal{A} \to Y_{(\sigma,\tau)}$ be a module (σ, τ) -derivation. For $y \in Y, a, b \in \mathcal{A}$ and $\alpha \in \mathfrak{A}$, we get

$$\begin{aligned} ((a \cdot \alpha)b - a(\alpha \cdot b)) \cdot y &= (a \cdot \alpha) \cdot (b \cdot y) - a \cdot ((\alpha \cdot b) \cdot y) \\ &= a \cdot (\alpha \cdot (b \cdot y)) - a \cdot (\alpha \cdot (b \cdot y)) = 0. \end{aligned}$$

Hence, $J \cdot Y = \{0\}$. Similarly, we have $Y \cdot J = \{0\}$. Therefore, the following module actions are well-defined

$$(a+J) \cdot y := a \cdot y, \quad y \cdot (a+J) := y \cdot a \quad (y \in Y, a \in \mathcal{A}).$$

Thus Y is a Banach \mathcal{A}/J - \mathfrak{A} -module. Define $\widetilde{D} : \mathcal{A}/J \longrightarrow Y \subseteq J^{\perp} = ((\mathcal{A}/J)_{(\widehat{\sigma},\widehat{\tau})})^*$ via $\widetilde{D}(a+J) = D(a)$. For each $\alpha \in \mathfrak{A}$ and $a, b \in \mathcal{A}$ we have

$$D((a \cdot \alpha)b - a(\alpha \cdot b)) = D((a \cdot \alpha)b) - D(a(\alpha \cdot b))$$

= $D(a \cdot \alpha) \cdot \sigma(b) + \tau(a \cdot \alpha) \cdot D(b)$
 $- (D(a) \cdot \sigma(\alpha \cdot b) - \tau(a) \cdot D(\alpha \cdot b))$
= $(D(a) \cdot \alpha) \cdot \sigma(b) - D(a) \cdot (\alpha \cdot \sigma(b))$
 $+ (\tau(a) \cdot \alpha) \cdot D(b) - \tau(a) \cdot (\alpha \cdot D(b)) = 0.$

It means that D vanishes on J. Therefore \widetilde{D} is well-defined. For each a, b in \mathcal{A} we have

$$\begin{split} \tilde{D}(ab+J) &= D(ab) = D(a) \cdot \sigma(b) + \tau(a) \cdot D(b) \\ &= \tilde{D}(a+J) \cdot (\sigma(b)+J) + (\tau(a)+J) \cdot \tilde{D}(b+J) \\ &= \tilde{D}(a+J) \cdot \hat{\sigma}(b+J) + \hat{\tau}(a+J) \cdot \tilde{D}(b+J). \end{split}$$

Since \mathcal{A} is a right essential \mathfrak{A} -module, $\widehat{\sigma}$ and $\widehat{\tau}$ are homomorphism. Thus $\widehat{\sigma}, \widehat{\tau} \in \text{Hom}(\mathcal{A}/J)$. Now, it follows from the above discussion that \widetilde{D} is also \mathbb{C} -linear, and so it is $(\widehat{\sigma}, \widehat{\tau})$ -inner. Hence there exists $y \in Y$ such that

$$D(a) = \tilde{D}(a+J) = y \cdot \hat{\sigma}(a+J) - \hat{\tau}(a+J) \cdot y = y \cdot \sigma(a) - \tau(a) \cdot y.$$

Therefore D is a module (σ, τ) -inner derivation.

Conversely, suppose that $\sigma, \tau \in \operatorname{Hom}_{\mathfrak{A}}(\mathcal{A})$ are epimorphisms, and $D: \mathcal{A}/J \longrightarrow ((\mathcal{A}/J)_{(\hat{\sigma},\hat{\tau})})^*$ is a $(\hat{\sigma}, \hat{\tau})$ -derivation. We define $\tilde{D}: \mathcal{A} \longrightarrow ((\mathcal{A}/J)_{(\sigma,\tau)})^*$ by $\tilde{D}(a) = D(a + J)$, for all $a \in \mathcal{A}$. Lemma 3.8 shows that when \mathfrak{A} acts on \mathcal{A} trivially from left or right, then \mathcal{A}/J is a commutative \mathfrak{A} -module and thus $Y = J^{\perp} \subseteq \mathcal{A}^*$. Hence \tilde{D} could be considered as a map from \mathcal{A} to Y. Now, for each $\alpha \in \mathfrak{A}$ and $a \in \mathcal{A}$ we have

$$\tilde{D}(\alpha \cdot a) = D(\alpha \cdot a + J) = D(\phi(\alpha)a + J) = \phi(\alpha)D(a + J) = \alpha \cdot \tilde{D}(a)$$

and

$$D(a \cdot \alpha) = D(a \cdot \alpha + J) = D(\phi(\alpha)a + J) = \phi(\alpha)D(a + J) = D(a) \cdot \alpha$$

Also, for $a, b \in \mathcal{A}$ we obtain $\tilde{D}(ab) = \tilde{D}(a) \cdot \sigma(b) + \tau(a) \cdot \tilde{D}(b)$. Thus \tilde{D} is a (σ, τ) -module derivation. Due to (σ, τ) -weak module amenability of \mathcal{A} , there exists $y \in Y \cong$

 $((\mathcal{A}/J)_{(\sigma,\tau)})^*$ such that $\tilde{D}(a) = \sigma(a) \cdot y - y \cdot \tau(a)$, and so $D(a+J) = \hat{\sigma}(a+J) \cdot y - y \cdot \hat{\tau}(a+J)$.

The Banach algebras with compatible \mathfrak{A} -module structure could be considered as objects of a category $\mathfrak{C}_{\mathfrak{A}}$ whose morphisms are bounded \mathfrak{A} -module maps. We are interested in the case where \mathfrak{A} is an injective object in $\mathfrak{C}_{\mathfrak{A}}$, that is for any objects $A, B \in \mathfrak{C}_{\mathfrak{A}}$ and monomorphism $\theta: B \longrightarrow A$ and morphism $\mu: B \longrightarrow \mathfrak{A}$, there exists a morphism $\tilde{\mu}: A \longrightarrow \mathfrak{A}$ such that $\mu = \tilde{\mu} \circ \theta$. This is the case when $\mathfrak{A} = \mathbb{C}$ (Hahn Banach Theorem).

3.10. Proposition. Let \mathcal{A} be a commutative \mathfrak{A} -module and let σ, τ be in $\operatorname{Hom}_{\mathfrak{A}}(\mathcal{A})$ such that $\sigma(a)b = a\tau(b)$ for all $a, b \in \mathcal{A}$. Also let \mathfrak{A} be injective and has a bounded approximate identity. If \mathcal{A} is (σ, τ) -weakly module amenable, then span $(\mathcal{A}\mathfrak{A}\mathcal{A})$ is dense in \mathcal{A} .

Proof. Let B be the linear span of (\mathcal{AAA}) . Suppose that $\overline{B} \neq \mathcal{A}$. Take $a_0 \in \mathcal{A} \setminus \overline{B}$ and $f_1 \in \mathcal{A}^*$ such that $f_1(a_0) = 1$ and $f_1|_{\overline{B}} = 0$. Since a_0 is not in \overline{B} , similar to the proof of [2, lemma 2.1] we can construct an epimorphism $f_2 : \mathcal{A} \longrightarrow \mathfrak{A}$ such that $f_2|_{\overline{B}} = 0$ and $f_2(a_0) = 1$. Define $D : \mathcal{A} \longrightarrow ((\mathcal{A})_{(\sigma,\tau)})^*$ via $D(a) = f_2(a) \cdot f_1$ for all $a \in \mathcal{A}$. Then D is (σ, τ) -module derivation and hence there exists $g \in (\mathcal{A}_{(\sigma,\tau)})^*$ such that $D(a) = g \cdot \sigma(a) - \tau(a) \cdot g$, for all $a \in \mathcal{A}$. Thus, we have

$$\begin{split} 1 &= f_2(a_0)f_1(a_0) = \langle D(a_0), a_0 \rangle \\ &= \langle g \cdot \sigma(a_0) - \tau(a_0) \cdot g, a_0 \rangle \\ &= \langle g, \sigma(a_0)a_0 - \tau(a_0)a_0 \rangle = 0, \end{split}$$

which is a contradiction.

3.11. Corollary. With the hypotheses of the above Proposition, \mathcal{A} is (0,0)-weakly module amenable if and only if span (\mathcal{AAA}) is dense in \mathcal{A} .

Proof. Let $D : \mathcal{A} \to (\mathcal{A}_{(0,0)})^*$ be a (0,0)-module derivation. Then we have $D(\mathcal{AAA}) = \{0\}$. Since D is continuous, we have D = 0. So D is (0,0)-inner. Conversely, let \mathcal{A} be (0,0)-weakly amenable. Then by Proposition (3.10), $\overline{\mathcal{AAA}} = \mathcal{A}$.

3.12. Remark. Let \mathcal{A} be a commutative \mathfrak{A} -module and let $\sigma, \tau \in \operatorname{Hom}_{\mathfrak{A}}(\mathcal{A})$ such that $\sigma(a)b = a\tau(b)$ for all $a, b \in \mathcal{A}$. Then the second adjoints σ'' and τ'' belong to $\operatorname{Hom}_{\mathfrak{A}}(\mathcal{A}^{**})$ and are also $w^* \cdot w^*$ -continuous. We thus can show that $\sigma''(F) \Box G = F \Box \tau''(G)$, where \Box is the first Arens product on the second dual \mathcal{A}^{**} (for more information about this product see [10]). Now, if \mathcal{A}^{**} is (σ'', τ'') -weakly amenable then by Proposition 3.10, $\overline{\mathcal{A}^{**}\mathfrak{A}\mathcal{A}^{**}} = \mathcal{A}^{**}$. It follows from the proof of [2, Proposition 3.6] that $\overline{\mathcal{A}\mathfrak{A}\mathcal{A}} = \mathcal{A}$. Therefore \mathcal{A} is (0, 0)-weakly amenable by Corollary 3.11.

4. (σ, τ) -weak module amenability of semigroup algebras

Let S be an (discrete) inverse semigroup with the set of idempotents E_S (or E), where the order of E is defined by

$$e \le d \iff ed = e \quad (e, d \in E).$$

It is easy to show that E is a (commutative) subsemigroup of S [17, Theorem V.1.2]. In particular $\ell^1(E)$ could be regarded as a subalgebra of $\ell^1(S)$, and thereby $\ell^1(S)$ is a Banach algebra and a Banach $\ell^1(E)$ -module with compatible actions [1]. We consider the following module actions $\ell^1(E)$ on $\ell^1(S)$:

$$(4.1) \qquad \delta_e \cdot \delta_s = \delta_s, \ \delta_s \cdot \delta_e = \delta_{se} = \delta_s * \delta_e \quad (s \in S, e \in E).$$

If ϕ is a continuous linear function on $\ell^1(E)$, then for each $e \in E$ we have $\phi(\delta_e) = 1$. So for each $f = \sum_{e \in E} f(e)\delta_e \in \ell^1(E)$ and $g = \sum_{s \in S} g(s)\delta_s \in \ell^1(S)$, we get

$$f \cdot g = \left(\sum_{e \in E} f(e)\delta_e\right) \cdot \left(\sum_{s \in S} g(s)\delta_s\right) = \sum_{s \in S, e \in E} f(e)g(s)\delta_e \cdot \delta_s$$
$$= \sum_{s \in S, e \in E} f(e)g(s) \cdot \delta_s = \left(\sum_{e \in E} f(e)\right)\left(\sum_{s \in S} g(s)\delta_s\right) = \phi(f)g(s)$$

Therefore multiplication from left is trivial. In this case, the ideal J (see section 3) is the closed linear span of $\{\delta_{set} - \delta_{st} : s, t \in S, e \in E\}$. We consider an equivalence relation on S as follows:

$$s \approx t \iff \delta_s - \delta_t \in J \ (s, t \in S).$$

For an inverse semigroup S, the quotient S/\approx is a discrete group (see [3] and [23]). As in [24, Theorem 3.3], we may observe that $\ell^1(S)/J \cong \ell^1(S/\approx)$. We consider the following module actions $\ell^1(E)$ on $\ell^1(S)/J \cong \ell^1(S/\approx)$:

$$\delta_e \cdot (\delta_s + J) = \delta_s + J, \ (\delta_s + J) \cdot \delta_e = \delta_{se} + J \quad (s \in S, e \in E).$$

Indeed $\delta_s - \delta_{se} \in J$ if and only if $\delta_{st} - \delta_{set} \in J$, for all $s, t \in S, e \in E$. Therefore $\ell^1(S/\approx)$ is a commutative $\ell^1(E)$ -bimodule. For each $\sigma \in \operatorname{Hom}_{\ell^1(E)}(\ell^1(S))$, we define $\widehat{\sigma}$ in $\operatorname{Hom}(\ell^1(S/\approx))$ by $\widehat{\sigma}(\delta_{[s]}) = \delta_{[\sigma(s)]}$ and extend by linearity, where [s] denote the equivalence class of s in S/\approx (see the explanations after Proposition 3.7). We see that all conditions of Theorem 3.9 hold for $\sigma, \tau \in \operatorname{Hom}_{\ell^1(E)}(\ell^1(S))$ which are also epimorphism. Now, if $\ell^1(S)$ is (σ, τ) -weakly module amenable then $\ell^1(S/\approx)$ is $(\widehat{\sigma}, \widehat{\tau})$ -weakly amenable. We are now going to prove the main result in this section.

4.1. Theorem. Let S be an inverse semigroup with the set of idempotents E. Then for each σ and τ in $\operatorname{Hom}_{\ell^1(E)}(\ell^1(S))$, the semigroup algebra $\ell^1(S)$ is (σ, τ) -weakly module amenable as an $\ell^1(E)$ -module, with trivial left action.

Proof. Suppose firstly that σ or τ is zero map. Since S/\approx is a discrete group, the group algebra $\ell^1(S/\approx)$ has an identity, and thus $\ell^1(S/\approx)$ is $(\hat{\sigma}, 0)$ and $(0, \hat{\sigma})$ -weakly amenable by [8, Example 4.2]. With the actions considered in (4.1), for each $f \in \ell^1(S)$, we have

$$f = \sum_{s \in S} f(s)\delta_s = \sum_{s \in S} f(s)\delta_s * \delta_{s^*s} = \sum_{s \in S} f(s)\delta_s \cdot \delta_{s^*s}.$$

Consequently f belongs to the closed linear span of $\ell^1(S) \cdot \ell^1(E) = \{\delta_s \cdot \delta_e : e \in E, s \in S\}$. This shows that $\ell^1(S)$ is a right essential $\ell^1(E)$ -module. For $\mathcal{A} = \ell^1(S)$ and $\mathfrak{A} = \ell^1(E)$, the result of this case follows from Theorem 3.9. For the case that both σ and τ are non-zero homomorphisms, it is proved in [14, Theorem 2.5] that for any locally compact group G, the group algebra $L^1(G)$ is (φ, ψ) -weakly amenable for all $\varphi, \psi \in \text{Hom}(L^1(G))$. In particular, $\ell^1(S/\approx)$ is $(\widehat{\sigma}, \widehat{\tau})$ -weakly amenable. Now, Theorem 3.9 again shows that $\ell^1(S)$ is (σ, τ) -weakly module amenable.

Note that for an amenable inverse semigroup S, $\ell^1(S)$ is module $\ell^1(E)$ -amenable [1, Theorem 3.1] and so, it is module (σ, τ) -amenable [7, Corollary 2.3]. We close this section by two examples.

4.2. Example. Let S be a commutative inverse semigroup. Then $\ell^1(S)$ is a commutative Banach algebra and commutative Banach $\ell^1(E)$ -module with the following actions:

$$\delta_e \cdot \delta_s = \delta_s \cdot \delta_e = \delta_{es} \quad (s \in S, e \in E).$$

We consider the mapping σ as follows:

$$\sigma: \ell^1(S) \longrightarrow \ell^1(S); \ \sum_{s \in S} f(s)\delta_s \mapsto \sum_{s \in S} \overline{f(s)}\delta_{s^*} \quad (s \in S),$$

A. Bodaghi

where $\overline{f(s)}$ is the complex conjugate of f(s). Obviously $\sigma \in Hom_{\ell^1(E)}(\ell^1(S))$. Also, σ is also \mathbb{C} -linear and σ^2 is the identity map. It is shown in [4, Theorem 3.1] that $\ell^1(S)$ is weakly module amenable. Now it follows from Corollary 3.3 that $\ell^1(S)$ is (σ, σ) -weakly module amenable. Note that if S is not amenable, $\ell^1(S)$ is not module amenable [1, Theorem 3.1].

4.3. Example. Let S be an inverse semigroup with the set of idempotents E. Let $C^*(S)$ be the enveloping C^* -algebra of $\ell^1(S)$ (see [13]). Then by continuity, the action of $\ell^1(E)$ on $\ell^1(S)$ extends to an action of $C^*(E)$ on $C^*(S)$. The C^* -algebra $C^*(E)$ has a bounded approximate identity, and so it is $(\sigma, 0)$ and $(0, \sigma)$ -weakly module amenable by Proposition 3.6 and [8, Example 4.2], for all $\sigma \in Hom_{C^*(E)}(C^*(S))$. Now, suppose that σ^2 is the identity map (see Example 4.2). Since $C^*(S)$ is weakly amenable [16, Theorem 1.10], $C^*(S)$ is (σ, σ) -weakly module amenable by Corollary 3.3. However, if $C^*(S)$ is nuclear then it is amenable [15]. By [1, Proposition 2.1], $C^*(S)$ is module amenable as an $C^*(E)$ -module. Therefore $C^*(S)$ is module (σ, τ) -amenable, for all $\sigma, \tau \in Hom_{C^*(E)}(C^*(S))$ by [7, Corollary 2.3].

Acknowledgements. The author express his sincere thanks to the referee for the careful and detailed reading of the manuscript and very helpful suggestions that improved the manuscript substantially.

References

- [1] M. Amini, Module amenability for semigroup algebras, Semigroup Forum 69, 243–254, 2004.
- [2] M. Amini and A. Bodaghi, Module amenability and weak module amenability for second dual of Banach algeras, Chamchuri J. Math. 2, No. 1, 57–71, 2010.
- [3] M. Amini, A. Bodaghi and D. Ebrahimi Bagha, Module amenability of the second dual and module topological center of semigroup algebras, Semigroup Forum 80, 302–312, 2010.
- [4] M. Amini and D. Ebrahimi Bagha, Weak Module Amenability for semigroup algebras, Semigroup Forum 71, 18–26, 2005.
- [5] W. G. Bade, P. C. Curtis and H. G. Dales, Amenability and weak amenability for Beurling and Lipschits algebra, Proc. London Math. Soc. 55 (3), 359–377, 1987.
- [6] A. Bodaghi, Semigroup algebras and their weak module amenability, J. Appl. Func. Anal. 7, No. 4, 332–338, 2012.
- [7] A. Bodaghi, Module (φ, ψ)-amenability of Banach algeras, Arch. Math (Brno) 46, No. 4, 227–235, 2010.
- [8] A. Bodaghi, M. Eshaghi Gordji and A. R. Medghalchi, A generalization of the weak amenability of Banach algebras, Banach J. Math. Anal. 3, No. 1, 131–142, 2009.
- S. Bowling and J. Duncan, Order cohomology of Banach semigroup algebras, Semigroup Forum 56, 130–145, 1998.
- [10] H. G. Dales, Banach Algebras and Automatic Continuity, Oxford University Press, Oxford, 2000.
- [11] R. S. Doran and J. Wichmann, Approximate Identities and Factorization in Banch Modules, Lecture Notes in Mathematics 768, Springer, Berlin, 1979.
- [12] J. Duncan and I. Namioka, Amenability of inverse semigroups and their semigroup algebras, Proc. Roy. Soc. Edinburgh 80A, 309-321, 1988.
- [13] J. Duncan and A. L. T. Paterson, C^{*}-algebras of inverse semigroups, Proc. Roy. Soc. Edinburgh Soc. 28, 41–58, 1985.
- [14] M. Eshaghi Gordji and A. Jabbari, Generalization of weak amenability of group algebras, preprint.
- [15] U. Haagerup, All nuclear C*-algebras are amenable, Invent. Math. 74, 305-319, 1983.
- [16] U. Haagerup and N. J. Laustsen, Weak amenability of C*-algebras and theorem of Goldstien, In Banach algebra 97. 223–243.
- [17] J. M. Howie, An Introduction to Semigroup Theory, Academic Press, London, 1976.

- [18] B. E. Johnson, Cohomology in Banach Algebras, Memoirs Amer. Math. Soc. 127, American Math. Soc., Providence, 1972.
- [19] B. E. Johnson, Derivation from $L^1(G)$ into $L^1(G)$ and $L^{\infty}(G)$, Lecture Note in Math. **1359**, 191–198, 1988.
- [20] B. E. Johnson, Weak amenability of group Algebras, Bull. London Math. Soc. 23 (3), 281– 284, 1991.
- [21] M. S. Moslehian and A. N. Motlagh, Some notes on (σ, τ)-amenability of Banach algebras , Stud. Univ. Babes-Bolyai. Math. 53, No. 3, 57–68, 2008.
- [22] A. L. T. Paterson, Amenability, American Math. Soc., Providence, Rhode Island, 1988.
- [23] H. Pourmahmood-Aghababa, (Super)Module amenability, module topological center and semigroup algebras, Semigroup Forum. 81, 344–356, 2010.
- [24] R. Rezavand, M. Amini, M. H. Sattari and D. Ebrahimi Bagha, Module Arens regularity for semigroup algebras, Semigroup Forum. 77, 300–305, 2008.