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Abstract

In this study, we derived new formulations for the first and second
order inclusion probabilities of a ranked set sample in a finite population
setting. Gökpınar and Özdemir (2010) developed a formula to calculate
the first order inclusion probabilities. However, the formula given in
this study is much easier than the one given by Gökpınar and Özdemir
(2010). Second order inclusion probabilities are computed based on
the formulas which are used for the calculation of first order inclusion
probabilities. Also, we give a numerical example to show the calculation
of the formulas and Matlab codes which give first and second inclusion
probabilities for any set and population sizes.
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1. Introduction

Ranked Set Sampling (RSS) is an efficient sampling technique than the simple random
sampling (SRS) for improving the accuracy of the estimation of means. RSS was first
introduced by McIntyre (1952) for estimate the mean of pasture yields. In recent years,
RSS is used in many fields such as the environment, ecology and agriculture. Some
applications in these fields can be found in the studies of Johnson et.al. (1993) and
Al-Saleh et al(2000). Also, some recent ideas about RSS can be found in Bouza(2005).

In RSS, the inclusion probabilities of the population units are different from each
other, and it is difficult to determine the inclusion probabilities for all sample sizes. Al-
Saleh and Samawi (2007) obtained the inclusion probabilities in RSS for the set size 2

and 3. Özdemir and Gökpınar (2007) obtained the inclusion probabilities in RSS for

all set sizes when the cycle size is one, and Özdemir and Gökpınar (2008) have adapted
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this procedure to Median Ranked Set Sampling (MRSS) with any set and cycle sizes.

Gökpınar and Özdemir (2010) generalized the formula of inclusion probabilities in RSS
for all cycle and set sizes.

Jafari et. al. (2010) derived the first and second order inclusion probabilities for
Level 0 RSS procedure (sampling with replacement) of Deshpande et. al. (2006) and
developed several designs based estimators of the population mean. Recently, Gökpınar
and Özdemir (2011) defined the Horvitz-Thompson (HT) estimator of the population
mean using the inclusion probabilities of a ranked set sample in a finite population setting.
Furthermore, they give a calculation formula of the second order inclusion probabilities
which is required to calculate the variance of the HT estimator.

In this study, we give a simple formula to calculate the first and second order inclusion
probabilities in RSS. In the second section of this study, we give the selection procedure,
required definitions, and the formulas of these inclusion probabilities in RSS. In the third
section, a numerical example is given to show the calculation of the formula. Concluding
remarks are given in section 4. Also in the appendix, we give Matlab codes to calculate
the first and second inclusion probabilities for any set and population sizes.

2. Inclusion Probabilities in RSS

Let the population units be X1<X2<...<XN and let a ranked set sample from this
population be Y1,Y2,...,Ym based on the level 1 sampling procedure. Level 1 sampling
procedure is given as follows (Deshphande et al. 2006, Al-Saleh and Samawi, 2007):

In the gth selection,
1. A simple random sample of size m is selected without replacement from the popu-

lation.
2. The sampled units are ranked with respect to the variable of interest and the gth

order statistic is selected for measurement.
3. All other m-1 units are returned to the population.
4. The steps 1-3 are repeated for g=1,2,...,m to obtain a ranked set sample of size m.
The entire cycle may be repeated, if necessary, r times to produce a ranked set sample

of size mr=n. In this study, we only considered the case of r=1. A generalization for
r>1 can be easily derived.

To calculate the first and second order inclusion probabilities, some basic definitions
are required.

Ai is the event of selecting the ith population unit in the sample (i=1,2,. . . ,N).
Aj is the event of selecting the jth population unit in the sample (j=1,2,. . . ,N).

lg(i, j) =


1 t < i
2 t > j
3 i < t < j

where i<j and t is the rank of the population unit which is selected in the gth selection.
If i=j, then lg(i, i) = lg(i) can be defined as;

lg(i) =

{
1 t < i
2 t > i

B1
g(i, j)is the event of selecting smaller population unit than the ith population unit in

the gth selection (lg(i, j)=1). If i=j, then B1
g(i, i) = B1

g(i).

B2
g(i, j)is the event of selecting greater population unit than the j th population unit

in the gth selection (lg(i, j)=2). If i=j, then B2
g(i, i) = B2

g(i).

B3
g(i, j)is the event of selecting greater population unit than i th and smaller population

unit than the jth population unit in the gth selection (lg(i, j)=3).
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ag(i) is the number of smaller population units than the i th population unit selected
before the gth selection.
ag(j)is the number of smaller population units than the j th population unit selected

before the gth selection.
So there is a relationship between ag(i) and {l1(i), l2(i), ..., lg−1(i)}as given below

ag(i) = 2(g − 1)−
g−1∑
u=1

lu(i)

By using these definitions, the probability of selecting the i th population unit in the
sample can be obtained as

(2.1) πN (Ai) = 1− πN (Ac
i
) i = 1, 2, . . . , N

where

πN (Ac
i
) =

2∑
l1(i),l2(i),...,lm(i)=1

P
(
B

l1(i)
1 (i) ∩Bl2(i)

2 (i)∩... ∩Blm(i)
m (i)

)

(2.2) =

2∑
l1(i),l2(i),...,lm(i)=1

m∏
g=1

Pag(i)

(
B

lg(i)
g (i)|Bl1(i)

1 (i) ∩Bl2(i)
2 (i) ∩ ... ∩Blg−1(i)

g−1 (i)
)

We derive Pag(i)

(
B

lg(i)
g (i)|Bl1(i)

1 (i) ∩Bl2(i)
2 (i) ∩ ... ∩Blg−1(i)

g−1 (i)
)

in the following theo-
rems.

2.1. Theorem. The probability, Pag(i)

(
B1

g(i)|Bl1(i)
1 (i) ∩Bl2(i)

2 (i) ∩... ∩Blg−1(i)

g−1 (i)
)

in

Eq. (2.2), can be written as follows when ag(i)=0;

(2.3) P0

(
B1

g(i)|B2
1(i) ∩B2

2(i)... ∩B2
g−1(i)

)

=



0 i = 1, 2, ..., g

∑m
u=g

 i− 1
u

 N − i− g + 2
m− u


 N − g + 1

m

 i = g + 1, ...N −m+ 1

1 i = N −m+ 2, ..., N.

Proof. P0

(
B1

g(i)|B2
1(i) ∩B2

2(i) ∩ ... ∩B2
g−1(i)

)
means that the probability of selection of

a smaller unit than the i-th population unit in the g-th selection under the condition that
there is no a smaller population unit selected before the g-th selection. So, there are i-1
smaller population units and N-i+1-(g-1) =N-i-g+2 greater population units from the
i-th population unit in the g-th selection. Also, we should choose at least g population
units smaller than i-th population unit to choose a population unit smaller than the i-th
population unit. So, smaller population units than any of the first g population units
(i = 1, 2, ..., g) have no chance to be selected in the g-th selection. On the other hand,
greater population units than any of the last m-1 population units(i = N −m+ 2, ..., N)
have no chance to be selected in the g-th selection. Therefore, smaller population units
than any of the last m-1 population units(i = N −m+ 2, ..., N) have a %100 probability
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to be selected in the g-th selection. So,

P0

(
B1

g(i)|B2
1(i) ∩B2

2(i)... ∩B2
g−1(i)

)
=

 i− 1
g

 N − i− g + 2
m− g


 N − g + 1

m

 + ...+

 i− 1
m

 N − i− g + 2
0


 N − g + 1

m



=
∑m

u=g

 i− 1
u

 N − i− g + 2
m− u


 N − g + 1

m

 , i = g + 1, ...., N −m+ 1.

This completes the proof. �

The other probabilities required to calculate the inclusion probabilities can be obtained
by using Theorem 2.1. The selection probability of the population unit smaller than
i′ = i + ag(i′) (ag(i′) = 1, 2, ..., g − 1) in the g-th selection when ag(i′) > 0, is equal to
the selection probability of the population unit smaller than the i-th population unit in
the g-th selection when ag(i) = 0. This probability is stated at Theorem 2.2.

2.2. Theorem. Pag(i′)

(
B1

g(i′)|Bl1(i
′)

1 (i′) ∩Bl2(i
′)

2 (i′)... ∩Blg−1(i
′)

g−1 (i′)
)

can be written as

follows when i′ = i+ ag(i′) (ag(i′) = 1, 2, ..., g − 1).

Pag(i′)

(
B1

g(i′)|Bl1(i
′)

1 (i′) ∩ ... ∩Blg−1(i
′)

g−1 (i′)
)

=

Pag(i)=0

(
B1

g(i)|B2
1(i) ∩ ... ∩B2

g−1(i)
)
.(2.4)

Proof. In the g-th selection, the number of population units smaller than i′ are

i′ − ag(i′)− 1 = i+ ag(i′)− ag(i′)− 1 = i− 1.

By the same way, the number of population units equal or greater than i′ are

N− i′+1−(g−1−ag(i′)) = N−(i+ag(i′))+1−(g−1−ag(i′)) = N− i−g+2.

So,

Pag(i′)

(
B1

g(i′)|Bl1(i
′)

1 (i′) ∩Bl2(i
′)

2 (i′) ∩ ... ∩Blg−1(i
′)

g−1 (i′)
)

=

m∑
u=g

(
i− 1
u

)(
N − i− g + 2

m− u

)
(
N − g + 1

m

) .

This probability is equal to Pag(i)=0

(
B1

g(i)|B2
1(i) ∩B2

2(i)... ∩B2
g−1(i)

)
.

This completes the proof. �

We also required the probability of selecting of a greater unit from the i-th population
unit. This probability is stated at Theorem 2.3.

2.3. Theorem. Pag(i)

(
B2

g(i)|Bl1(i)
1 (i) ∩Bl2(i)

2 (i) ∩ ... ∩Blg−1(i)

g−1 (i)
)

can be written as

follows:

(2.5)
Pag(i)

(
B2

g(i)|Bl1(i)
1 (i) ∩Bl2(i)

2 (i) ∩ ... ∩Blg−1(i)

g−1 (i)
)

= 1− Pag(i+1)=ag(i)

(
B1

g(i+ 1)|Bl1(i+1)
1 (i+ 1) ∩ ... ∩Blg−1(i+1)

g−1 (i+ 1)
)
.
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Proof. From the basic complement rule of probability, P (Ac) = 1 − P (A), we know

that Pag(i)

(
{B2

g(i) |Bl1(i)
1 (i) ∩Bl2(i)

2 (i)... ∩Blg−1(i)

g−1 (i)}
)

is the selection probability of

a greater unit from i-th population unit (i+1,i+2,. . . ,N ) when ag(i) is known and

Pag(i+1)=ag(i)

(
B1

g(i+ 1)|Bl1(i+1)
1 (i+ 1) ∩ ... ∩Blg−1(i+1)

g−1 (i+ 1)
)

is the selection proba-

bility of a smaller unit from (i+1)-th population unit (1,2,. . . i) when ag(i+ 1) = ag(i).
So, these probabilities are complement to each other. This completes the proof. �

By using these definitions, the probability of selecting both the ith and jth population
units in the sample can be obtained as

πN (Ai ∩Aj) = 1− πN ((Ai ∩Aj)
c) i, j = 1, 2, . . . , N (i < j)(2.6)

= 1−
[
πN (Ac

i ) + πN

(
Ac

j

)
− πN

(
Ac

i ∩Ac
j

)]
where πN (Ac

i
) and πN

(
Ac

j

)
probabilities can be calculated from the Theorems 2.1, 2.2,

2.3. The probability πN (Ac
i
∩Ac

j) can be defined as follows;

πN (Ac
i
∩Ac

j) =

3∑
l1(i,j),l2(i,j),...,lm(i,j)=1

P
(
B

l1(i,j)
1 (i, j) ∩ ... ∩Blm(i,j)

m (i, j)
)

=

3∑
l1(i,j),l2(i,j),...,lm(i,j)=1

m∏
g=1

Pag(i),ag(j)(
B

lg(i,j)
g (i, j)|Bl1(i,j)

1 (i, j) ∩ ... ∩Blg−1(i,j)

g−1 (i, j)
)

(2.7)

The conditional probability of B
lg(i,j)
g (i, j) can be calculated from Theorems 2.1, 2.2, 2.3.

when lg(i,j )=1 and lg(i,j )=2. When lg(i,j )=3, the conditional probability of B
lg(i,j)
g (i, j)

is given as following Theorem 2.4.

2.4. Theorem. Pag(i),ag(j)

(
B3

g(i, j)|Bl1(i,j)
1 (i, j) ∩Bl2(i,j)

2 (i, j)... ∩Blg−1(i,j)

g−1 (i, j)
)

can

be written as follows:

(2.8) Pag(i),ag(j)

(
B3

g(i, j)|Bl1(i,j)
1 (i, j) ∩ ... ∩Blg−1(i,j)

g−1 (i, j)
)

= Pag(j)

(
B1

g(j)|Bl1(j)
1 (j) ∩ ... ∩Blg−1(j)

g−1 (j)
)

−Pag(i+1)=ag(i)

(
B1

g(i+ 1)|Bl1(i+1)
1 (i+ 1) ∩ ... ∩Blg−1(i+1)

g−1 (i+ 1)
)

Proof. Pag(j)

(
B1

g(j)|Bl1(j)
1 (j) ∩ ... ∩Blg−1(j)

g−1 (j)
)

is the probability of selecting smaller

population unit than the j th population unit in the gth selection when there are ag(j )
smaller unit then jth population unit. Also,

Pag(i+1)=ag(i)

(
B1

g(i+ 1)|Bl1(i+1)
1 (i+ 1) ∩ ... ∩Blg−1(i+1)

g−1 (i+ 1)
)

is the probability of selecting a smaller population unit than the (i+1)th population unit
in the gth selection when there are ag(i+1)= ag(i) smaller units then (i+1)th population
unit. So, from the basic rules of probability, the probability of a population unit between
i th and j th unit including in a ranked set sample can be obtained by using the difference
of these two probabilities. This completes the proof. �

By using Theorem 2.1, 2.2, 2.3 and 2.4 we can obtain the inclusion probabilities given
in Eq. (2.1) and (2.6). A simple example for calculation is given in the following section.
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3. Computation of the Formula

By using the formulas in previous section, the inclusion probabilities for the all units in
the population can be derived easily. For example, when N=5 and m=3, the population
consists of X1<X2<X3<X4<X5 elements. The inclusion probability of Xi (i=1, 2, 3, 4,
5) can be written using Eq. (2.1) as follows:
πN (Ai) = 1− πN (Ac

i
) i=1,2,3,4,5

where

πN (Ac
i
) =

2∑
l1,l2,l3=1

P
(
Bl1

1 (i) ∩Bl2
2 (i) ∩Bl3

3 (i)
)

=

2∑
l1,l2,l3=1

Pa3(i)

(
Bl3

3 (i)|Bl1
1 (i) ∩Bl2

2 (i)
)
Pa2(i)

(
Bl2

2 (i)|Bl1
1 (i)

)
Pa1(i)

(
Bl1

1 (i)
)
.

here a1(i) = 0, a2(i) = 0, 1 and a3(i) = 0, 1, 2.
By using Theorem 2.1, the probability of selecting a smaller unit than the i-th popu-

lation unit when g=1, can be written as follows;

P0

(
B1

1(i)
)

=



0 i = 1

∑3
u=1

 i− 1
u

 6− i
3− u


 5

3

 i = 2, 3

1 i = 4, 5.

P0

(
B1

1(1)
)

= 0; P0

(
B1

1(2)
)

= 6/10;

P0

(
B1

1(3)
)

= 9/10; P0

(
B1

1(4)
)

= 1; P0

(
B1

1(5)
)

= 1.

From Theorem 2.3, it can be written as follows;

P0

(
B2

1(1)
)

= 4/10; P0

(
B2

1(2)
)

= 1/10;

P0

(
B2

1(3)
)

= 0; P0

(
B2

1(4)
)

= 0; P0

(
B2

1(5)
)

= 0.

We can write the other inclusion probabilities by the same way. In Table 1, the inclusion
probabilities of the all population units are given in the gth selection for all possible
combinations of (l1, l2, l3). In Table 1, Pl1,l2,l3 is defined as follows;

Pl1,l2,l3 = P
(
Bl1

1 (i) ∩Bl2
2 (i) ∩Bl3

3 (i)
)

= Pa3(i)

(
Bl3

3 (i)|Bl1
1 (i) ∩Bl2

2 (i)
)
Pa2(i)

(
Bl2

2 (i)|Bl1
1 (i)

)
Pa1(i)

(
Bl1

1 (i)
)
.

The obtained inclusion probabilities in Table 1 are the same as the inclusion probabil-
ities which are given in the study of Gökpınar and Özdemir (2010). But this formula is
much easier and simpler than the formula of the inclusion probabilities given in Gökpınar
and Özdemir (2010).

By the same way, the second order inclusion probabilities can be obtained as given in
Table 2.

As seen from Table 1, the extreme units have greater inclusion probabilities than the
others. The following figures are constructed for different population and set sizes.

As seen from Figures 1-6, units from both extremes (e.g. X1, XN ) have greater second
order inclusion probabilities than the others for all set and population sizes. Also units in
the mid section of the population have smaller second order inclusion probabilities. The
effects of first and second order inclusion probabilities on HT estimator under populations
with different coefficient of variation and skewness values are investigated at Gökpınar
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Table 1. The first order inclusion probabilities of the population
units with N=5, m=3

Xi (l1,l2,l3) (1,1,1) (1,1,2) (1,2,1) (1,2,2) (2,1,1) (2,1,2) (2,2,1) (2,2,2) πN (Ac
i
) πN (A

i
)

X1 g=1 0 0 0 0 0.40 0.40 0.40 0.40

g=2 0 0 1 1 0 0 1 1 0.40 0.60
g=3 0 1 0 1 0 1 0 1

Pl1,l2,l3 0 0 0 0 0 0 0 0.40

X2 g=1 0.60 0.60 0.60 0.60 0.10 0.10 0.10 0.10
g=2 0 0 1 1 0 0 0.50 0.50 0.65 0.35

g=3 0 1 0 1 0 1 0 1

Pl1,l2,l3 0 0 0 0.60 0 0 0 0.05

X3 g=1 0.90 0.90 0.90 0.90 0 0 0 0

g=2 0 0 0.50 0.50 0.50 0.50 0 0 0.45 0.55

g=3 0 1 0 1 0 1 0 0

Pl1,l2,l3 0 0 0 0.45 0 0 0 0

X4 g=1 1 1 1 1 0 0 0 0

g=2 0.50 0.50 0 0 1 1 0 0 0.50 0.50
g=3 0 1 0 0 0 0 1 1

Pl1,l2,l3 0 0.50 0 0 0 0 0 0

X5 g=1 1 1 1 1 0 0 0 0

g=2 1 1 0 0 1 1 0 0 0 1
g=3 0 0 1 0 1 0 0 0

Pl1,l2,l3 0 0 0 0 0 0 0 0

Table 2. The second order inclusion probabilities of the popula-
tion units with N=5, m=3

πN (Ai ∩Aj) X1 X2 X3 X4 X5

X1 - 0 0.30 0.30 0.60

X2 0 - 0.20 0.15 0.35

X3 0.30 0.20 - 0.05 0.55

X4 0.30 0.15 0.05 - 0.50

X5 0.60 0.35 0.55 0.50 -

and Özdemir(2012). The results of assigning larger probabilities to the extremes are also

discussed at Gökpınar and Özdemir(2012).

4. Concluding Remarks

In this study, we give a new formula for the first and the second order inclusion
probabilities in RSS which is simpler and easier than the previous ones. This formula
can be adapted to other modifications of RSS and can be generalized for any cycle sizes.
Furthermore, a MATLAB code is given for calculate the inclusion probabilities in the
Appendix.
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Figure 1. The second order inclusion probabilities of the popu-
lation units with N=20, m=3

Figure 2. The second order inclusion probabilities of the popu-
lation units with N=20, m=5
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Figure 3. The second order inclusion probabilities of the popu-
lation units with N=20, m=7

Figure 4. The second order inclusion probabilities of the popu-
lation units with N=50, m=3
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Figure 5. The second order inclusion probabilities of the popu-
lation units with N=50, m=5

Figure 6. The second order inclusion probabilities of the popu-
lation units with N=50, m=7



Simple Computational Formulas for Inclusion Probabilities... 127

References

[1] Al Saleh, M.F. and Samawi H.M. A note on inclusion probability in ranked set sampling
and some of its variations, Test 16, 198-209, 2007.

[2] Al-Saleh, M.F. and Al-Shrafat K. Estimation of average milk yield using ranked set sam-

pling, Environmetrics 12(4), 395-399, 2000.
[3] Bouza, C. N. Sampling using ranked sets: Concepts, results and perspectives, Revista In-

vestigación Operacional 26 (3), 275-292, 2005.

[4] Deshpande, J.V., Frey, J., Oztürk, O. Nonparametric ranked-set sampling confidence inter-
vals for quantiles of a finite population, Environmental and Ecological Statistics 13, 25-40,

2006.
[5] Johnson, G.D., Myers, W.L. Potential of ranked-set sampling for disaster assessment.

IUFRO S4.02 Conference on Inventory and Management Techniques in the Context of Cat-

astrophic Events, 1993.
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[7] Gökpınar, F., Özdemir, Y. A. Horvitz-Thompson Estimator Of The Population Mean Using
Inclusion Probabilities Of Ranked Set Sampling, Communications In Statistics: Theory and

Methods 41(6), 1029-1039, 2011.
[8] Jafari Jozani, M. and Johnson, B.C. Design based estimation for ranked set sampling in

finite populations, Environ. Ecol. Stat. 18, 663-685, 2011.

[9] McIntyre, G.A. A method of unbiased selective sampling, using ranked sets, Australian
Journal of Agricaltural Research 3, 385-390, 1952.
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Appendix A. Matlab Code for First Order Inclusion Probabili-
ties

function P =firstinc(N,m)
B(1:m,1:m,1:N,1:2)=0;
for i=1:N
for g=1:m
for u=g:m
B(1,g,i,1)=B(1,g,i,1)+nck(i-1,u)*nck(N-i-g+2,m-u)/nck(N-g+1,m);
if i>1
B(1,g,i-1,2)=1-B(1,g,i,1);
end
end
end
end
for ag=2:m
for i=1:N
for g=ag:m
for u=g:m
B(ag,g,i+ag-1,1)=B(1,g,i,1);
if i>1
B(ag,g,i-1,2)=1-B(ag,g,i,1);
end
end
end
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end
end
A=allperm([1 2],m);
for i=1:N
AT(:,1,i)=B(1,1,i,A(:,1));
end
for i=1:N
for j=2:m
for t=1:2ˆm
AT(t,j,i)=B(2*j-1-sum(A(t,1:j-1)),j,i,A(t,j));
end
end
end
for i=1:N
for t=1:2ˆm
c(i,t)=1;
for j=1:m
c(i,t)=c(i,t)*AT(t,j,i);
end
end
end
P=1-sum(c’);
B. Matlab Code for Second Order Inclusion Probabilities
function P2=secondinc(N,m)
B(1:m,1:m,1:N,1:2)=0;
B3(1:m,1:m,1:m,1:N,1:N)=0;
for i=1:N
for g=1:m
for u=g:m
B(1,g,i,1)=B(1,g,i,1)+nck(i-1,u)*nck(N-i-g+2,m-u)/nck(N-g+1,m);
if i>1
B(1,g,i-1,2)=1-B(1,g,i,1);
end
end
end
end
for ag=2:m
for i=1:N
for g=ag:m
for u=g:m
B(ag,g,i+ag-1,1)=B(1,g,i,1);
if i>1
B(ag,g,i-1,2)=1-B(ag,g,i,1);
end
end
end
end
end
for aig=1:m
for ajg=aig:m
for i=1:N
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for j=i+1:N
for g=1:m
B3(aig,ajg,g,i,j)=B(ajg,g,j,1)-B(aig,g,i+1,1);
if B3(aig,ajg,g,i,j)<0
B3(aig,ajg,g,i,j)=0;
end
end
end
end
end
end
A=allperm([1 2 3],m);
for k=1:size(A,1)
for l=1:size(A,2)
if A(k,l)==1;
AA{k,l}={1 1};
elseif A(k,l)==3;
AA{k,l}={2 1};
elseif A(k,l)==2;
AA{k,l}={2 2};
end
end
end
for i=1:N-1
for j=i+1:N
for k=1:3ˆm
if A(k,1)==1;
AT(i,j,k,1)=B(1,1,i,1);
elseif A(k,1)==2;
AT(i,j,k,1)=B(1,1,j,2);
elseif A(k,1)==3;
AT(i,j,k,1)=B3(1,1,1,i,j);
end
end
end
end
for i=1:N-1
for j=i+1:N
for l=2:size(A,2)
for k=1:3ˆm
if A(k,l)==1;
aa=2*l-1;
for t=1:l-1
aa=aa-AA{k,t}{1};
end
AT(i,j,k,l)=B(aa,l,i,AA{k,l}{1});
elseif A(k,l)==2
aa=2*l-1;
for t=1:l-1
aa=aa-AA{k,t}{2};
end



130 F. Gökpınar and Y. A. Özdemir

AT(i,j,k,l)=B(aa,l,j,AA{k,l}{2});
elseif A(k,l)==3
aai=2*l-1;
for t=1:l-1
aai=aai-AA{k,t}{1};
end
aaj=2*l-1;
for t=1:l-1
aaj=aaj-AA{k,t}{2};
end
AT(i,j,k,l)=B3(aai,aaj,l,i,j);
end
end
end
end
end
for i=1:N-1
for j=i+1:N
for k=1:3ˆm
c(i,j,k)=1;
for l=1:m
c(i,j,k)=c(i,j,k)*AT(i,j,k,l);
end
end
P(i,j)=sum(c(i,j,:));
end
end
P(N,1:N)=0;
P1=firstinc(N,m);
for i=1:N-1
for j=i+1:N
P2(i,j)=1-((1-P1(i))+(1-P1(j))-P(i,j));
end
end


