
Hacettepe Journal of Mathematics and Statistics
Volume 43 (1) (2014), 131 – 140

A NEW CLASS OF EXPONENTIAL
REGRESSION CUM RATIO ESTIMATOR IN

TWO PHASE SAMPLING

Nilgun Ozgul ∗ † and Hulya Cingi ∗ ‡

Received 07 : 03 : 2013 : Accepted 15 : 05 : 2013

Abstract

In this paper, we propose a new class of exponential regression cum
ratio estimator using the auxiliary variable for the estimation of the
finite population mean under two phase sampling scheme. The Bias
and Mean Square Error (MSE) equations of the proposed estimator
are obtained and compared with the MSE equations of some existing
estimators in two phase sampling. We find theoretically the proposed
estimator is always more efficient than classical ratio and regression es-
timators, Singh and Vishwakarma [17] ratio type exponential estimator
in two phase sampling. In addition, theoric results are supported by a
numerical example using original data sets.

Keywords: Two phase sampling, Auxiliary variable, Exponential estimation, Effi-
ciency.
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1. Introduction

In the sampling theory, the use of auxiliary information results in considerable im-
provement in the precision of estimators of population mean. The ratio and regression
methods have been widely used when auxiliary information is available. In literature,
number of authors introduced many ratio and regression type estimators by using general
linear transformation of the auxiliary variable. For recent development, exponential es-
timators have been widely studied by several authors such as Bahl and Tuteja [2], Singh
et al. [19] and Grover and Kaur [6].

Under various sampling schemes, many exponential estimators, using the population
information of the auxiliary variable, have been proposed. However, the knowledge on
the population mean of the auxiliary variable is not always available. In this situation,
two phase sampling method is the most popular sampling scheme in literature. Two
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phase sampling, first introduced by Neyman [13], is a cost effective technique in survey
sampling. It is typically used when it is very expensive to collect data on the variables
of interest, but it is relatively inexpensive to collect data on variables that are correlated
with the variables of interest. By these aspects two phase sampling is a powerful and
cost economical procedure for finding the reliable estimate in first phase sample for
the unknown parameters of the auxiliary variable x. Simply, a field survey is to be
undertaken to determine the average value of some characters of a population. For
example, the amount of money families spend on food. As the collection of data requires
long interviews by specially trained enumerators, the cost per family is quite high. The
cost of survey is constrained within a specified amount but the sample does not appear
to yield an estimate of desired precision because of the great variability of the character.
Nevertheless, the character is correlated with a second character that can be determined
at a lower cost per family so that a precise estimate of the distribution of this second
character is readily obtained. Hence, a more precise estimate of the original character can
be found by first estimating the distribution of the second character alone from a large
random sample [10]. In literature, many authors improved ratio and regression estimators
using at least one auxiliary variable under two phase sampling scheme. Singh and Espejo
[16] suggested a class of ratio-product estimators in two phase sampling with its properties
and identified asymptotically optimum estimators from proposed class of estimators.
Samiuddin and Hanif [14] proposed ratio and regression estimation procedures to estimate
the population mean in two-phase sampling using idea of partial and no information cases.
Ahmad [1] has proposed various estimators for two phase and multiphase sampling using
information on several auxiliary variables. Hanif et al. [7] proposed regression estimator
using several auxiliary variables. In recent years, exponential estimators have not been
studied sufficiently in two phase sampling. Singh and Vishwakarma [17] adapted Bahl
and Tuteja [2] exponential ratio type estimator into two phase sampling. We, here, give
the notations about two phase sampling and various estimators of the population mean
in two phase sampling method in Section 2. We propose a class of exponential regression
cum ratio estimator in Section 3. In Section 4, the proposed estimator is compared
with other existing estimators in two phase sampling and we obtain certain conditions
that proposed estimator is found to be more efficient than other estimators. In Section
5, the theoretical results are supported by a numerical example. In Section 6, we give
conclusion.

2. Notations and Various Existing Estimators

Consider a finite population U = U1, U2, . . . , UN , of size N units. Let y denote the
study variable taking the values yi on the unit Ui, (i = 1, 2, . . . , N) and Y is its unknown
population mean. Let x denotes the auxiliary variable taking the values xi on the unit
Ui, (i = 1, 2, . . . , N) positively correlated with y and X is its unknown population mean.

It is well known that when the population mean of the auxiliary variable is not known,
two phase sampling is used. Two phase sampling consists of two phase. In first phase,
a sample of fixed size is drawn by Simple Random Sampling Without Replacement (SR-
SWOR) from the finite population to estimate the mean of the auxiliary variable. The
sample is drawn in first phase is named as primary sample and expressed by s′. The usual
practice is to estimate the mean of the auxiliary variable by sample mean. In second
phase, a sample s (s ⊂ s′) of fixed size n is drawn SRSWOR from the primary sample
(s′) to estimate the mean of the study variable. The sample is drawn in second phase is
named as sub sample and expressed by s [14].
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When information is not available on the auxiliary variable, x, that is positively cor-
related with the study variable, y, the classical ratio estimator is a widely used estimator
to estimate the population mean, Y , in two phase sampling as follows:

(2.1) yR =
y

x
x
′

where x
′

is the primary sample mean of the auxiliary variable, y and x are the sub
sample means of the study and auxiliary variables, respectively. It is well known that
the MSE equation of the classical ratio estimator is given by

(2.2) MSE (yR) ∼= Y
2 [
λC2

y + λ∗C2
x (1− 2Kyx)

]
where Kyx = ρyx

Cy
Cx

; λ =
1

n
− 1

N
; λ∗ =

1

n
− 1

n′
; n
′

is the primary sample size; n is

the sub sample size; N is the number of units in the population; ρyx is the population
correlation coefficient between the auxiliary and the study variables, Cx and Cy are the
population coefficients of variation of the auxiliary and study variables, respectively.

When auxiliary variable is correlated with the study variable, the classical unbiased
regression estimator is used to estimate the population mean, in two phase sampling as
follows:

(2.3) ylr = y + βyx
(
x
′
− x
)

where βyx is the regression coefficient between the auxiliary and the study variables.
It is well known that the variance of the classical regression estimator is given by

(2.4) V ar (ylr) = Y
2
C2
y

(
λ− λ∗ρ2yx

)
Singh and Vishwakarma [17] suggested the following modified exponential ratio esti-

mator in two phase sampling

(2.5) ysvr = y exp

(
x
′
− x

x
′

+ x

)
The MSE equation of the estimator can be given by

(2.6) MSE (ysvr)
∼= Y

2
[
λC2

y + λ∗
(
C2
x

4
− ρyxCyCx

)]
In sampling literature, the authors rarely consider the exponential estimators in two

phase sampling scheme. For this reason, we improved a class of exponential regression
cum ratio estimator in two phase sampling using the ratio and regression methods and
their linear transformation in this study.

3. Suggested Exponential Estimator in Two Phase Sampling

Replacing regression estimator instead of sample mean and using linear transformation
in exponential term in Singh and Vishwakarma [17] exponential ratio estimator given in
(2.5), we improve a class of exponential regression cum ratio estimator as follows:

(3.1) yNH =
[
k1y + k2

(
x
′
− x
)]

exp

(
z
′
− z

z + z
′

)
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where k1 and k2 are some known constants, z
′

is a transformation of the auxiliary variable

at first phase as z
′

= ax
′
+b, and z is a transformation of the auxiliary variable at second

phase as z = ax+ b.
Then, we have

(3.2)
z
′

= ax
′

+ b
z = ax+ b

}
where a (6= 0) and b are either any known constants or functions of any known popula-
tion parameters of the auxiliary variable, such as standard deviation (σx), coefficient of
variation (Cx), coefficient of skewness {β1 (x)}, coefficient of kurtosis {β2 (x)}, coefficient
of correlation (ρyx) [9]. The list of new exponential estimator generated from (3.1) is
given in Table 1.

To obtain the Bias and MSE equations for the proposed estimator, we define following
notations:

(3.3) e0 =

(
y − Y

)
Y

, e1 =

(
x−X

)
X

, e1
′ =

(
x
′
−X

)
X

such that

(3.4)

E (e0) = E (e1) = E
(
e
′
1

)
= 0;E

(
e20
)

= λC2
y ;E

(
e21
)

= λC2
x;

E
(
e
′
1

2
)

= λ
′
C2
x;E (e0e1) = λρyxCyCx;E

(
e0e
′
1

)
= λ

′
ρyxCyCx;

E
(
e1e
′
1

)
= λ

′
C2
x

where

λ =
1

n
− 1

N
, λ

′
=

1

n′
− 1

N
, C2

y =
S2
y

Y
2 , C2

x =
S2
x

X
2 , S2

y =

N∑
i=1

(
yi − Y

)2
N − 1

,

S2
x =

N∑
i=1

(
xi −X

)2
N − 1

, ρyx =

N∑
i=1

(
yi − Y

) (
xi −X

)
√

N∑
i=1

(
xi −X

)2 N∑
i=1

(
yi − Y

)2
and we use Taylor series method [4] for two variables to solve the exponential term as

(3.5)

f
(
e1, e

′
1

)
= f

(
e1, e

′
1

) ∣∣∣e1=e′1=0
+

1

1!

∂f
(
e1, e

′
1

)
∂e1

∣∣∣e1=e′1=0

+
1

1!

∂f
(
e1, e

′
1

)
∂e
′
1

∣∣∣e1=e′1=0
+

1

2!

∂f
(
e1, e

′
1

)
∂e21

∣∣∣e1=e′1=0

+
1

2!

∂f
(
e1, e

′
1

)
∂e
′
1
2

∣∣∣e1=e′1=0
+

1

2!

∂f
(
e1, e

′
1

)
∂e1e

′
1

∣∣∣e1=e′1=0

+
1

2!

∂f
(
e1, e

′
1

)
∂e
′
1e1

∣∣∣e1=e′1=0
+ . . .

Expressing (3.1) in terms of e’s and using (3.5) for the exponential term, we have

(3.6) yNH =
[
k1Y (1 + e0) + k2X

(
e
′
1 − e1

)]
exp

 aX
(
e
′
1 − e1

)
aX

(
e1 + e

′
1 + 2

)
+ 2b
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where f(e1, e
′
1) = exp

 aX
(
e
′
1 − e1

)
aX

(
e1 + e

′
1 + 2

)
+ 2b

 and we solve the exponential term from

(3.5) as

yNH =
[
k1Y (1 + e0) + k2X

(
e
′
1 − e1

)]
{

1− θ
(
e1 − e

′
1

)
+

3θ2

2
e21 −

θ2

2
e
′
1

2
− θ2e1e

′
1 + ...

}

where θ =
aX

2
(
aX + b

) .

Assuming |e1| < 1, expanding the right hand side of (3.6), and retaining terms up to
the second degree of e’s, we have

yNH − Y ∼= Y

[
(k1 − 1)− k1θ

(
e1 − e

′
1

)
− 3θ2

2

(
e21 − e

′
1

2)
+ k1e0−(3.7)

k1θ
(
e0e1 − e0e

′
1

)]
+ k2X

[
e
′
1 − e1 + θ

(
e21 − e

′
1

2)]
Squaring both sides of (3.7), retaining terms of e’s up to the second degree and

taking expectation, we get the Bias and MSE Equations of yNH to the second degree of
approximation as

(3.8) Bias (yNH) ∼= E
(
yNH − Y

) ∼= Y
[
(k1 − 1) + k1λ

∗θC2
x

](3θ

2
−Kyx

)

MSE (yNH) ∼= E
(
yNH − Y

)2
(3.9)

∼= Ȳ 2 [(k1 − 1)2 + k21
{
λC2

y + 4λ∗θC2
x (θ −Kyx)

}
+

k1λ
∗θC2

x (2Kyx − 3θ) + k22λ
∗X

2
C2
x + 2k2X Y λ∗C2

x {k1 (2θ −Kyx)}

To obtain the minimum MSE (yNH), we get

(3.10)
∂

∂ki
{MSE (yNH)} = 0; i = 1, 2.

Solving two equations simultaneously, the optimum values of k1 and k2 are respec-
tively,

(3.11) k1 = 1− 2− λ∗θ2C2
x

1 +
(
λ− λ∗ρ2yx

)
(3.12) k2 =

Y

X

{
(θ − 1) +

2− λ∗θ2C2
x

1 +
(
λ− λ∗ρ2yx

) (2θ −Kyx)

}
k1 and k2 quantities can be guessed quite accurately through a pilot sample survey or
sample data or experience gathered in due course of time, see Das and Tripathi [5], Singh
and Ruiz-Espejo [16], Singh, H.P. et al. [18] and Koyuncu and Kadilar [11].
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When k1 and k2 are replaced in (3.9), the minimum MSE of the proposed estimator
can be written as

MSEmin (yNH) ∼= Y
2
C2
y

(
λ− λ∗ρ2yx

) (
1− λ∗θ2C2

x

)
− λ∗2θ4C4

x

4{
1 + C2

y

(
λ− λ∗ρ2yx

)}(3.13)

∼= Y
2
V ar (ylr)

(
1− λ∗θ2C2

x

)
− λ∗2Y

2
θ4C4

x

4{
Y

2
+ V ar (ylr)

}
Table 1. Some Members of the Suggested Estimator yNH

A subset of yNH a b

yNH1 =
[
k1y + k2

(
x
′
− x
)]

exp
(
x
′
−x

x+x
′

)
1 0

yNH2 =
[
k1y + k2

(
x
′
− x
)]

exp
(

x
′
−x

x+x
′
+2

)
1 1

yNH3 =
[
k1y + k2

(
x
′
− x
)]

exp
(

x
′
−x

x+x
′
+2β2(x)

)
1 β2 (x)

yNH4 =
[
k1y + k2

(
x
′
− x
)]

exp

{
β2(x)

(
x
′
−x

)
β2(x)(x+x′)+2

}
β2 (x) 1

yNH5 =
[
k1y + k2

(
x
′
− x
)]

exp

{
Cx

(
x
′
−x

)
Cx(x+x′)+2β2(x)

}
Cx β2 (x)

yNH6 =
[
k1y + k2

(
x
′
− x
)]

exp

{
β2(x)

(
x
′
−x

)
β2(x)(x+x′)+2Cx

}
β2 (x) Cx

yNH7 =
[
k1y + k2

(
x
′
− x
)]

exp

{
ρyx

(
x
′
−x

)
ρyx(x+x′)+2β2(x)

}
ρyx β2 (x)

yNH8 =
[
k1y + k2

(
x
′
− x
)]

exp

{
β2(x)

(
x
′
−x

)
β2(x)(x+x′)+2ρyx

}
β2 (x) ρyx

yNH9 =
[
k1y + k2

(
x
′
− x
)]

exp

{
Cx

(
x
′
−x

)
Cx(x+x′)+2ρyx

}
Cx ρyx

4. Efficiency Comparisons in Two Phase Sampling

In this section, we obtain the efficiency conditions for the proposed estimator by com-
paring the MSE of the proposed estimators with the MSE of classical ratio and regression
estimators and the exponential ratio estimator suggested by Singh and Vishwakarma [17].

We compare the MSE of the proposed estimator, yNH , given in (3.13), with the MSE
of the existing estimators, yR, ylr, ysvr.

From (2.2) and (3.13), we have the condition

MSE (yNH) < MSE (yR)

Y
2
C2
y

(
λ− λ∗ρ2yx

) (
1− λ∗θ2C2

x

)
− λ∗2θ4C4

x

4
1 + C2

y

(
λ− λ∗ρ2yx

) < Y
2 [
λC2

y + λ∗C2
x (1− 2Kyx)

]
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Table 1 Continued: Some Members of the Suggested Estimator yNH

A subset of yNH a b

yNH10 =
[
k1y + k2

(
x
′
− x
)]

exp

{
ρyx

(
x
′
−x

)
ρyx(x+x′)+2Cx

}
ρyx Cx

yNH11 =
[
k1y + k2

(
x
′
− x
)]

exp

{
σx

(
x
′
−x

)
σx(x+x′)+2ρyx

}
σx ρyx

yNH12 =
[
k1y + k2

(
x
′
− x
)]

exp

{
ρyx

(
x
′
−x

)
ρyx(x+x′)+2σx

}
ρyx σx

yNH13 =
[
k1y + k2

(
x
′
− x
)]

exp

{
β2(x)

(
x
′
−x

)
β2(x)(x+x′)+2σx

}
β2 (x) σx

yNH14 =
[
k1y + k2

(
x
′
− x
)]

exp

{
σx

(
x
′
−x

)
σx(x+x′)+2β2(x)

}
σx β2 (x)

yNH15 =
[
k1y + k2

(
x
′
− x
)]

exp

{
β1(x)

(
x
′
−x

)
β1(x)(x+x′)+2β2(x)

}
β1 (x) β2 (x)

yNH16 =
[
k1y + k2

(
x
′
− x
)]

exp

{
β2(x)

(
x
′
−x

)
β2(x)(x+x′)+2β1(x)

}
β2 (x) β1 (x)

Note: In addition to estimators listed in Table 1, a large number of esti-
mators can also be generated from (3.1) by putting 1, Cx, β2 (x), ρyx, σx,
β1 (x) values for a and b.

C2
y

(
λ− λ∗ρ2yx

) (
1− λ∗θ2C2

x

)
− λ∗2θ4C4

x

4
1 + C2

y

(
λ− λ∗ρ2yx

) < λC2
y +λ∗ (Cx − ρyxCy)2−λ∗ρyxCy

(4.1)

{
λ∗θ2C2

x

2
+
V ar (ylr)

Y
2

}2

+ λ∗ (Cx − ρyxCy)2
{

1 +
V ar (ylr)

Y
2

}
> 0

The condition (4.1) is always satisfied, the proposed estimator, yNH , is always more
efficient than the classical ratio estimator, yR.

From (2.4) and (3.13), we have the condition

MSE (yNH) < V ar (ylr)

Y
2
V ar (ylr)

(
1− λ∗θ2C2

x

)
− λ∗2Y

2
θ4C4

x

4

Y
2

+ V ar (ylr)
< V ar (ylr)

(4.2)

{
V ar (ylr)

Y
2 +

λ∗θ2C2
x

2

}2

> 0

The condition (4.2) is always satisfied, the proposed estimator, yNH , is always more
efficient than the classical regression estimator, ylr.

From (2.6) and (3.13), we have the condition
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MSE (yNH) < MSE (ysvr)

Y
2
C2
y

(
λ− λ∗ρ2yx

) (
1− λ∗θ2C2

x

)
− λ∗2θ4C4

x

4
1 + C2

y

(
λ− λ∗ρ2yx

) < Y
2
[
λC2

y + λ∗
(
C2
x

4
− ρyxCyCx

)]

C2
y

(
λ− λ∗ρ2yx

) (
1− λ∗θ2C2

x

)
− λ∗2θ4C4

x

4
1 + C2

y

(
λ− λ∗ρ2yx

) < λC2
y+λ∗

(
Cx
2
− ρyxCy

)
−λ∗ρ2yxC2

y

(4.3)

(
V ar (ylr)

Y
2 + λ∗θ2C2

x

)2

+ λ∗
(
Cx
2
− ρyxCy

)2{
1 +

V ar (ylr)

Y
2

}
> 0

The condition (4.3) is always satisfied, the proposed estimator, yNH , is always more
efficient than Singh and Vishwakarma [17] exponential ratio estimator, ysvr.

Thus, finally, we conclude from the efficiency comparisons that the class of exponential
regression cum ratio estimator, yNH , is always more efficient than the estimators, yR,
ylr and ysvr.

5. Numerical Example

To show the performance of the proposed estimator in comparison to other estimators
in two phase sampling, four original data sets used by other authors in literature has
been considered. The descriptions of the populations are given below.

Population I : Cingi et. al. [3],
y : the number of teachers
x : the number of student in both primary and secondary school for 923 districts

N = 923, n
′

= 400, n = 200, Y = 436, 3, X = 11440, 50, Cy = 1, 72, Cx = 1, 86,
ρyx = 0, 955.

Population II : Sukhatme and Sukhatme [20],
y: No. of villages in the circle.
x: A circle consisting more than five villages.

N = 89, n
′

= 30, n = 20, Y = 3, 360, X = 0, 124, Cy = 0, 604, Cx = 2, 190 ,
ρyx = 0, 766.

Population III : Kadilar and Cingi [9],
y: Level of apple production.
x: No. of apple trees.

N = 104, n
′

= 40, n = 20, Y = 625, 37, X = 13, 930, Cy = 1, 866, Cx = 1, 653,
ρyx = 0, 865.

Population IV : Murthy [12],
y: Output
x: fixed capital

N = 80, n
′

= 40, n = 20, Y = 51, 826, X = 11, 265, Cy = 0, 354, Cx = 0, 751,
ρyx = 0, 9413.
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We compute the MSE values of classical ratio and regression estimators, Singh and
Vishwakarma [17] estimator and proposed estimator using the equations, (2.2), (2.4),

(2.6), and (3.13), respectively. We have taken a = b = 1, that is, θ =
X

2
(
X + 1

) , just for

the sake of simplicity.
These MSE values are shown in Table 2. We observe that the most efficient estimator

is the proposed exponential regression cum ratio estimator as compared to those existing
ones.

Table 2. MSE Values of Estimators in Two Phase Sampling

Population

Estimators I II III IV

Classical Ratio(ȳR) 807,59 0,30 54993,75 12,64

Classical Regression(ȳlr) 780,89 1,86 29536,17 16,87

Singh and Vishwakarma (ȳsvr) 1045,59 0,40 35586,14 5,29

Proposed Est.(ȳNH) 774,71 0,12 26960,89 5,12

6. Conclusion

We propose a class of regression cum estimator using the exponential function for the
population mean in two phase sampling improving the exponential ratio estimator sug-
gested in Singh and Vishwakarma [17]. Theoretically, we demonstrate that the proposed
estimator is always the most efficient estimator in two phase sampling and numerically,
for various specific data sets, we show that the proposed estimator has small MSE value
according to other estimators. In future work, we will improve the proposed estimator,
presented here, with using several auxiliary variables and adding more parameters for
other sampling schemes.
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